搜档网
当前位置:搜档网 › 基于Hypermesh的吊钩有限元结构分析

基于Hypermesh的吊钩有限元结构分析

基于Hypermesh的吊钩有限元结构分析
基于Hypermesh的吊钩有限元结构分析

摘要

本文旨在对吊钩进行仿真计算和分析,得到其应力和位移变化的分布云图,从理论上对吊钩的危险截面进行了分析研究,为吊钩进一步的结构设计和优化提供了必要的理论依据。

本文使用三维建模软件Creo创建吊钩的三维模型,以格式吊钩.stp导入有限元软件hypermesh中绘制网格,进行前处理,继而进行求解得到后处理中的应力和位移云图。

本文通过分析有限元后处理的应力和位移云图,得到吊钩的最大等效应力位于吊钩主弯曲面内侧部位,应力大小为213.2MPa;吊钩整体最大变形位于吊钩钩头位置,变形量为0.08061mm。

本文对比最大等效应力和所给材料30号钢的屈服强度295MPa,分析得到吊钩在给定工作载荷下安全的结论,由此求得5t载荷下的安全系数应小于等于1.284;通过静刚度分析,计算得到吊钩在承载方向上的静刚度为3.1839×108N/m。

关键词:hypermesh;吊钩;应力;安全系数

1.Creo软件建立吊钩三维模型

1.1Creo软件简介

Creo是美国PTC公司于2010年10月推出CAD设计软件包。Creo是整合了PTC公司的三个软件Pro/Engineer的参数化技术、CoCreate的直接建模技术和

ProductView的三维可视化技术的新型CAD设计软件包,是PTC公司闪电计划所推出的第一个产品。

Creo是一个整合Pro/ENGINEER、CoCreate和ProductView三大软件并重新分发的新型CAD设计软件包,针对不同的任务应用将采用更为简单化子应用的方式,所有子应用采用统一的文件格式。 Creo目的在于解决CAD系统难用及多CAD系统数据共用等问题。

1.2创建吊钩模型

1.打开Creo软件,新建类型:零件,不勾选使用默认模版,确定;选择模版类型为:

mmns_part_solid,确定,进入零件绘制界面(图1.1,图1.2,图1.3)

图1.1 零件命名图1.2 模板选择

2.草绘吊钩弯曲部分的轨迹图绘制

(1)选择FRONT平面,点击草绘,进入草绘界面(图1.3,图1.4)

图1.3 FRONT平面的选择图1.4 吊钩草绘界面

(2)在坐标系原点,使用中心线命令,按照图1.5绘制中心线;使用圆心和点命令绘制圆?85mm,为图1.6。

图1.5 中心线的绘制图1.6 ?85mm圆的绘制图1.7 ?55mm轴

(3)使用线命令,如图1.7建立?55mm轴的外轮廓线。

(4)使用,建立圆?170mm,使用相切命令,与轴左轮廓线和?85mm圆相切,如图1.8。在135°的中心线上绘制圆?220mm,如图1.9。

绘制圆?56mm与轴右轮廓线与圆?220mm相切,如图1.10。

图1.8 圆?170mm 图1.9 圆?220mm 图1.10 圆?56mm

(5)使用中心线命令,绘制距离水平中心轴42mm的中心线。使用线命令,绘制一条过?170mm圆与竖直轴交点且平行与135°中心线

的线段,然后使用偏移命令,使之过?85mm与水平轴交点。如图1.11

图1.11 中心线与偏移线段图1.12 圆?190mm

(6)使用圆命令,绘制圆?190mm,使用相切命令,使之与圆?85mm 和(5)中偏移后线段相切。如图1.12

图1.13 圆?24mm 图1.14 圆?190mm

(7)绘制圆?24mm,与圆?190mm和距水平轴42mm的中心线相切。如图1.13。

(8)同理(7)操作,绘制圆?190mm,与圆?24mm和圆?220mm相切。如图

1.14,此时草绘图为图1.15。

图1.15 吊钩草绘图1.16 吊钩轮廓图

(9)依据吊钩轮廓使用删除段命令,删去多于线条,得到吊钩轮廓图1.16。

3.复制草绘1中草图,在FRONT平面新建草绘2,粘贴。

图1.17 修剪草绘1 图1.18 修剪草绘2

4.选中草绘1的曲线,使用修剪命令,如图1.17进行修剪。选中草绘2的

曲线,如图1.18进行修剪。

5.利用平面命令绘制3个新的平面。平面1为TOP面向上偏移310mm,如图1.19;

平面2 是平行于TOP平面且与?56mm圆相切,如图1.20;平面3是过?24mm圆直径且与FRONT平面垂直,如图1.21。

图1.19 平面1 图1.20 平面2

图1.21 平面3

6.使用圆命令,在平面1上建立草绘3,绘制圆?55mm;在平面2上建立草绘4,绘

制圆?55mm。如图1.22

图1.22 草绘3 与草绘4

图1.23 圆?120mm与圆?24mm

7.在TOP面上草绘A-A截面

(1)选择TOP平面进入草绘5。在水平轴上绘制圆?120mm,同理绘制圆?24mm。

如图1.23。

(2)绘制两条水平的中心线,距水平轴27mm;绘制圆?24mm,使用相切命令式之与上侧中心线和圆?120mm相切,如图1.24。

图1.24 水平线与圆?24mm

图1.25 A-A截面

(3)使用线命令,绘制线段,使用相切命令。使用删除段命令删除多余线段,得到封闭的A-A截面,如图1.25。

(4)同理A-A截面,在RIGHT平面上绘制B-B截面,如图1.26。两截面绘制完成为图1.27

图1.26 B-B截面图1.27 A-A 截面与B-B截面

8.在平面3上建立草绘7,在竖直轴上绘制一个圆,过吊钩轮廓点。如图1.28。

图 1.28 平面3上的圆

图1.29 截面曲线与轨迹曲线

9.边界混合建立吊钩实体

(1)边界混合所用曲线如图1.29所示。

(2)选择边界混合,依次选择5个截面。

(3)使用填充命令,填充草绘3,4,7截面,形成封闭曲面,然后如图1.30选择边界混合1,填充1,2,3,使用合并命令,最后进

行,得到吊钩实体模型。

图1.30 图1.31 吊钩填充图1.32 吊钩实体化(4)选择FRONT平面草绘,绘制四分之一圆,图1.33,然后绘制一条中心线作为旋转轴。选择旋转命令,完成圆头的绘制。如图1.34。

