搜档网
当前位置:搜档网 › 钣金折弯成型技术的12大常见问题【干货】

钣金折弯成型技术的12大常见问题【干货】

钣金折弯成型技术的12大常见问题【干货】
钣金折弯成型技术的12大常见问题【干货】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!

更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

钣金加工只是对金属材料进行折弯、压铆、焊接等一系列处理的工艺。下面针对钣金加工中折弯工艺所遇到的问题和解决办法。

问题一:折弯边不平直,尺寸不稳定

原因:

1、设计工艺没有安排压线或预折弯

2、材料压料力不够

3、凸凹模圆角磨损不对称或折弯受力不均匀

4、高度尺寸太小

解决办法:

1、设计压线或预折弯工艺

2、增加压料力

3、凸凹模间隙均匀、圆角抛光

4、高度尺寸不能小于小极限尺寸

问题二:工件折弯后外表面擦伤

原因:

1、原材料表面不光滑

2、凸模弯曲半径太小

3、弯曲间隙太小

解决办法:

1、提高凸凹模的光洁度

2、增大凸模弯曲半径

3、调整弯曲间隙

问题三:弯曲角有裂缝

原因:

1、弯曲内半径太小

2、材料纹向与弯曲线平行

3、毛坯的毛刺一面向外

4、金属可塑性差

解决办法:

1、加大凸模弯曲半径

2、改变落料排样

3、毛刺改在制件内圆角

4、退火或采用软性材料

问题四:弯曲引起孔变形

原因:采用弹压弯曲并以孔定位时弯臂外侧由于凹模表面和制件外表面摩擦而受拉,使定位孔变形。

解决办法:

1、采用形弯曲

2、加大顶料板压力

3、在顶料板上加麻点格纹,以增大摩擦力防止制件在弯曲时滑移

问题五:弯曲表面挤压料变薄

原因:

1、凹模圆角太小

2、凸凹模间隙过小

解决办法:

1、增大凹模圆角半径

2、修正凸凹模间隙

问题六:制件端面鼓起或不平

原因:

1、弯曲时材料外表面在圆周方向受拉产生收缩变形,内表面在圆周方向受压产生伸长变形,因而沿弯曲方向出现挠曲端面产生鼓起现象。

解决办法:

1、制件在冲压后阶段凸凹模应有足够压力

2、做出与制件外圆角相应的凹模圆角半径

3、增加工序完善

问题七:凹形件底部不平

原因:

1、材料本身不平整

2、顶板和材料接触面积小或顶料力不够

3、凹模内无顶料装置

解决办法:

1、校平材料

2、调整顶料装置,增加顶料力

3、增加顶料装置或校正

4、加整形工序

问题八:弯曲后两边对向的两孔轴心错移

原因:材料回弹改变弯曲角度使中心线错移

解决办法:

1、增加校正工序

2、改进弯曲模结构减小材料回弹

问题九:弯曲后不能保证孔位置尺寸精度

原因:

1、制件展开尺寸不对

2、材料回弹引起

3、定位不稳定

解决办法:

1、准确计算毛坯尺寸

2、增加校正工序或改进弯曲模成型结构

3、改变工艺加工方法或增加工艺定位

问题十:弯曲线与两孔中心联机不平行

原因:弯曲高度小于小弯曲极限高度时弯曲部位出现外胀现象

解决办法:

1、增加折弯件高度尺寸

2、改进折弯件工艺方法

问题十一:弯曲后宽度方向变形,被弯曲部位在宽度方向出现弓形挠度原因:由于制件宽度方向的拉深和收缩量不一致产生扭转和挠度

解决办法:

1、增加弯曲压力

2、增加校正工序

3、保证材料纹向与弯曲方向有一定角度

问题十二:带切口的制件向下挠曲

原因:切口使两直边向左右张开,制件底部出现挠度

解决办法:

1、改进制件结构

2、切口处增加工艺留量,使切口连接起来,弯曲后再将工艺留量切去

内容来源网络,由深圳机械展收集整理!

更多激光钣金及冲压自动化工艺展示,就在深圳机械展.金属板材加工展区/激光精密加工应用展区。

钣金件折弯展开计算方法

一、折床工作原理 折弯就是将上、下模分别固定于折床的上、下工作台,利用液压伺服电机传输驱动工作台的相对运动,结合上、下模的形状,从而实现对板材的折弯成形。 二、展开的定义和折弯常识 ★折弯展开就是产品的下料尺寸,也就是钣金在折弯过程中发现形变,中间位置不拉伸,也叫被压缩的位置长度,也叫剪口尺寸。 ★折弯V槽选择公式:当R=0.5时,V=5T;当R>0.5时V=5T+R 折弯展开会根据上模和下模的不同而发生相应的变化,在更换模具时必须考虑进去。 ★折床的运动方式有两种: 上动式:下工作台不动,由上面滑块下降实现施压; 下动式:上部机台固定不动,由下工作台上升实现施压。 ★工艺特性 1.折弯加工顺序的基本原则:由内到外进行折弯;由小到大进行折弯;先折弯特殊形状,再折弯一般形状。 2.90°折弯及大于90°小于180°折弯选模:一般在SOP没有特殊要求或没有 特殊避位的最好选用刀口角度为88°或90的折弯上模,这样可以更好的保证折弯角度的稳定性。

三、折弯展开尺寸计算方法,如右图: <1>直角展开的计算 方法 当内R 角为0.5 时折弯系数(K )=0.4*T , 前提是料厚小于5.0MM , 下模为5T L1+L2-2T+0.4*T =展开 <2>钝角展开的计算方法 如图,当R=0.5时的展 开计算 A+B+K=展开 K= ×0.4 a=所有折弯角度 1800-2 900

