搜档网
当前位置:搜档网 › 聚丙烯酸法合成锂离子电池正极材料Li_xMn_2O_4

聚丙烯酸法合成锂离子电池正极材料Li_xMn_2O_4

聚丙烯酸法合成锂离子电池正极材料Li_xMn_2O_4
聚丙烯酸法合成锂离子电池正极材料Li_xMn_2O_4

文章编号:100129731(2002)0320298202

聚丙烯酸法合成锂离子电池正极材料Li x Mn2O4Ξ

程杰锋1,2,李 嵩1,季世军1,孙俊才1,宋 伟2

(1.大连海事大学材料工艺研究所,辽宁大连116026;2.哈尔滨工程大学材料科学与工程系,黑龙江哈尔滨150001)

摘 要: 以聚丙烯酸为载体通过溶胶凝胶法合成纳米级尖晶石结构的锂离子电池正极材料Li x Mn2O4(1

关键词: Li x Mn2O4;PAA;溶胶凝胶法;回火

中图分类号: TM912.9 文献标识码:A

1 引 言

尖晶石型LiMn2O4以其高理论能量密度、价格低廉、无环境污染等特点而被视为最具发展潜力的锂离子电池的正极材料之一[1]。但由于容量衰减,极大限制了其产业化和广泛应用。研究发现,主要存在以下3个方面原因[2]:(1)尖晶石型LiMn2O4在充放电过程中发生Jahn2Teller效应,使立方晶系转变为四方晶系;(2)锰在电解液中的溶解;(3)充电时高电压导致电解质溶液的分解。锰的溶解可通过表面改性来改善;电解质的不稳定可通过采用耐高压锂化合物来解决;如何抑制Jahn2 Teller效应是目前研究的热点,所选择的途径主要是通过掺杂金属离子或采用低温合成方法。高温合成方法通过掺杂金属离子(Li、Co、Ni等)改善了正极材料的循环性能,但初容量不尽人意[3~5];通过Pechini Process低温方法合成LiMn2O4正极材料,性能有所改善[6];用聚丙烯酸法可形成交联结构,能避免产物在热处理过程中的偏析现象,而以聚丙烯酸法合成一系列富锂尖晶石材料Li x Mn2O4鲜有报道。本文采用溶胶凝胶聚丙烯酸低温合成方法,合成了不同锂锰比例的富锂尖晶石结构的Li x Mn2O4,并研究相应的合成工艺。

2 实 验

称取不同Li/Mn摩尔比的醋酸锂和醋酸锰溶于蒸馏水中,滴加硝酸调节p H值,加入与金属离子摩尔比为1.4的PAA[3],在70~80℃水浴蒸发得到溶胶,继续加热得到凝胶,将凝胶于120℃干燥48h得到干凝胶,然后将干凝胶在不同的温度下烧结,获得Li x Mn2O4黑色超细粉。

将所得粉末与乙炔黑、粘结剂(PVA)以一定比例混合,涂于泡沫镍上,并施加一定压力,烘干制得正极片在钮扣电池套中进行充放电实验。电池装配在充氩气的干燥箱中进行,电解液为1mol/L LiClO4的碳酸乙烯酯(PC)与乙二醇二甲醚(DME)的溶液(体积比1∶1),负极为锂片,以0.1C进行充放电,电压范围为3.3~4.3V。

通过N ETZSCHSTA2409C型热分析仪记录重量损失和热量变化来研究凝胶的晶化过程;在D/MAX-3A型X射线衍射仪上采用钴靶测定产物的相组成和结构;通过ZETASIZER1000型激光粒度仪测定产物的粒度;恒电流充放电实验在CMEM21型电化学繁用测试仪上进行。

3 结果与讨论

3.1 热分析与粒度测试结果

图1显示了干凝胶的热重和热差分析结果。从图中可明显看出有3个失重区:第一个失重区出现在60~120℃,这是因为凝胶前驱体中残留水的失去,对应于DSC中的第一个吸热峰;第二个失重区122~220℃是由于硝酸根的分解,与之伴随的是放热反应;第3个失重区220~330℃对应于凝胶前驱体中有机体的分解,凝胶前驱体在空气中的燃烧,放出大量热量,最终形成了尖晶石结构的Li x Mn2O4