图1.33 圆头草图图1.34 吊钩圆头

10.绘制吊钩上部。选择FRONT平面绘制如图1.35的草图,形成封闭截面。然后选择

旋转命令,完成旋转实体,如图1.36。

图1.35 封闭截面绘制图1.36 旋转实体

11.选择RIGHT平面,绘制圆孔?9mm,使用拉伸命令,选择对称拉伸,点

选移除材料,完成空的绘制,如图1.37。对吊钩进行倒角与倒圆角处理,如图

1.38。最终吊钩模型为图1.39。

图1.37 圆孔绘制图1.38 倒角与倒圆角

图1.39 吊钩三维模型

2.吊钩有限元分析

2.1 hypermorks软件介绍

Altair HyperMesh是一个高性能的通用有限元前、后处理器,支持在交互及可视化的环境下分析设计方案性能。HyperMesh的用户界面易学易用,可进行多种CAD模型与有限元模型的直接读入,大大降低了重复性建模工作。其高级的建模功能,如丰富的网格控制和模型管理、网格变形工具、变厚度几何模型中面自动化抽取等,能帮助用户高效处理复杂的几何和网格模型;增强的实体四面体网格划分和六面体网格划分功能降低了模型交互式控制的次数;网格批处理功能将人工几何清理和模型控制工作量降至最低。

HyperMesh优势:

强大的有限元分析建模企业级解决方案。

? 通过其广泛的CAD/CAE接口能力以及其可编程、开放式构架的用户定制接口能力,HyperMesh可以在任意工作领域与其他工程软件进行无缝连接工作。

? HyperMesh为用户提供了一个强大的、通用的企业级有限元分析建模平台,帮助用户降低在建模工具上的投资及培训费用。

无以伦比的网格划分技术——质量与效率导向。

? 依靠全面的梁杆、板壳单元、四面体或六面体单元的自动网格划分或半自动网格划分能力,HyperMesh大大降低了复杂有限元模型前处理的工作量。

通过批处理网格划分(Batch Mesher)及自动化组装功能提高用户效率。

? 批处理网格生成技术:无需用户进行常规的手工几何清理及网格划分工作,从而加速了模型的处理工作。

? 高度自动化的模型管理能力,包括模型快速组装以及针对螺栓、点焊、粘接和缝焊的连接管理。

交互式的网格变形、自定义设计变量定义功能。

? HyperMesh提供的网格变形工具帮助用户无需重新修改原有网格即可自动生成新的有限元模型。

提供了由CAE向CAD的逆向接口。

? HyperMesh为用户提供了由有限元模型生成几何模型的功能。

2.2 网格划分

(1)启动 HyperMesh13.0:选择 Optistruct 模板,进入 HyperMesh 程序窗口。HyperMesh 主界面如图2.1所示。

图2.1 主窗口界面

图2.2 菜单栏图图2.3 操作界面

(2)如图2.2,点击菜单栏,在弹出窗口中选择导入模型。

(3)单击3D,选择tetramesh,如图2.3。设置如图2.4,点击mesh,网格绘制完成,效果如图2.5。

图2.4 网格设置

图2.5 吊钩网格

图2.6 定义材料

2.3 材料属性和单元属性的定义

(1)选择菜单栏中的materials,弹出材料定义面板中Card Image更改为MAT1;杨氏模量E=210000,NU=0.3,RHO=7.85e-09,如图2.6。

(2)选择菜单栏中的propertise,弹出单元定义面板如图2.7设置。Material 更改为(1)中定义材料,Card image选择为PSOLID。

图2.7 单元属性定义

2.4载荷、约束的创建

(1)单击load collecrors,loadcol name设置为spc,点击create。在Anslysis页面中点击constraints,激活nodes,在图形窗口选择吊钩上端面,点击nodes,在弹出窗口中选择by face,单击create创建约束。如图2.8。

再次单击load collecrors,loadcol name设置为face,点击ceate。在Anslysis页面中点击forces,激活nodes。在吊钩B-B面施加垂直方向的额定载荷5T,在B-B截面上方施加正压力的曲面上排列选择50个节点,总载荷49000N,平均每个节点载荷为980N,方向为y轴负向magnitude输入-980N,方向设置为y-axis。Magnitude%输入2。如图2.9。

图2.8 吊钩端面约束

图2.9 施加载荷

2.5点击Anslysis,在面板中选择loadsteps按钮,name输入loadstep,对spc、load打勾,在=后选择spc,force,点击create。如图2.10。

图2.10 工况设置

2.5.计算分析

(1)点击菜单Anslysis,在面板中选择optistruct,参数设置如下图2.11。点击optistruct进行计算。

图2.11

(2)运算完成后弹出HyperWorks Solver View窗口,如图2.12;点击result,自行启动后处理器HyperView。

图2.12 HyperWorks Solver View窗口

图2.13

(3)点击contour图标,修改resut type下拉框为Dispacement(v),点击apply。如图2.13。

3.计算结果与分析

3.1后处理云图

(1)位移云图(图3.1)

包括总变形云图(a)和沿方向变形云图(b)(c)(d)。

图 3.1(a)总变形云图

图 3.1(b)X方向变形云图

图 3.1(c)Y方向变形云图

图 3.1(d)Z方向变形云图(2)应力云图(图3.2)

图3.2 应力云图

3.2 分析结果

由位移云图可见:在X 方向,最大变形为0.06218mm ,方向为X 正向;在Y 方向,最大变形为0.01539mm ,方向为Y 正向;在Z 方向,最大变形为0.0434mm ,方向为Z 正方向。整体最大变形位于吊钩钩头位置,变形量为0.08061mm 。

由应力云图可见:最大等效应力位于吊钩主弯曲面内侧,大小为213.2MPa 。

3.3吊钩强度分析和安全系数

(1)强度分析

查询得到材料30号钢的屈服强度为295MPa ,其中有限元分析得到吊钩在5t 负载下的最大等效应力为213.2MPa ,小于屈服强度295MPa ,满足强度要求,吊钩工作安全要求。