<3>锐角展开的计算方法 900折弯展开尺寸=L1+L2-2T+折弯系 数(K),如右图: 当内R角为0.5时折弯系数(K) =0.4*T,L1和L2为内交点尺寸 展开=L1+L2+K K=( 180—@) /90 *0.4T <4>压死边的展开计算方法 选模:上模选用刀口角度为300小尖刀,下模根据SOP及材料厚度选择V槽角度为300的下模。 先用 4.4.1所选的模具将折弯角度折到约300-650. 展开=L1+L2-0.5T 死边

钣金折弯工艺(知识参考)

钣金折弯工艺 1. 适用范围: 本工艺守则适用于生产高、低压开关柜(箱)过程中,低碳钢板的折弯。允许公差值按标准JB /T6753.1-5.1中表1的规定。适用于产品结构零部件折弯加工工序之用。 2. 工艺过程: 3. 准备工作内容: 3.1 熟悉图纸和技术要求:备齐板手等手工具和钢卷尺、角度尺、游标卡尺等量具。 3.2 检查折弯机的状态,检查内容包括: A. 检查润滑情况是否正常,需要时将各部加足润滑油。 B. 检查机械部件是否正常,螺丝有无松动。 3.3 检查待折弯的板料尺寸及角度,是否符合图纸要求,图纸无展开尺寸时,应按下表计算核对: kr T 1.0 1.2 1.5 2.0 1.0 1.77 1.85 1.96 2.15 1.2 2.07 2.13 2.24 2.42 准备 检验 折弯 检查及调整折弯机

1.5 2.51 2.57 2.66 2.84 2.0 3.29 3.31 3.39 3.54 2.5 3.98 4.04 4.14 4.27 3.0 4.72 4.78 4.86 5.05 4. 检查及调整折弯机: 4.1 机器刚开始使用时,对于同步油缸式折弯机,应放掉左右两个同步油缸中的空气,放气步骤如下: A.将放气螺丝松开; B.由按钮控制“充油”“工作”交替进行,并使滑块上下数次,使油缸中的空气放入油箱。 C.将放气螺钉旋紧,再由按钮控制充油,充油后折弯机两油缸应保持同步。 4.2 调整下刀两端的推拉螺杆,使上下刀口中心线重合。 4.3 调整滑块下限: 对于同步油缸式折弯机根据板料厚度和弯曲及开关用按钮通过电动机调整滑块的下限(即滑块下死点)指针旋转一周滑块移动1毫米,注意不得使上刀与下刀槽接触,以免造成顶刀事故,上下刀的间隙不得小于板料厚度。对于机械同步折弯机,先将下止点调整手轮顺时针方向调整到最小值,然后逆时针下调,一边折弯一边转动直到折弯角度合适时停止。 4.4 摇动“直板调节手轮”,使制板端面与下刀槽中心等于工件边高减去料厚,调整时使用300毫米深度尺寸在制板两端测量。 4.5 正确选用下模V形槽,开口尺寸应符合折弯压力表的规定。 5. 折弯

钣金折弯加工工艺

Hontech Group. 编著:代利车

绪言 在金属材料中,原子之间作用着相当大的力,足以抵抗重力的作用,所以在没有

其它外力作用的条件下,金属物体将保持自有的形状和尺寸。 弹性变形-----当物体受到外力作用之后,它的形状和尺寸将发生变化即变形,变形的实质就是原子间的距离产生变化。假如作用于物体的外力去除后,由外力引起的变形随之消失,物体能完全恢复自己的原始形状和尺寸,这样的变形称为弹性变形。 塑性变形-----如果作用于物体的外力去除后,物体并不能完全恢复自己的原始形状和尺寸,这样的变形称为塑性变形。塑性变形和弹性变形都是在变形体不破坏的条件下进行的(即连续性不破坏) 通常用塑性表示材料塑性变形能力。 塑性-----指固体材料在外力作用下发生永久变形而不破坏其完整性能力。金属 的塑性不是固定不变的,影响它的因素很多,除了金属本身的晶格类型、化学成分和金相组织等内在因素之外,其外部因素——变形方式(机械因素即应力状态与应变状态)、变形条件(物理因素即变形温度与变形速度)的影响也很大。 折弯一金属板料在折弯机上模或下模的压力下,首先经过弹性变形,然后进入塑性变形,在塑性弯曲的开始阶段,板料是自由弯曲的?随着上模或下模对板料的施压,板料与下模V型槽内表面逐渐靠紧,同时曲率半径和弯曲力臂也逐渐变小,继续加压直到行程终止,使上下模与板材三点靠紧全接触,此时完成一个V型弯曲,也就是我们俗称的折弯?下图是90 ° V型折弯: 学折床,勤动脑, 先把图纸学看好. 看图纸,挑模具, 模具形状要牢记. 看折形,选机床, 装模具,不要忙, 锁紧对在中心上? 看蓝图,排刀序,