图1 干凝胶热重和热差分析结果

Fig1The result of TG and DSC of dry gel

图2为550℃烧结6h所得粉末粒度测试结果。从图中可以看出,所测粒子分布比较均匀,平均粒度为109nm,说明通过溶胶凝胶法所得到的产物达到了纳米级别

图2 粒度分布图

Fig2The result of size distribution

3.2 烧结温度的影响

图3显示了温度对结构的影响,250℃烧结时除了有尖晶石

Ξ收稿日期:2001206219

相外,还检测到其它相,比如Mn 2O 3等。温度升高到300℃左右,非纯相基本消失,这与DSC 结果相一致。随着温度的升高,衍射峰也逐渐变窄,生成的立方相更完善。但尖晶石结构的稳定性随着温度的升高而降低,使得容量衰减较快[7],经过实验测定,550℃左右性能较好

图3 温度对产物结构的影响

Fig 3E ffect of calcination temperature on sample structure 3.3 选择锂锰摩尔比

将醋酸锂与醋酸锰分别以不同的锂锰比通过溶胶凝胶法制得干凝胶,然后在550℃烧结6h 制得Li x Mn 2O 4粉末。所得样品经XRD 测试结果如图4所示,图中衍射峰基本与标准尖晶石结构化合物LiMn 2O 4衍射峰相吻合,随着x 的增大,衍射峰均向大角度移动,晶格常数也相应的减小。文献报道[8],高温固相合成Li x Mn 2O 4中,掺锂1.08时循环性能很好,但其初容量较LiMn 2O 4有所下降。本实验通过溶胶凝胶法低温掺锂克服以往用高温固体合成时混合不均匀、形态不规整、颗粒大、粒径分布

宽、化学计量关系不易控制的缺点[9]

,并对产物进行回火处理。所得粉末制成电极片进行恒电流充放电实验,发现随着含锂量增加,初容量下降较高温时缓慢。图5为Li 1.08Mn 2O 4恒电流充放电曲线,其初始容量为125mAh/g ,比文献报道的初容量有所提高

图4 不同锂锰比所制得的尖晶石结构样品的X 射线衍射图

Fig 4Powder X 2ray diffraction patterns for spinel Li x Mn 2O 4(1

<1.12)

obtained

图5 恒电流充放电曲线

Fig 5Constant current first cycle charge/discharge curve of Li 1.08

Mn 2O 4

3.4 回火对产物的影响

由于干凝胶在烧结过程中烧结气氛、加热速度等的影响,致

使产物可能会产生一定的杂相,内部组织不均匀,这样会使正极材料性能有所下降。而在第一次烧结后,进行低温回火,性能会有所提高。以Li 1.08Mn 2O 4为例,回火前初容量为115mAh/g ,而回火后可提高到125mAh/g 。回火与未回火正极物质的X 射线衍射图见图6,从图中可以看出,物质回火后衍射峰有所宽化,这说明组织有所细化,这可能与发生重新结晶有关。有关回火的工作正在进一步的研究之中

图6 回火对产物的影响

Fig 6E ffect of annealing on spinel material

4 结 论

(1) 用聚丙烯酸为螯合剂通过溶胶凝胶法合成锂离子正

极材料Li x Mn 2O 4,温度为550℃时,产物晶化完全;x =1.08时,综合性能较好。

(2) 一定温度下烧结,再低温回火,是改善组织、提高综合性能的有效方法。参考文献:

[1] 尹大川,王 猛,黄卫东,等.[J ].功能材料,1999,30(6):5912594.[2] H Jiang Dong ,Shina YJ ,Oh S M.[J ].J Electrochem Soc ,1996,143:

2204.

[3] Sun Y K ,Oh I H ,K im K Y.[J ].Ind Eng Chem Res ,1997,36:48392

4846.

[4] Arora P ,Popov B N ,White R E.[J ].J Electrochem Soc ,1998,145:

807.

[5] Okada M ,Lee Y S ,Y oshio M.[J ].J Power Source ,2000,90:196.[6] Liu W ,Farrington G C.[J ].J Electrochem Soc ,1996,143:879.[7] Lee Y S ,Sun Y K ,Nahm K S.[J ].Solid State Ionics ,1998,109:

2852294.

[8] Xia Y ongyao ,Takeshige H.[J ].J Power Source ,1995,56:61.[9] 刘光华.现代材料化学[M ].上海:上海科学技术出版社,2000.

作者简介:

程杰锋 (1976-),男,山西吕梁人,1999年考入哈尔滨工程大学材料科学与工程系,目前正在进行“锂离子电池电极材料的研究”。

(下转第302页)

[2] Coleman J P,Freeman J J,Madhukar P,et al.[J].Displays,1999,

20:1452154.

[3] Paria M L,Smaiti H.[J].J Mater Sci,1982,17:327523280.

[4] K embeza E S,Richard V,Van Landuyt J,et al.[J].Mater Res Bull.