(2)安全系数 由许用应力公式:n s δδ=

][,其中,n 为安全系数。由此,在该吊钩承载5t 载荷的情况下,安全系数为:284.12.213295][max ==≤=MPa

MPa n s s δδδδ 因为最大应力需小于许用应力才是安全的,所以在负载为5t 的情况下,吊钩的安全系数应该小于等于1.284。

3.4吊钩静刚度分析

在计算连杆静刚度时,由于吊钩的载荷是沿Y 轴负方向施加的,所以选择Y 方向上最大变形量0.01539mm ,载荷在Y 方向上取49000N ,可以计算得到吊钩在Y 方向上的静刚度为:

m N N y F K /101839.310

01539.04900083-?=?==

梁壳组合结构的有限元合理建模

2 梁壳组合结构的有限元建模 2.1 单元类型的选择 对于需要混合使用多种类型单元的梁壳组合结构而言,为了在不同类型的单元间实现无缝连接,保证相互间载荷传递的正确性,根据所分析问题的要求选择合适的单元类型是非常重要的。要实现这一点,最基本的就是要保证所选梁单元和壳单元具有相同的结点自由度类型及数量,进一步的,对于一些特殊类型的结构保证单元具有相同的阶次或相近的形函数形式也是非常重要的。此外,为了保证加强板的作用能被充分考虑,加强板需要用多个单元离散,与之焊接的梁也相应的需要划分多个单元,这可能导致最终的梁单元为深梁,此时就应考虑选用计及剪切变形影响的梁单元。 ANSYS提供了多种用于梁、壳建模的单元类型,以满足不同分析场合的要求。由于工程机械结构的重要性,在设计时不需要考虑其塑性的扩展和利用、其始终处于弹性阶段,因此对梁构件可选用BEAM188单元类型、壳体构件可选用SHELL43单元类型。BEAM188单元与SHELL43单元均为一次单元,每个单元结点均有6个自由度:三个平动自由度(ux,uv,uz)和三个转动自由度(θx ,θv,θz),可以保证受力的正确传递。Shell43单元考虑了剪切变形的影响,适合于中等厚度的壳体建模。Beam188单元是Timoshenko梁单元,采用如下形式的形函数: (1) 式中:ui—某方向位移场;s—ui方向的自然坐标; 梁壳组合结构的有限元合理建模 王强 贵州交通职业技术学院 550008 1 引言 在当前实际应用的工程结构中,出于结构形式、连接条件、承载要求等方面的考虑,很多工程结构都采用梁壳组合结构的形式作为各种外加载荷的支撑件,如工程机械领域的港口起重机、动臂式塔机等的桁架吊臂往往在臂头和臂根焊接钢板以局部加强。此外,为了分析的需要或简化建模与计算,也往往将一些纯板壳焊接结构作为梁壳组合结构进行分析。 对梁壳组合结构进行力学分析以保证其强度和刚度满足使用要求是设计中必不可少的一环。显然要获得此类结构的理论解析解几乎是不可能的,在工程实际中往往要借助于有限元方法。有限元分析中最重要的步骤是有限元模型的建立和约束、载荷的施加,后者需要满足特定行业设计规范的要求,有一定的程式可循,而针对此类结构的特点,快速、合理建模问题还少有谈及。因此,本文以当前应用较为广泛的通用有限元软件ANSYS为平台,探讨复杂梁壳组合结构有限元模型的快速、合理建模方法及在建模过程中应注意的问题,对同类结构的有限元建模提供一些可供借鉴的有益经验。 uiI、uiJ—ui方向的单元始、终结点位移。与Euler-Bernoulli梁相比,其计入了剪切变形对梁弯曲的影响,适合于短粗梁的有限元建模。 2.2 有限元模型的建立 ANSYS提供了两种建模方式:一是首先建立结构的几何模型,通过对几何模型进行有限元网格离散而获得有限元模型;二是首先生成结点,随后由结点直接生成单元而获得有限元模型。至于具体使用何种建模方式或综合使用此两种建模方式应依据结构的实际情况灵活决定。 工程机械等领域中的梁壳组合结构往往以梁为主要承载构件,板壳仅起局部加强作用。有限元方法中的梁单元属线单元,当使用二结点线性梁单元时,其有限元模型的几何表现为一条直线,通常在其形心轴线位置上建立有限元模型。在梁壳组合结构中,梁是主要构件,且需要与其它构件相连,因此在其有限元建模时位置不能改变,即仍应按其形心轴线建模;板壳属附属构件,在对其进行有限元建模时,由于壳体构件需要使用许多单元离散,而通过结点生成单元的方式逐一生成这些单元无疑将非常烦琐,尤其是当加强板较多时,因此对壳体应采用第一种建模方式。 综合上述分析,工程机械中复杂梁壳组合结构的有限元建模有两种方法,本文通过图1(a)中所示结构为例加以说明,图中两根梁之间焊接了一块加强板,在此假设梁为圆管(工程机械的此类结构中的梁大部分为圆管,对其它截面形式的梁建模方法基本相同)。第一种建模方法的步骤如下: (1)在梁的形心线和加强板的中平面位 图3 港口起重机桁架吊臂的有限元模型和分析结果 图1 梁壳组合结构几何模型和有限元模型示意图图2 梁壳组合结构及其有限元模型

《结构分析中的有限元法》2015-有限元习题-参考答案

本科有限元习题参考答案

2015年3月10日作业 1、简述力学课程中介绍的各种力学模型的简化条件、基本假设和适用范围(包括有拉压杆模型、弯曲梁模型、平面应力和平面应变模型、轴对称模型、板模型、壳模型等) 2、给出弹性力学问题中平衡方程、几何方程、物理方程的表达式及其意义。 (1)平衡方程:

zy yz xz zx yx xy z yz xz z y xy zy y x zx yx x f y x z f x z y f z y x ττττττττσττσττσ====+??+??+??=+??+??+??=+??+??+??,000, 物理意义:应力分量与体力分量之间的关系。 (2)几何方程: z u x w y w z v x v y u z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,, 物理意义:应变分量与位移分量之间的关系。 (3)物理方程: [] [] [] zx zx yz yz xy xy y x z z z x y y z y x x G G G E E E τγτγτγσσμσεσσμσεσσμσε1,1,1) (1 ) (1 )(1 ===+-=+-=+-= 物理意义:应变分量与应力分量之间的关系。 3、简述最小势能原理的主要内容和主要公式。 根据虚功原理得到:??=-Γ T Ω T T 0Td Γδu d Ω)F δu -σδε(,由 )(21εδσεδδεU T T =?? ? ??=则0)21((=Γ-Ω-=∏??ΩΓ)Td u d F u T T T p σεδδ 其中,??ΩΓ Γ-Ω-=∏Td u d F u T T T p )21 (σε即为系统的总势能,它是弹性体变 形势能和外力势能之和。上面变分为零式表明:在所有区域内满足几何关系,在边界上满足给定位移条件的可能位移中,真实位移使系统的总势能取驻值(可证