折弯计算公式

买两本书,一本是钣金手册,桔黄色皮的,很厚,另外一本是冷加工手册,绿色封面的,薄一些。 如果是简单的直角折弯,一般来说,算料的时候,数一下有多少个弯就行了,每个弯减一个板厚。 L=外形长-2*R/tan(α/2)+α/180*3.1416*R 其中,α为30度可者90度,R为弯曲半径 展开尺寸是把每段相加,在减去你每道弯有1,8倍SECC,SPCC和如果折弯数连续有4折以上的建议你先试样。折弯件上面折边如果要开孔,一般将它们画出来,找到延长线(按照中线),按几何法计算: L=外形长-2*R/tan(α/2)+α/180*3.1416*R ;其中,α为30度或90度,R为弯曲半径;如你折的是1.0的板子,折弯件的宽度加高度再减1.0X折弯的刀数。 理论计算法:1,圆角很小(R<0.5δ)的弯曲件展开法。 L=L1+L2+Kδ ,式中K——介于0.48~0.5之间,软料取下限,硬料取上限。多角弯曲时:L=L1+L2+.......+Ln+K1δ(n-1), 式中 L1,L2.....Ln——各直边的内线长度(毫米),n——直边的数量。K1——在双角弯曲时,介于0.45~0.48之间;在多角弯曲时为0.25(对于塑 性更大的材料可减至0.125). 如何算折弯尺寸 现在经常要算一些板金及铁线的下料,但碰到折弯的地方,算出来总会差1—2mm(一般用1.6x厚度来减),如果碰上角度问题,那就差更远了。哪位师傅能帮忙讲解一下如何算?越详细越好! 我也有个折弯公式,但不会用。BA=P(R+KT)A/180 算你问对人了。我发明的一个最简单公式: L=k*(1.6r+0.5t) 其中:L----圆弧部分的展开长度;mm k----圆心角除以直角的值; r----工件园角的内半径;mm t----工件板厚;mm 计算板金下料时经常总是相差1-2mm,我想可能有两个原因: 1、可能你在计算长度时,不是用中性层来计算,因为板材在折弯时,里 层组织受压,外层组织受拉,一定要用中性层来计算。 2、你可能没有考虑折弯时的变薄系数,系数可以《板金下料手册》中 查到。 建议去买一本《板金下料手册》来看,里面有详细的介绍。 直角展开公司:0,28*1,57*t(料厚) 角度展开公司:0,28*1,57*t(料厚)*角度/90度 反折平:1,5t(料厚) 以上为五金模具设计经验值。希望能帮上你 Q235B材料的话一般是用材料厚度的1.75至2倍,要求不高的话就用2倍计算,要求高的话那就要看下模大小,还有材料的拉申度的,这个就要在实际工作中去试了,不同批次的材料都不一样的,有时就是同一张钢板上剪下来的也会不一样。比如我做过一批出口产品,414的材料4.75mm,在折四次的情况下公差要在50丝之内,我用的是1.85倍,下模36,供参考。 折弯一次的:外型尺寸相加减去两个材料厚度再加一个材料厚度X折弯系数。

钣金件折弯系数计算法

折弯系数折弯扣除K因子值的计算方法 一、钣金的计算方法概论 钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法。通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。 另一方面,随着计算机技术的出现与普及,为更好地利用计算机超强的分析与计算能力,人们越来越多地采用计算机辅助设计的手段,但是当计算机程序模拟钣金的折弯或展开时也需要一种计算方法以便准确地模拟该过程。虽然仅为完成某次计算而言,每个商店都可以依据其原来的掐指规则定制出特定的程序实现,但是,如今大多数的商用CAD和三维实体造型系统已经提供了更为通用的和强大功能的解决方案。大多数情况下,这些应用软件还可以兼容原有的基于经验的和掐指规则的方法,并提供途径定制具体输入内容到其计算过程中去。SolidWorks也理所当然地成为了提供这种钣金设计能力的佼佼者。 总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。SolidWorks软件在2003版之前只支持折弯补偿算法,但自2003版以后,两种算法均已支持。 为使读者在一般意义上更好地理解在钣金设计的计算过程中的一些基本概念,同时也介绍S olidWorks中的具体实现方法,本文将在以下几方面予以概括与阐述: 1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系 2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法 3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围 二、折弯补偿法 为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。 图1 折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区 域的长度。展平的折弯区域的长度则被表示为“折弯补偿”值(BA)。因此整个零件的长度就表示为方程(1): LT = D1 + D2 + BA(1)

五金钣金展开计算参数

1. 目的:为完善作业标准,制订本文件。 2. 范围:适用于本公司设计部门之作业。 3. 职责:针对设计计算展开统一计算参数。 4. 内容: 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层一中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲关径弯小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中收的内侧移动,中性层到板料内侧的距离用入表示 展开的基本公式: 展开长度=料内+料内+补偿量 4.1中性层系数 注明:K1适用于有顶底的V形或U形弯曲,K2适用于无顶底的V形弯曲?但通常我们习惯取K2值。 4.2压弯90度角的修正系数a值 注明:此数据可单独用于90度角的折弯修正,也可与中性层系数互相检查核对。 4.3其余图形展开计算方法:

r/t W0.5时,均可按90度清角计算展开长度展开注意事项为了防止产品展开过程中的失误,造成下料模的多次修改,特制定下料模的制作方式. (1) .凡对一些展开存在不确定因素的产品,例如,有拉伸性质的展开,多次折弯,Z折,有拉料现象 等产品的下料模,经工程分析有必要先试模的,其制作方式如下: A. 下料模的模板先不完全加工完毕,先完成机加及热处理部分,线割部分暂缓加工. B. 成型模先做,试模时先镭射(按下料模展开尺寸)试模,产品先做实测,不合格时修正展开尺寸再镭射,一直 修到合格为止,合格样品送客户先承认. C. 样品经客户承认后,按修正展开尺寸整理下料模,进行下料模的线割加工. (2) .对展开较直观的,可基本控制的产品,一般只要经俩人展开核对无误,下料模可按正常方式加工

折弯工艺培训教材

钣金件的折弯 钣金的折弯,是指改变板材或板件角度的加工。如将板材弯成V形,U形等。一般情况下,钣金折弯有两种方法:一种方法是模具折弯,用于结构比较复杂,体积较小、大批量加工的钣金结构;另一种是折弯机折弯,用于加工结构尺寸比较大的或产量不是太大的钣金结构。目前公司产品的折弯主要采用折弯机加工。 这两种折弯方式有各自的原理,特点以及适用性。 1.1.1模具折弯: 对于年加工量在5000件以上,零件尺寸不是太大的结构件(一般情况为300X300),一般考虑开冲压模具加工。 1.1.1.1 。 1.1.2 折弯机分普通折弯机和数控折弯机两种。精度要求较高,折弯形状不规则的钣金折弯一般用数 ),对钣金件进行折弯和 控折弯机折弯,其基本原理就是利用折弯机的折弯刀(上模)、V形槽(下模

1 2 3 4 1.1. 2.2 折弯半径 钣金折弯时,在折弯处需有折弯半径,折弯半径不宜过大或过小,应适当选择。折弯半径太小 1.1. 2.3 折弯回弹

图1-5折弯回弹示意图 1)回弹角Δα=b-a 式中 b——回弹后制件的实际角度; a—模具的角度。 1.1. 2.4 折弯时的干涉现象 对于二次或二次以上的折弯,经常出现折弯工件与刀具相碰出现干涉,如图1-6所示,黑色部

图中的最小折弯边尺寸L按照1.3.2.2中描述的一次折弯边的最小折弯边尺寸加0.5t(t为材料厚度)。压死边一般适用于板材为不锈钢、镀锌板、覆铝锌板等。电镀件不宜采用,因为压死边的地方会有夹酸液的现象。 1.1. 2.6 180度折弯: 180度折弯的方法:如图1-9所示,先用30度折弯刀将板才折成30度,再将折弯边压平,压平后抽出垫板。

钣金展开图计算方法

钣金展开图计算方法 一般铁板0.5—4MM之内的都是A+B-1.6T。(A,B代表的是折弯的长度,T 就是板厚) 例如用2.5mm的铁板折180mm*180mm的直角,那么你下的料长就是 180mm+180mm再减去2.5mm*1.6也就是4mm就好了,也就是356mm 钣金展开图的计算是要用一个系数来计算的,这个系数一般都用1.645! 计算方法是工件的外形尺寸相加,再减去1.645*板厚*弯的个数, 例如,折一个40*60的槽钢用板厚3的冷板折,那么计算方法就是40+40+60(外形尺寸相加)—1.645(系数)*3(板厚)*2(弯的个数)=130.13(下料尺寸) 一般6毫米之内都是这样计算的了 展开的计算法 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 展开的基本公式: 展开长度=料内+料内+补偿量 一般折弯:(R=0, θ=90°) L=A+B+K 0.3时, K=0≤T'1. 当0 2. 对于铁材:(如GI,SGCC,SECC,CRS,SPTE, SUS等) 1.5时, K=0.4T'T'a. 当0.3 2.5时, K=0.35T'T≤b. 当1.5 2.5时, K=0.3T/c. 当T 3. 对于其它有色金属材料如AL,CU: 0.3时,?当T K=0.5T 2.0时, 按R=0处理.≤注: R 一般折弯(R≠0 θ=90°) L=A+B+K K值取中性层弧长 1.5 时'1. 当T λ=0.5T 1.5时/ 2. 当T λ=0.4T

钣金件的展开计算---准确计算

钣金中的展开计算 一、钣金的计算方法概论 钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。其中最常用的方法就是简单的―掐指规则‖,即基于各自经验的算法。通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。 总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。 为了更好地理解在钣金设计的计算过程中的一些基本概念,先了解以下几点: 1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系 2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法 3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围 二、折弯补偿法

为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。 折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区域的长度。展平的折弯区域的长度则被表示为―折弯补偿‖值(BA)。因此整个零件的长度就表示为方程(1):LT = D1 + D2 + BA (1) 折弯区域(图中表示为淡***的区域)就是理论上在折弯过程中发生变形的区域。简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考: 1、将折弯区域从折弯零件上切割出来 2、将剩余两段平坦部分平铺到一个桌子上 3、计算出折弯区域在其展平后的长度 4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件

(完整版)钣金工艺规范及折弯及模具手册

钣金工艺规范及折弯机模具手册 1简介 1.1钣金所用材料 常用材料有:冷轧板SPCC、热轧板SPHC、电解板SECC、普通铝板及铝合金板AL1050、AL5052-H32,不锈钢板SUS304、覆铝锌钢板. 1.2典型钣金件加工流程 图面展开---编程---下料(剪、冲、割)----冲网孔----校平----拉丝----冲凸包----压铆----折弯-----焊接----立体拉丝----表处----组装 2下料 2.1数冲是用数控冲床加工,板材厚度加工范围为:冷扎板、热扎板小于或等于 3.0mm;铝板小于或等于 4.0mm;不锈钢小于2.0mm。 2.1.1 冲孔有最小尺寸要求 冲孔最小尺寸与孔的形状、材料机械性能和材料厚度有关。t为材料厚度,冲孔尺寸一般不小于1.5t。如遇特殊情况,可参照下表: 图2.1.1 冲孔形状示例 * t为材料厚度,冲孔最小尺寸一般不小于1.2mm。 冲孔最小尺寸列表