Hypermesh2017.2有限元分析的前处理1D单元连接

ALTAIR HYPERWORKS2017.2 有限元分析前处理 1D 单元和连接 Trainer’s Name Month XX, 2017

HMD Intro, 2017.2第5章: 1D 单元和焊点 5) 1D 单元和焊点 ?1D Meshing (1D单元) ?HyperBeam (梁截面) ?Connectors (焊点)

HMD Intro, 2017.2 1D 单元 ?1D 单元

HMD Intro, 2017.2示例 跟着示范做 (…\Model-Files\CH5-1D-MESHING\05a-1D-MESHING.hm)

? 2017 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved. HMD Intro, 2017.2 1D单元介绍 ?1D单元是节点之间简单连接,允许精确模拟连接关系(例如螺栓)和类似的杆 状或杆状对象,这些对象在FEA模型中可以建模为简单的线 ?可以从以下面板创建1D单元: ?目前支持的1D单元包括: bar2s, bar3s, rigid links, rbe3s, plots, rigids, rods, springs, welds, gaps and joints. ?显示单元可以在以下面板中创建: Edit Element, Line Mesh, Elem Offset, Edges, or Features panel.

?RIGID 刚性连接用于传递从主节点到从节点的运动. ?Rigids面板允许创建rigid 和rigid link 单元.

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

基于PROE,HyperMesh,ANSYS的有限元分析

基于PROE,HyperMesh,ANSYS的有 限元分析 作者: 张瑞,琚建民 1.介绍: 目前,ANSYS软件在有限元分析方面被广泛的应用,但是他的预加工功能是如此的复杂以至于我们必须耗费大量的精力和时间,特别是分析复杂模型的时候。根据这种状况,我们将用PROE,HyperMash,和ANSYS商业软件进行建模,创建网格,计算和分析。各种有限元分析软件的综合运用可以发挥他们各自的优势,使有限元分析更加有效率。 2.关于PROE,HyperMash,和ANSYS的介绍 a.ProE是美国PTC公司开发的3D的CAD/CAM/CAE软件。他的几何建模功能是最杰出的。我们建立复杂的模型更多的会去运用PROE而非ANSYS和HyperMash。然而他的划分网格,计算,分析和后续处理是十分差劲的 b.HyperMash 是美国Atair公司开发的产品。它的主要优势在以下几个方面:划分网格变得更容易和迅速;我们更容易可以控制和指定原理特征,操作时非常的方便。因此可以使原理特征和网格工程分析要求更容易吻合;HyperMash有常规CAD和CAE软件界面。HyperMash的建模功能没有PROE那么强,它的计算分析功能也并没有ANSYS那样好。因为它有很少的材质和元素种类,并且设定解决方法是非常不便的。 c.ANSYS是最有影响力的一有限元分析软件在世界上,因为它的强大计算和分析能力。但它的预处理功能相对薄弱。首先,在ANSYS中建模时低PROE一等的,因此对复杂建模是很困难的。此外, 运用ANSYS进行网格划分和修改元素和HyperMesh相比并不容易。所以很难确保元素特性使计算成功。用它进行预处理将会浪费更多时间,严重的影响工作效率。 3. ProE; HyperMesh; ANSYS在有限元分析上的综合应用 a.工作过程 我们的目的是要通过综合利用软件来发挥 每个软件各自的优点。根据三个软件的特点, 我们可以通过PROE建模,通过HyperMesh 划分网格,通过ANSYS求解。通过这个方法, 整个有限元分析过程会更加有效准确。整个 分析过程见图1 b.常见问题及解答:1)简化建模:通常通过 PROE的建模过程是用立体建模的方法然后 提取表面,大量的错误和修改工作将会在划 分网格式出现。因此,我们可以用表面建模 [1],忽略几个细节(例如小孔和倒角)和附 件。2)模型的分类管理:有许多几乎不受约 束的表面互相遮掩。许多表面不同样式的混 合在一起时我们管理起来十分不便。因此, 有着相同特征的表面一定要被定义成相同 的组成,名字和颜色,然后我们可以通过组

hypermesh运用实例(1)

运用HyperMesh软件对拉杆进行有限元分析 问题的描述 拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。求载荷下的应力和变形。 图1-1 拉杆结构图 有限元分析单元 单元采用三维实体单元。边界条件为在拉杆的纵向对称中心平面上施加轴向对称约束。模型创建过程 CAD模型的创建 拉杆的CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。

图1-2 拉杆三维模型 CAE模型的创建 CAE模型的创建工程为: 将三维CAD创建的模型保存为文件。 (1)启动HyperWorks中的hypermesh:选择optistuct模版,进入hypermesh 程序窗口。主界面如图1-3所示。 (2)程序运行后,在下拉菜单“File”的下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应的图形按钮,选择“”文件,点击“import”按钮,将几何模型导入进来,导入及导入后的界面如图1-4所示。 图1-3 hypermesh程序主页面

图1-4 导入的几何模型 (4)几何模型的编辑。根据模型的特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。因此,首先对其进行几何切分。 1)曲面形体实体化。点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。 图1-5 Geom页面菜单及其对应的面板 图1-6 solids按钮命令对应的弹出子面板

Hypermesh有限元流程

1 导入几何模型到hypermesh中 首先在UG中打开几何模型,单击文件按钮,选择导出setp格式文件 2打开hypermesh,单击导入按钮,选择导入格式为step,文件