2.1.2 数冲的孔间距与孔边距 零件的冲孔边缘离外形的最小距离随零件与孔的形状不同有一定的限制,见图2.1.2。当冲 应不小于1.5t。 2.1.3 折弯件及拉深件不可选用数冲下料,可选用二次激光切割。 2.1.4 螺钉、螺栓的过孔和沉头座 螺钉、螺栓过孔和沉头座的结构尺寸按下表选取取。对于沉头螺钉的沉头座,如果板材太薄难以同时保证过孔d2和沉孔D,应优先保证过孔d2。 用于螺钉、螺栓的过孔 *要求钣材厚度t≥h。 用于沉头螺钉的沉头座及过孔

*要求钣材厚度t≥h。 用于沉头铆钉的沉头座及过孔 激光切割是用激光机飞行切割加工,板材厚度加工范围为冷扎板、热扎板小于或等于8.0mm;不锈钢小于或等于4.0mm ;铝板小于等于5.0mm。其优点是加工板材厚度大,切割工件外形速度快,加工灵活.缺点是会产生热变型,网孔件不宜用此方式加工,加工成本高! 折弯 折弯件的最小弯曲半径 材料弯曲时,其圆角区上,外层收到拉伸,内层则受到压缩。当材料厚度一定时,内r越小,材料的拉伸和压缩就越严重;当外层圆角的拉伸应力超过材料的极限强度时,就会产生裂缝和折断,因此,弯曲零件的结构设计,应避免过小的弯曲圆角半径。公司常用材料的最小弯曲半径等于0.5t。(弯曲半径是指弯曲件的内侧半径,t是材料的壁厚) 弯曲件的直边高度 一般情况下的最小直边高度要求 弯曲件的直边高度不宜太小,最小高度按(图3.2.1)要求:h>2t>2.5mm。 特殊要求的直边高度 如果设计需要弯曲件的直边高度h≤2t,,则首先要加大弯边高度,弯好后再加工到需要尺寸(可采用激光二次切割或者机加工);或者在弯曲变形区内加工浅槽后,再折弯(如下图所示)。

钣金加工计算公式集合

钣金折弯计算公式 1.生产车间经验值 2.PROE计算公式 PROE钣金展开经验公式 经验公式(车间老师傅的算法,在实际中略有不同,需要调整) 前提条件:r<2 壁厚<2.5 折弯角度90°

展开长度L=L1+L2-2T+0.5T (1)L1 L2为外径T为板厚 也即L=L1'+L2'+0.5T (2) L1' L2'为径T为板厚 还即L=L1"+L2"+2r+0.5T (3) L1" L2"为直段长度r为折弯径 我这里是用的0.5T,大多数人有用0.3T的 如果r/T>2,就直接用中性层K=0.5计算好了再看PROE中的展开 PROE中的展开长度就是: L=L1"+L2"+DL L1" L2"为直段长DL为弧段展开长 请记住这个DL,这个DL就是我们要制作的折弯表的值! 再回过来看看上贴的第三个公式 L=L1"+L2"+2r+0.5T 很容易导出: DL=2r+0.5T DL为弧段展开长r为折弯径现在要制作折弯表了 折弯系数DL弧长=2(R+KT)*3.14*(折弯角/360) K为K因子 T为厚 R为侧半径 折弯系数DL弧长=2R+0.2T =K=0.41因子折弯扣除L=2R-0.2T 折弯系数DL弧长=2R+0.3T =K=0.46因子折弯扣除L=2R-0.3T 折弯系数DL弧长=2R+0.35T =K=0.5因子折弯扣除L=2R-0.35T 钣金展开经验计算方法

声明:本计算方法为本人经验算法,只在本人现工作之处适用,照搬可能会有偏差。先说一个名词:折弯余量 折弯余量这个名词我在论坛别的贴子已经说过,这里再重复一下: 一个已成形的钣金折弯,它有三个尺寸:两个轮廓尺寸和一个厚度尺寸,定义两个轮廓尺寸为L1、L2,厚度尺寸为T,我们都已知道,L1+L2是要大于展开长度L的,它们的差值就是折弯余量,我定义为K,那么一个弯的展开尺寸L=L1+L2-K。一般冷轧钢板的K值(条件:90度弯,标准折弯刀具) T=1.0 K=1.8 T=1.2 K=2.1 T=1.5 K=2.5 T=2.0 K=3.5 T=2.5 K=4.3 T=3.0 K=5.0 3. 3 展开计算原理 板料在弯曲过程中外层受到拉应力,层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准. 中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的侧移动.中性层到板料侧的距离用λ表示. 4 计算方法 展开的基本公式: 展开长度=料+料+补偿量

折弯展开计算公式

K因子计算方法: K系数是指钣金内边缘之间的距离与钣金厚度之间的比率。通常,金属薄板的外层会受到拉应力的拉伸,而内层会因压应力而缩短。在内层和外层之间有一个纤维层,称为中间层。根据中性层的定义,弯曲部分的毛坯长度应等于中性层的展开长度。因为在弯曲过程中坯料的体积保持不变,所以变形大时中性层将向内移动,这就是为什么不能仅使用横截面的中性层来计算展开长度的原因。如果中性层的位置用P表示(见图1),则可以表示为 其中R为内弯曲半径/ mm;t为材料厚度/ mm;K是中性层位移系数。 图1中性层位置 钣金弯曲的示意图如图2所示。根据中性层展开的原理,毛坯的总长度应等于中性层的直线部分和弧形部分的长度之和。弯曲部分

图2钣金弯曲图 其中,l是零件的总展开长度/ mm;α是弯曲中心角/(°);L1和L2分别是超出弯曲部分的起点和终点的部分的直线端长度/ mm。 根据以上公式,我们可以计算出确切的弯曲展开长度。可以看出,只要确定参数k,就可以计算出l,并且参数K取决于钣金厚度T和内部弯曲角度R。通常,当R / T为0.1、0.25、0.5时,1、2、3、4、5,≥6,相应的K因子分别为0.23、0.31、0.37、0.41、0.45、0.46、0.47、0.48、0.5-通用零件的R / T值均在1,因此根据上述对应关系计算出的钣金弯曲的展开长度仍然非常准确。对于R / T≥6的情况,金属板在弯曲时不会再次变形,因此中性层等于中心层,并且K因子相应地变为0.5。计算相对容易。唯一的影响是弯曲过程中的回弹问题。这种繁琐的计算最适合计算机完成。下面的三维软件,如AutoCAD,Solidworks,NX,Pro / E,CATIA等也引入了钣金模块,并且K系数已成为这些软件的首选参数,K系数的合理选择大大地减少了流程设计过程中的工作量。

折弯展开计算公式【超简单】

折弯展开计算公式【超简单】 内容来源网络,由深圳机械展收集整理! 更多折弯等钣金设备展示,就在深圳机械展! 在钣金展开中,影响展开长度计算精度的因素有: 折弯内弧半径r下模V型槽宽,板料实际厚度t',和弯曲曲角度α。自由折弯板料在展开长度计算时,没有明确的公式来计算折弯系数,只能查到不同折弯内弧半径的折弯系数。而内弧半径与加工工艺有关,使用不同的下模V型槽宽,内弧半径也不相同,导致无法获得折弯系数的准确性。一般是凭经验判断折弯系数,不同的人判断的折弯系数也不相同。 在钣金中折弯中,经常用到形式分为L折N折和Z折几种。下面我们对几种钣金的展开做个探讨。 1、L折,L折分90°折和非90°折。 在90°折方面,根据经验折弯系数总结如下表

在非90°方面,根据经验折弯系数总结如下。 L=A+B+补偿量*仅供参考 T=0.8 R=0.5 120°≤q≤160° 补偿量为0.1 160°<q≤180° 可忽略不计 T=1.0 R=0.5 120°≤q≤145° 补偿量为0.2 145°<q≤170° 补偿量为0.1 170°<q≤180° 可忽略不计

T=1.2 R=0.5 补偿量与T=1.0相同 T=1.5 R=0.5 120°≤q≤130° 补偿量为0.3 130°<q≤150° 补偿量为0.2 150°<q≤170° 补偿量为0.1 170°<q≤180° 可忽略不计 180& deg;-q L=A+B+------ (2*∏*r) 360°

钣金件折弯展开计算方法(改正版)

?折床工作原理 折弯就是将上、下模分别固定于折床的上、下工作台,利用液压伺服电机传输驱动工作台的相对运动,结合上、下模的形状,从而实现对板材的折弯成形。 ? ? ? ?展开的定义和折弯常识 ★折弯展开就是产品的下料尺寸,也就是钣金

在折弯过程中发现形变,中间位置不拉伸,也叫被压缩的位置长度,也叫剪口尺寸。 ★折弯V槽选择公式:当R=0.5时,V=5T;当R>0.5时V=5T+R 折弯展开会根据上模和下模的不同而发生相应的变化,在更换模具时必须考虑进去。 ★折床的运动方式有两种: 上动式:下工作台不动,由上面滑块下降实现施压; 下动式:上部机台固定不动,由下工作台上升实现施压。 ★工艺特性 1.折弯加工顺序的基本原则:l由内到外进行折弯;由小到大进行折弯;先折弯特殊形状,再折弯一般形状。 2.90°折弯及大于90°小于180°折弯选模:一般在SOP没有特殊要求或没有 特殊避位的最好选用刀口角度为88°或90的折弯上模,这样可以更好的保证折弯角度的稳定性。

三、折弯展开尺寸计算方法,如右图: <1>直角展开的计算方法 当内R角为0.5时折弯系数(K)=0.4*T,前提是料厚小于5.0MM,下模为5T L1+L2-2T+0.4*T=展开 <2>钝角展开的计算方法 如图,当 R=0.5时的展开计算 A+B+K=展开

K= 1800-2/900 ×0.4 a=所有折弯角度 <3>锐角展开的计算方法 900折弯展开尺寸=L1+L2-2T+折弯系数(K),如右图: 当内R角为0.5时折弯系数(K)=0.4*T,L1和

L2为内交点尺寸 展开=L1+L2+K K=( 180—@) /90 *0.4T <4>压死边的展开计算方法 选模:上模选用刀口角度为300小 尖刀,下模根据SOP及材料厚度选 择V槽角度为300的下模。先用 4.4.1所选的模具将折弯角度折到约 300-650.

钣金加工:折弯工艺手册

钣金加工:钣金制造工艺手册—3 1 数控折弯(Numerical Control To Bend) 1.1 折弯机的结构 折弯机由机械、电气控制、电气、液压四大部分构成 1.2 折弯机的工作原理 1.2.1 折弯机的工作是利用液压传输驱动机身上、下的相对运动,结合折弯上、下模具的形状实现平板绕折弯线被弯曲为具有一定折弯角度和折弯半径的特性功能,与简易模具完成特殊形状成形;其运动方式分为上、下运动两种: a) 上动式:下工作台不动,由上面滑块下降实现施压; b) 下动式:机身上部固定不动,由下工作台上升实现施压; 1.3 折弯机的加工技术数据

1.4 1.4.1 折弯上模也称为折弯刀具,它有整体式与分割式两种: a) 整体式上模长度(mm):835 b) 分割式上模长度(mm):10、15、20、40、50、100、200、400 1.4.2 常用折弯刀具R为R=0.2、R=0.6,刀具角度有88o、90o两种,折弯刀具类型(见下图) 大R刀模段差模压平模 88o小弯刀压线模 88o鹅颈刀 88o直弯刀 30o尖刀 88o直刀 1.4.3 折弯下模也称为V槽,它有整体式与分割式两种: a) 整体式上模长度(mm):835 b) 分割式上模长度(mm):10、15、20、40、50、100、200、400 1.4.4 常用折弯下模类型(见下图)