3抽取中面 在右侧的Geom工具栏中,单击抽取中面按钮 选择要抽取的部件,单击抽取 4进行几何清理 在右侧Geom工具栏中选择快速编辑按钮 使用相关功能进行几何清理,

5划分网格 在右侧2D面板中选择,设置网格类型,尺寸 6检查网格质量,修改不合格的网格 在右侧2D面板中选择检查网格质量 利用按钮对不合格的网格进行优化 7对模型进行连接 点击connector 选择Area connector panel, 选择要连接的单元和部件,设置连接类型和距离,进行连接 更正: 8建立材料

单击,输入名字,类型,卡片类型, 单击输入材料相关参数,建立材料 9创建部件属性 单击,输入名字,类型,材料建立属性等 更正:2D,PSHELL,stell,create/edit,T输入厚度 10将创建的属性赋予部件 单击,assign然后单击comps选择要附属性的部件,单击assign赋予部件相关属性信息

更正:update 11创建边界条件 单击输入名字,选择卡片类型 然后单击,编辑卡片相关参数】 11,创建载荷步loadstep(分析类型) 在右侧分析面板中选择输入名字,选择相应的分析类型,选择相应的收集器,创建loadstep 更正:自由模态nomal modes ,SPC不勾 静力分析linear static,spc约束,load载荷

12进行分析 在右侧分析面板中选择选择文件的储存位置,在run options选项中选择analysis(一般来说应该先进行check 检查有限元模型是否正确),单击optistruct进行分析 更正:选择Radioss 静力分析:all改为custom 13分析完成后,单击查看计算结果

基于有限元软件ABAQUS的组合结构分析

基于有限元软件ABAQUS的组合结构分析 摘要:本文通过大型有限元工程模拟软件ABAQUS对波纹钢腹板组合梁建立有限元模型,并与试验数据作对比,检验有限元分析的正确性。 关键词:组合梁、有限元 Abstract: this paper through the large finite ABAQUS software engineering simulation of the corrugated steel beams webs, a finite element model and with the test data as compared to test the validity of the finite element analysis. Key words: the composite beams, finite element 0引言 有限元数值分析方法起源于20世纪50年代飞机结构分析,并由其理论依据的普遍性己被推广到其它很多领域。在结构分析领域,几乎所有的弹塑性结构静、动力学问题都可以用它求得满意的数值结果。桥梁结构作为众多结构中的一种,利用有限元数值方法分析其力学特性同样可以得到很好的数值分析结果。 波纹钢腹板预应力组合箱梁桥是20世纪80年代起源于法国的一种新型组合桥梁,此类新型结构与传统的混凝土箱梁相比有以下优点:(1) 自重降低,抗震性能好。腹板采用较轻的波形钢板,其桥梁自重与一般的预应力混凝土箱梁桥相比大为减轻,地震激励作用效果显著降低,抗震性能获得一定的提高。(2) 改善结构性能,提高预应力效率。波形钢腹板的纵向刚度较小,几乎不抵抗轴向力,因而在导入预应力时不受抵抗,从而有效地提高预应力效率。(3)充分发挥各种材料特性。在波形钢腹板预应力箱梁桥中,混凝土用来抗弯,而波形钢腹板用来抗剪,几乎所有的弯矩与剪力分别由上、下混凝土翼缘板和波形钢腹板承担,而且其腹板内的应力分布近似为均布图形,有利于材料发挥作用。[1-5] 本文通过大型有限元工程模拟软件ABAQUS对波纹钢腹板试验梁建立有限元模型,并与试验数据作对比,检验有限元分析的正确性。 1 有限元建模 1.1单元选择 有限元工程模拟软件的实体单元库包含二维和三维的一阶插值单元和二阶插值单元,积分方式有完全积分和减缩积分。三维实体单元有四面体和六面体。四面体单元有4节点12自由度和10节点30自由度的四面体单元,六面体单元

基于hypermesh的客车车体有限元分析

基于Hypermesh的客车车身有限元分析 沈兵,靳春宁,胡平 大连理工大学汽车工程学院,大连(116024) E-mail:279987329@https://www.sodocs.net/doc/4c3334662.html, 摘要:有限元方法和理论对现代车身设计具有重要的实际意义。综合现有的建模方案,提出了用壳单元建立有限元模型的方法;针对三种工况,应用有限元软件Hypermesh对模型进行后处理,找出了应力、位移分布情况;对轻量化设计提供了可靠的依据。 关键词:客车车身;壳单元;有限元分析 中图分类号TG404;TH114;TB115 1. 引言 当前国内对客车车身的有限元建模方法大致有三种,即采用梁单元、壳单元和体单元。采用梁单元可使计算量大大降低,但由于简化太多,导致一些关键受力截面无法正确表达,使得可信度不高,很难起到指导作用。采用体单元构建的客车骨架跟现实情况很接近,但建模时间太长,不宜采用。而壳单元弥补了梁单元与体单元的不足,是比较理想的建模方法。本文正是采用壳单元构建了客车车身模型,并按照实际使用条件进行车载负荷计算,对车体进行结构分析。 2.模型的建立 目前UG具有强大的曲面造型功能,在航空和汽车行业应用非常广泛;而Hypermesh 是世界上领先的有限元前后处理软件,它与UG等许多软件都有良好的接口。本文采用UG 对客车车身进行何造型设计,然后在Hypermesh中进行网格划分以及前后处理工作。 车架的实际工况复杂多变,建立有限元模型时对CAD模型的简化是十分必要的。其原则是:最大限度地保留零件的主要力学特征;将小面合并成大面,并且相邻面应共用一条轮廓线,以保证各个面上划分出来的网格在边界处是共用节点,避免在边界处出现节点错开的现象。具体的简化如下: (1)忽略非承载件。有些部件(如保险杠、踏板支架等)是为了满足构造或使用上的要求而设置的,对于分析车身模态影响很小,这里将其忽略掉。 (2)忽略蒙皮、玻璃等附件。 (3)忽略圆角以及梁截面形状的简化。考虑到圆角对网格计算的来说比较费时,将模型中的圆角忽略掉;本文中梁简化成矩形钢和槽型钢。 图1圆角的忽略