1.4.4.1 常用V槽大小、角度与材料板厚的关系 a) 常用V槽大小有:V4、V5、V6、V7、V8、V10、V12、V16、V25(例“V5”表示V槽完度 为5mm) b) 常用V槽角度有:88o与90o两种 c) V槽与板厚的关系:折弯时选用下模V槽大小与材料无关,通常为5倍的板厚(即5T);如 4T≤V<5T时,折弯系数要相应加大,如5T<V≤6T时,折弯系数要相应减小;各材料与 板厚所对应的折弯系数参照《机加中心钣金厂展开作业指南》 1.4.4.2 插深V槽主要用来加工折弯内角小于90o的折弯,与配合30o尖刀压死边(反折180o)前的角度处理,常用大小有:V6、V10 1.4.4.3 段差模是用来完成普通V槽无法加工的Z字形小折弯,它分直边(90o)与斜边(45o)段差,取值范围H<最小折弯尺寸+T+1.5+内R 1.4.5 折弯刀具和V槽的关系如下图

SolidWorks钣金展开计算方法

一、折弯补偿法: 为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。 图1 折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区域的长度。展平的折弯区域的长度则被表示为“折弯补偿”值(BA)。因此整个零件的长度就表示为方程(1): LT = D1 + D2 + BA(1) 折弯区域(图中表示为淡黄色的区域)就是理论上在折弯过程中发生变形的区域。简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考: 1、将折弯区域从折弯零件上切割出来 2、将剩余两段平坦部分平铺到一个桌子上

3、计算出折弯区域在其展平后的长度 4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件 稍有难度的部分就是如何确定展平的弯曲区域的长度,即图中由BA表示的值。很显然,BA的值会随不同的情形如材料类型、材料厚度、折弯半径与角度等而不同。其它可能影响BA 值的因素还有加工过程、机床类型、机床速度等等。 BA值到底从何而来?实际上通常有以下几种来源:钣金材料供应商,实验数据,经验以及一些工程手册等。在SolidWorks中,我们即可以直接输入BA值,提供一个或多个带BA值的表,也可以使用另外的方法如K因子(后面将会深入探讨)来计算BA值。对所有这些方法,根据需要我们既可以为零件中的所有折弯输入相同的信息,也可以为每个折弯单独输入不同的信息。 对于不同的厚度、折弯半径和折弯角度的各种情况,折弯表方法是最为准确的让我们指定不同折弯补偿值的方法。一般来说,对每种材料或每种材料/加工的组合会有一个表。初始表的形成可能会花些时间,但是一旦形成,今后我们就可以不断地重复利用其中的某个部分了。 二、折弯扣除法 折弯扣除,通常是指回退量,也是一种不同的简单算法来描述钣金折弯的过程。还是参照图1和图2,折弯扣除法是指零件的展平长度LT等于理论上的两段平坦部分延伸至“尖点”(两平坦部分的虚拟交点)的长度之和减去折弯扣除(BD)。因此,零件的总长度可以表示为方程(2):LT = L1 + L2 - BD(2) 折弯扣除同样也是通过以下各种途径确定或提供的:钣金材料供应商、试验数据、经验、带方程或表格的针对不同材料的手册等。 三、折弯补偿与折弯扣除之间的关系 由于SolidWorks通常采用折弯补偿法,对熟悉折弯扣除法的用户来说了解两种算法的关系就很重要了。实际上利用零件的折弯和展开的两种几何形状是很容易推导出两个值之间的关系方程的。回顾一下,我们已有两个方程式: LT = D1 + D2 + BA (1) LT = L1 + L2 - BD (2) 以上两个方程右边相等可以变化成方程(3): D1 + D2 + BA = L1 + L2 –BD(3) 在图1的几何形状部分做几条辅助线,形成两个直角三角形,变为如图3所示。

钣金折弯展开快速计算方法【干货】

钣金折弯展开快速计算方法【干货】 内容来源网络,由“深圳机械展(11万m2, 1100多家展商,超10万观众)” 收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人 工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展。 钣金折弯跟展平时,材料一侧会被拉长,一侧被压缩,受到的因素影响有:材料类型、材料 厚度、材料热处理及加工折弯的角度。 展开计算原理: 1.板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层称为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准. 2.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用入表示. 展开计算的基本公式:展开长度=料内+料内+补偿量

2.1 R=0?折穹角e =90 0 (T<1.2.不含1.2mm) L?(A-T)+(B-T)+K T<1.2mm =A-B ?2T丰0.4T 上式中取:入-T/4 K?A U/2 = T/4e x/2 -0.4T 2.2 R-0? 0 ?90G(T±12含 L?(A?T)+(B?T)+K ?A*B ?2T+O?ST 上式中取:入-T/3 K=A U/2 ■T/3F2 =0.5T 23 R=0 0 =90 f L?(A-T-R)*(B?T?R)+(R*入)?M2 当R M5T 时A =T/2 ITS R : L=A? T+C+B + K (3)当CW3T时<一次成型〉: L=A ?T+C*B + K/2