基于Hypermesh的吊钩有限元结构分析

摘要 本文旨在对吊钩进行仿真计算和分析,得到其应力和位移变化的分布云图,从理论上对吊钩的危险截面进行了分析研究,为吊钩进一步的结构设计和优化提供了必要的理论依据。 本文使用三维建模软件Creo创建吊钩的三维模型,以格式吊钩.stp导入有限元软件hypermesh中绘制网格,进行前处理,继而进行求解得到后处理中的应力和位移云图。 本文通过分析有限元后处理的应力和位移云图,得到吊钩的最大等效应力位于吊钩主弯曲面内侧部位,应力大小为213.2MPa;吊钩整体最大变形位于吊钩钩头位置,变形量为0.08061mm。 本文对比最大等效应力和所给材料30号钢的屈服强度295MPa,分析得到吊钩在给定工作载荷下安全的结论,由此求得5t载荷下的安全系数应小于等于1.284;通过静刚度分析,计算得到吊钩在承载方向上的静刚度为3.1839×108N/m。 关键词:hypermesh;吊钩;应力;安全系数

1.Creo软件建立吊钩三维模型 1.1Creo软件简介 Creo是美国PTC公司于2010年10月推出CAD设计软件包。Creo是整合了PTC公司的三个软件Pro/Engineer的参数化技术、CoCreate的直接建模技术和 ProductView的三维可视化技术的新型CAD设计软件包,是PTC公司闪电计划所推出的第一个产品。 Creo是一个整合Pro/ENGINEER、CoCreate和ProductView三大软件并重新分发的新型CAD设计软件包,针对不同的任务应用将采用更为简单化子应用的方式,所有子应用采用统一的文件格式。 Creo目的在于解决CAD系统难用及多CAD系统数据共用等问题。 1.2创建吊钩模型 1.打开Creo软件,新建类型:零件,不勾选使用默认模版,确定;选择模版类型为: mmns_part_solid,确定,进入零件绘制界面(图1.1,图1.2,图1.3) 图1.1 零件命名图1.2 模板选择 2.草绘吊钩弯曲部分的轨迹图绘制 (1)选择FRONT平面,点击草绘,进入草绘界面(图1.3,图1.4) 图1.3 FRONT平面的选择图1.4 吊钩草绘界面

Abaqus与HyperMesh联合仿真有限元分析核心技术培训

Hypermesh 作为目前综合能力最强的前处理平台,可以很方便的为各种大型CAE 软件完成几乎所有的常见前处理工作,操作极其灵活方便操作极其灵活方便,,例如几何清理例如几何清理、、网格划分网格划分、、材料属性建立材料属性建立、、单元赋予单元赋予、、连接关系设定连接关系设定、、边界条件设定边界条件设定、、控制参数和输出等参数和输出等,,全部都可以在Hypermesh 中高效的完成中高效的完成。。几何模型越复杂几何模型越复杂,,装配体零件越多装配体零件越多,,这种优势越明显这种优势越明显。。 Abaqus 作为业内公认的最强的非线性求解软件作为业内公认的最强的非线性求解软件,,自学入门不易自学入门不易,,成为高手更加成为高手更加艰难艰难艰难。。Abaqus 行业应用广泛行业应用广泛,,最近几年在国内越来越火爆几年在国内越来越火爆,,所以掌握abaqus 势在必行势在必行。。Abaqus 行业应行业应用差异较大用差异较大用差异较大,,但基本的软件操作和软件应用技巧是大同小异的是大同小异的。。Hypermesh 中除了几何清理中除了几何清理、、网格划分外网格划分外,,其余的操作例如材料属性建立其余的操作例如材料属性建立、、单元赋予单元赋予、、连接关系设定连接关系设定、、边界条件设定边界条件设定、、控制参数和输出等全部与Abaqus 息息相关息息相关,,需要对abaqus 的一套理论有很深的认识才能更好的发挥Hypermesh 的强大前处理功能的强大前处理功能。。 本人擅长在Hypermesh 中完成所有的Abaqus 前处理操作前处理操作,,然后提交计算然后提交计算,,后处理在abaqus 和hyperview 中完成。本人领域为电子产品跌落碰撞本人领域为电子产品跌落碰撞,,例如平板电脑例如平板电脑、、台式机台式机、、移动终端等等显式动力学分移动终端等等显式动力学分析析,同时也擅长各种连接器同时也擅长各种连接器、、弹片弹片、、端子等正向力端子等正向力、、插拔力插拔力、、屈服等隐式非线性分析屈服等隐式非线性分析。。 希望通过一些核心培训能让更多的人学会Hypermesh 这个软件的操作技巧这个软件的操作技巧,,同时快速的为Abaqus 建立CAE 模型。本次培训本次培训希望能以学员的模型为主希望能以学员的模型为主希望能以学员的模型为主,,模型越复杂越好(实际培训会适当简化),同时采用自己搜集的3D 模型模型,,通过网络培训例如QQ 群视频等或者自己录制视频的方式群视频等或者自己录制视频的方式,,完整的为大家讲解Hypermesh 和abaqus 的核心应用技巧的核心应用技巧。。 最近在QQ 群陆续为一些同行做了大概10来个例子来个例子,,感觉很多人普遍水平偏低感觉很多人普遍水平偏低,,问的问题千奇百怪,很多人急需一次较深入的培训需一次较深入的培训。。本人第一次尝试做培训做培训,,本次培训大概10次,每次2个小时个小时,,收费2500元.如果觉得培训不合适,可考虑视频录制的方式视频录制的方式,,有问题大家及时和我沟通。 本人QQ :499975874 建立一个专门用作培训建立一个专门用作培训、、技术交流技术交流的群的群的群::470131908 初步培训提纲如下初步培训提纲如下:: 1、Hypermesh 针对abaqus 的基本流程介绍 1.1.如何选取求解器类型?隐式还是显式?在Hypermesh 里面,隐式和显式存在哪些差异性? 1. 2.用一个简单的案例讲解Hypermesh 完成Abaqus 所有前处理的流程和操作; 2、Hypermesh 几何清理技巧 2.1 自由边、烂面、圆角、Logo 、小面等处理技巧,尤其是圆角和特征很多的时候如何处理? 2.2 很多复杂变圆角在Hypermesh 中无法移除的其它处理技巧; 2.3 各种切割面、切割体、添加硬点、临时节点、补面等技巧 3、Hypermesh 网格划分技巧,技巧太多,描述有些困难 3.1 以四边形为主的网格划分技巧 3.2 三角形网格划分技巧、弦长法的设定技巧 3.3 如何保证单元数量尽可能少,同时网格质量高,同时与几何贴近度高 3.4 六面体网格划分技巧 3.5 四面体网格划分技巧 3.6网格质量提高改善技巧 3.7 使用ANSA 划分正交性更高的四边形网格技巧 3.8针对收敛性问题的网格处理技巧 3.9刚体网格的划分技巧 4、Hypermesh 为Abaqus 建立材料、界面属性的技巧 4.1 Abaqus 常用的材料本构模型介绍 4.2 常用的Abaqus 材料模型在Hypermesh 中的设置技巧 4.3 Abaqus 常用的截面类型介绍 4.4常用的Abaqus 截面属性在Hypermesh 中的设置技巧 5、Hypermesh 为Abaqus 赋予单元类型 5.1 常用的abaqus 单元类型介绍 5.2 显式和隐式的单元类型差异