钣金折弯展开系数计算

统一展开计算方法,做到展开的快速准确. 适用范围 NWE 冲件样品中心. 三.展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既 不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一 样保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度 有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚 度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置 逐渐向弯曲中心的内侧移动?中性层到板料内侧的距离用λ表示. 四.计算方法 展开的基本公式: 展开长度=料内+料内+补偿量 一般折弯:(R=0, θ =90 ° ) L=A+B+K 1. 当 0T≤0.3 时,K=O 2. 对于铁材:(如 GI,SGCC,SECC,CRS,SPTE, 3. 对于其它有色金属材料如AL,CU: 当 TE0.3 时, K=0.4T 注:R 兰2.0时,按R=0处理. 一般折弯(R ≠ 0 θ =90 ° ) L=A+B+K K 值取中性层弧长 1. 当「1.5 时 λ =0.5T 2. 当 T 1.5 时 λ =0.4T SUS 等) a.当 0.3 T 1.5 时,K=0.4T b.当 1.5 汀 2.5 时,K=0.35T c.当 T 2.5 时,K=0.3T — 丿 B _i I * / L ------ A ------ 中性層

一般折弯 (R=O L=A+B+K 1. 当 T≤0.3 时 2. 当T 三0.3时 注:K 为90 ° 一般折弯(R ≠ 0 θ ≠ 90 ° ) L=A+B+K 1. 当 T H 1.5 时 λ =0.5T 2. 当 T 1.5 时 λ =0.4T K 值取中性层弧长 注:当R 20,且用折刀加工时,则按R=0来 计算,A 、B 依倒 零角后的直边长度取值 Z 折1(直边段差). 1. 当H.5T 时,分两次成型时,按两个90°折弯计算 2. 当 H "5T 时,一次成型,L=A+B+K K 值依附件中参数取值 Z 折2(斜边段差). 1. 当HNT 时,按直边段差的方式计算,即:展开长 度=展 开前总长度+K K=0.2 2. 当H 2T 时,按两段折弯展开(R=0 θ ≠ 90 ° ). θ ≠ 90 ° ) K ' =0 K ' =( ∕90)*K 时的补偿量

五金钣金展开计算参数

五金钣金展开计算参数 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1.目的:为完善作业标准,制订本文件。 2.范围:适用于本公司设计部门之作业。 3.职责:针对设计计算展开统一计算参数。 4.内容: 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层—中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲关径弯 小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中收的内侧移动,中性层到板料内侧的距离用λ表示. 展开的基本公式: 展开长度=料内+料内+补偿量 4.1中性层系数 注明:K1适用于有顶底的V形或U形弯曲,K2适用于无顶底的V形弯曲.但通常我们习惯取K2值。 4.2压弯90度角的修正系数a值 注明:此数据可单独用于90度角的折弯修正,也可与中性层系数互相检查核对。 4.3其余图形展开计算方法:

4.4当折弯角度为90度,r=0(俗称“90度清角”)时,各材料厚度对应的经验值: r/t≦时,均可按90度清角计算展开长度. 展开注意事项 为了防止产品展开过程中的失误,造成下料模的多次修改, 特制定下料模的制作方式. (1). 凡对一些展开存在不确定因素的产品, 例如, 有拉伸性质的展开, 多次折弯, Z折,有拉料现象 等产品的下料模, 经工程分析有必要先试模的, 其制作方式如下: A.下料模的模板先不完全加工完毕,先完成机加及热处理部分,线割部分暂缓加工. B.成型模先做, 试模时先镭射(按下料模展开尺寸)试模, 产品先做实测, 不合格时修正展开尺 寸再 镭射,一直修到合格为止, 合格样品送客户先承认. C. 样品经客户承认后, 按修正展开尺寸整理下料模, 进行下料模的线割加工.

钣金折弯展开的计算方法

钣金折弯展开的计算方法 钣金折弯跟展平时,材料一侧会被拉长,一侧被压缩,受到的因素影响有:材料类型、材料厚度、材料热处理及加工折弯的角度。 展开计算原理: 1、钣金在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既 不受拉力又不受压力的过渡层称为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。 2、中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度 较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动,中性层到板料内侧的距离用λ表示。 展开计算的基本公式:展开长度=料内+料内+补偿量 1、一般折弯(R=0,θ=90°) L=A+B+K 1)当0≤T≤0.3时,K=0 2)对于铁材: a、当0.3≤T≤1.5时,K=0.4T b、当1.5≤T≤2.5时,K=0.35T c、当T>2.5时,K=0.3T 3)对于其它有色金属材料如Al,Cu: 当T<0.3时,K=0.4T 注:R≤2.0时,R=0处理 2、一般折弯(R≠0,θ=90°) L=A+B+K,K值取中性层弧长 1)当T≤1.5时,λ=0.5T 2)当T>1.5时,λ=0.4T

3、一般折弯(R=0,θ≠90°) L=A+B+K’ 1)当T≤0.3时,K’=0 2)当T>0.3时,K’=(u/90)*K 注:K为90°时的补偿量 4、一般折弯(R≠0,θ≠90°) L=A+B+K 1)当T≤1.5时,λ=0.5T 2)当T>1.5时,λ=0.4T K值取中性层弧长 注:当R≤2.0,且用折刀加工时,则按R=0来计算,A、B依倒零角后的直边长度取值 5、Z折1(直边段差) 1)当H>5T时,分两次成型时,按两个90°折弯计算 2)当H≤5T时,一次成型,L=A+B+K K值依附件中参数取值 6、Z折2(斜边段差) 1)当H≤2T时,按直边段差的方式计算,即:展开长度=展开前总长度+K K=0.2 2)当H>2T时,按两段折弯展开(R=0,θ≠90°) 7、抽孔 抽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变。一般抽孔按下列公式计算,式中参数见右图(设预冲孔为X,并加上修正系数-0.1)

相关主题