结构分析中有限元法课程建设的问题和方式

结构分析中有限元法课程建设的问题和 方式 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 随着复杂工程结构及巨型结构的大量出现,在土木、水利等工程专业本科生中加强结构分析能力(包括电算能力)的培养显得尤为迫切。笔者将结构力学中的“矩阵位移法”和弹性力学中的“有限元法”有机结合,按照培养创新型高级专门人才的要求建设了结构分析中的有限元法课程,精心编写并出版了该课程所用的教材和电算程序。根据该课程的特点,对课堂教学、上机实习和考试等教学环节进行了改革,充分发挥教师的主导作用和学生的主体作用,取得了良好的教学效果。 关键词:结构分析;有限元法;课程建设 中图分类号:G6423文献标志码:A文章编号: 10052909(2015)02005304 一、加强结构分析能力的培养是课程建设的初衷 在土木、水利等本科工程专业的教学过程中,通过前期基础课程和专业基础课程的学习,学生初步具备了对计算工作量不大的简单结构进行结构分析的能

力。如通过结构力学课程经典理论的学习,学生可以对静定平面杆系结构进行分析,也可用力法或位移法等方法分析未知量较少的超静定平面杆系结构,计算其内力和位移。通过弹性力学基本理论的学习,学生可求出几何形状规则(如矩形或圆形)、边界条件简单(如四边固支或四边铰支)的结构在单一荷载(如均布荷载)作用下的内力解析值。 随着各行各业现代化建设的深入开展和城镇化建设的加速推进,房地产和土木工程建筑行业已成为国家的重要支柱产业,与之相伴的是大跨度结构、高层高耸结构等各种复杂结构和巨型结构的出现。这些结构中,有些是形状、边界、荷载等较复杂的连续体板壳结构或实体结构,有些虽是杆系结构,但却是空间杆系结构或计算工作量庞大的平面杆系结构,还有些是杆系结构与连续体结构的组合体。无论对以上哪种结构进行分析,都必须利用数值分析法才能进行,学生既有知识已明显不足。 在一般本科院校开设的结构力学课程体系中,通常都要介绍适合数值分析的矩阵位移法。但有的仅讲述了矩阵位移法基本原理而未涉及程序使用,有的虽然让学生使用了部分程序,却较少或几乎不涉及对空间杆系结构的分析。实际工程中较为复杂的连续体结

组合结构有限元分析

组合结构的有限元分析 一、分析目的 本分析包含了铜管、夹具、螺栓和螺母的组合结构,在螺栓上施加一个预紧力,观察螺栓和铜管的应力、变形以及安全系数。再在铜管上施加一个垂直向下的载荷,观察铜管在被夹紧并受载荷是的应力、变形及安全系数。并且在分析的过程中掌握接触面设置、螺栓预紧力施加、接触区域网格细化方法等一系列问题. 二、模型特点 1、网格划分 模型采用的单元类型是solid186、solid187号单元、surf154号单元、conta174号单元等。对圆柱面进行映射网格划分以得到很一致的网格。如图所示。 具体网格单元信息如下: Number of total nodes = 6746 --- Number of contact elements = 640 --- Number of spring elements = 96 --- Number of solid elements = 2633 --- Number of total elements = 3390 2.接触面信息: 1) 铜管和体的接触面定义为frictional,摩擦系数为0.4 2 ) 螺帽和体侧面的接触为:no separation 3) 螺母和体侧面的接触为:no separation 4) 螺杆和螺母的接触为:bond

3、载荷和约束的施加: 1)螺栓示只受预紧力载荷和约束施加 2) 在 钢管上施加的载荷如图所 示 三.结果分析比较 1. 当铜管在竖直方向受力不受力时,螺杆的应力和变形与安全系数如下: 螺杆变形图 螺杆应力图 螺杆安全系数图 2 当铜管在竖直方向受力为0N 时,铜管的应力和变形与安全系数如下:

组合结构设计

钢管混凝土拱桥应用及其未来发展 摘要:钢管混凝土拱桥具有承载能力强、施工方便、桥型优美、经济效益显著等特点,因此在大跨桥梁和城市桥梁中得到了广泛的应用。本文介绍了钢管混凝土拱桥的理论研究现状及应用,对其发展优势及发展中存在的问题进行了分析,最后展望了钢管混凝土拱桥的发展趋势。 关键词:钢管混凝土钢管混凝土拱桥应用现状发展 Application of steel tube concrete arch bridge and its future development Abstract:Concrete filled steel tubular arch bridge is carrying capacity,convenient construction,concinnity, economic benefits significant characteristics,so in the large span bridge and urban bridge has been widely used. This paper introduces the current situation and application of the theoretical research on the concrete filled steel tube arch bridge,analyzes the development advantages and problems in the development,and finally looks forward to the development trend of the steel tube concrete arch bridge. Keywords:concrete filled steel tubular arch bridge development present situation 引言 随着英国赛文铁路桥的桥墩首次采用钢管混凝土这种组合材料以来,国内外的专家学者对这种组合材料性能的研究一直没有停止过。随着研究的不断深入,施工工艺的大幅度改进,工程应用日益广泛,高层建筑、工业厂房、桥梁及港口工程中均有应用,特别在桥梁上的应用更加突显了其优越的力学特性。据2005年年初统计,建成中等跨度以上的钢管混凝土拱桥多达230座,其发展速度之快,为中外建桥史所罕见。 1.钢管混凝土的基本原理 钢管混凝土,英文简称CFST,它是将高强混凝土灌入薄壁圆钢管内而形成的组合结构材料,利用在一般的工作状态下,2种不同力学性能的材料产生相互作用,即紧箍力来协调工作。这种材料具有承载力高、塑性韧性好、施工方便、耐火性能和经济效果好等优点,工程上常应用于房屋建筑结构和桥梁结构中,其中在桥梁上主要应用于拱桥。钢拱桥结构中,拱座是上部钢结构与下部混凝土承台和基础的连接节点,又是主桥上部结构安装的起点,关系到整个结构的安全和可靠性。 2.钢管混凝土的工作特性 在此以工程中使用最多的圆形钢管混凝土短柱为例来介绍钢管混凝土的工作原理,如图所示。 钢材在弹性工作阶段,泊松比μs变化很小,在0.25~0.3之间,可以认为是常数。取μ

有限元分析中的结构静力学分析怎样才能做好

有限元分析中的结构静力学分析怎样才能做好 1 概述结构有限元分析中,最基础、最根本、最关键、最核心同时也是最重要的一种分析类型就是“结构静力学分析”。静力学分析可用于与结构相关、与流体相关、与电磁相关以及与热相关的所有产品;静力学分析是有限元分析的根基,是有限元分析的灵魂。2 基础理论结构静力学按照矩阵的形式可表示为微分方程:[K]{x}+{F}=0 其中,[K]代表刚度矩阵,{x}代表位移矢量,{F}代表静载荷函数。由此可知,结构静力学有限元分析过程就是求解微分方程组的过程。2.1 三个矩阵的说明静力学分析微分方程组三个矩阵进一步说明:[K]代表刚度矩阵。举例说明,如果用手折弯一根筷子,假设筷子是钢材料的,比较硬,很难折断;假设筷子是常规木材的,比较脆,基本上都能折断。这里筷子断与不断的本质并不是钢或者木材,而是钢或者木材表在筷子上表现出来的刚度(或者叫硬度),这里刚度用计算机数值分析的方式来描述,就是刚度矩阵。{x}代表位移矢量。举例说明,一把椅子,如果有人偏瘦,坐在椅子上,椅面基本不下沉;如果有人偏胖,坐在椅子上,椅面会有明显下

沉(谁坐谁知道...),此时,椅面的下沉量,可用位移矢量来表示。{F}代表静载荷函数,也是静力学分析的关键。举例说明,上面筷子例子中,手腕对筷子的作用,就是一种载荷(或者叫外力、荷载、负荷、承重等);上面椅子例子中,人对椅子表面的作用,也是一种载荷。这些载荷在大多数情况下,没有明显的快慢效应,就可用静载荷函数来表示。 2.2 静力学分析中的载荷说明静载荷函数本质说明:假设1,相同一根筷子,又假设筷子比较粗(或者说是几根筷子捆绑在一起):双手慢慢用 1 / 5 力,筷子难断;双手快速用力,筷子难断,此时慢慢折弯的效果就可以理解为静力学过程。假设2,相同椅子:慢慢坐下去,椅子没有明显晃动;快速坐下去,椅子没有明显下沉与晃动,此时慢慢坐在椅子上的过程就可以理解为静力学过程。通过静载荷函数解释过程,可明显发现静力学分析过程有如下特征:特征1,描述受力过程时总是假设在某种情况下;特征2,施加给结构的外力有快慢与方式的区别。因此,一个结构静力学分析过程,就是在一种假设的情况下(工况),又假设结构在某种受力状态下,不考虑时间效应、不考虑惯性效应以及不考虑阻尼效应的一种理想情况下的结构分析过程。 3 实

有限元原理在桥梁结构分析中的应用

有限元原理在桥梁结构分析中的应用 在过去的30年里,有限元法作为一种通用工具在物理系统的建模和模拟仿真领域已经得到了广泛的接受。在许多学科它已经成为至关重要的分析技术,例如结构力学、流体力学、电磁学等等。 一、有限元原理 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 二、结构有限元求解问题 依据有限元法的基本思想,结构有限元求解问题可以分解为两个问题,即单元分析和单元集合问题。 (1)单元分析 所谓单元分析就是对某一复杂求解的结构取微小单元进行分析,依据其力学物理特性寻找描述该单元特性的数学函数。即通常说的描述该单元变形的形函数。 (2)单元集合 按照单元之间的联结方式,对整个求解问题系统进行整合。在弹性力学中利用单元的内部势能力与外部作用势能一起守恒,建立内部单元与外界作用之间的联系。 (3)问题的求解 获得内部单元与外界作用之间的联系,即系统的总刚度矩阵。要对问题的求解,则需要依据系统的外部条件求解出各个内部单元的变形状态,依据内部单元的变形,确定内部单元

的应力。 因此,有限元法是最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。 三、梁结构的有限元分析 1.有限元程序分析的过程 有限元程序分析的过程大致分为三个阶段: (1)建模阶段 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。 但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。 (2)计算阶段 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。 (3)后处理阶段 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是结构有限元分析的目的所在。

板结构有限元分析实例详解1

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License 下拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工 作目录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后, 单击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,出现Element Types对话框,如图8.10所示,单击Add按钮,出现Library of Element Types对话框,在Library of Element Types列表框中选择Structural Solid中的Quad 8node 82单元,如图8.11所示,单击OK按钮关闭该对话框,单击Element Types对话框上的Options按钮,弹出PLANE 82 element type options对话框,在Element behavior K3 项下拉菜单中选择PLANE strs w/thk,如图8.12所示,单击OK按钮关闭该对话框,单击Close按钮关闭Element Types对话框。 图8.10 Element Types对话框 图8.11 Library of Element Types对话框 图8.12 PLANE 82 element type options对话框 PLANE82是8节点的四边形单元,是平面4节点PLANE42的高阶形式,更适合有曲线边界的模型,对于本问题,我们需要有厚度的平面应力单元,所以选择了

相关主题