1999,34:152721533.

[5] 中国科学院数学研究所统计组.常用数理统计方法[M].北京:科

学出版社,1973.

[6] Shanti E,Dutta V,Banerjee A.[J].J Appl Phys,1980,51:624326280.

作者简介:

张建荣 (1975-),男,江苏泰兴人,在读硕士,现在华东理工大学化学系,师从顾达教授,从事超细粉体材料的制备研究。

Wet2chemical synthesis of ATO nanoparticle

ZHAN G Jian2rong,GU Da,YAN G Yun2xia

(Department of Chemistry,East China University of Science and Technology,Shanghai200237,China)

Abstract:A TO nanoparticles were prepared from Sn(OH)4nucleus grew uniformly with Sn(OH)4and Sb(OH)3by heterogeneous precipita2 tion.The effect of reaction conditions such as do ping concentrations,p H,temperatures,reaction concentration on the resistance was investi2 gated.With the method of TG2DSC,XRD,TEM analysis,the results showed that A TO nanoparticles were tetrahedral rutile structure with average grain sizes approximately15nm and excellent electric properties.Under the reaction condition p H=2、T=60℃、SnCl41.2~1. 8mol?L-1,Sb/Sn(mol ratio)0.05,the conductivity of the A TO was less than0.5Ω.

K ey w ords:SnO2;nanoparticle;doping

(上接第295页)

[8] Abicht H P,Voltzke D,Schneider R,et al.[J].Materials Chemistry

and Physics,1998,(55):1882192.

[9] Yu C,Sheng S.[J].Chem Sensors,1990,10(1):39247.

[10] 曹锡章,宋天佑,王杏乔.无机化学[M].北京:高等教育出版社,

2000.794,933.

[11] 徐宝琨,阎卫平,刘明登.结晶学[M].吉林:吉林大学出版社,

1991.1602161.

作者简介:

王永为 (1975-),男,吉林省长春市人,在读博士,1999年于吉林大学获学士学位,现在吉林大学化学学院无机合成与制备化学国家重点实验室,师承冯守华教授,从事复合氧化物离子导体材料的研究。

Synthesis,characteristics and oxygen2sensitive properties of

nanocrystalline materials SrMg x Ti1-x O3

WAN G Y ong2wei1,2,Q IU Fa2bin1,FU J u2xia2,WU Feng2qing2,L I Guang1,XU Bao2kun1

(1.School of Electronic Science and Engineering,Jilin University,Changchun130023,China;

2.School of Chemical Science,Jilin University,Changchun130023,China)

Abstract:SrMg x Ti1-x O3nanocrystals(x=0.1~0.5)were synthesized by the stearic acid gel method.Powder samples were characterized by TG2DTA、XRD、XPS.The results showed that the O1s XP spectrum changed with the Mg content x.The conductivity of sample showed a high sensitivity to oxygen.

K ey w ords:synthesis;nanocrystals;oxygen2sensitive

(上接第297页)

The influence of p H to prepare TiO2by sol2gel and the characteristics

WAN G Rui2bin,DA I Song2yuan,WAN G K ong2jia

(Institute of Plasma Physics,Chinese Academy of Sciences,Hefei230031,China)

Abstract:During the progress of preparation nanocrystalline TiO2by sol2gel,a few parameters influence the characters of nanocrystalline TiO2.By controlling hydrolysis p H,we can get different particle diameter and phase nanocrystalline TiO2powders.In this paper,we pri2 marily discuss the condition of the transformation from anatase phase to rutile phase and the trend of D hkl with p H.The X2ray diffraction analysis results show that the transformation from anatase phase to rutile phase of nanocrystalline TiO2is connecting with the hydrolysis p H. The morphology,size,composition of TiO2were studied by means of TEM and XRD.

K ey w ords:nanocrystalline;phase transformation;sol2gel;titania dioxide

(上接第299页)

Study on spinel Li x Mn2O4prepared by sol2gel method using PAA

CHEN G Jie2feng1,2,L I Song1,J I Shi2jun1,SUN J un2cai1,SON G Wei2

(1.Institute of Materials and Technology,Dalian Maritime University,Dalian116026,China;

2.Department of Materials Science and Engineering,Harbin Engineering University,Harbin150001,China)

Abstract:Spinel Li x Mn2O4powders as a cathode for lithium ion secondary battery were synthesized by a sol2gel method using a PAA(poly2 acrylic acid)as a chelating agent.The dependence of the physicochemical properties of the s pinel powders on the value x,the calcination temperatuer was investigated.In addition,a new calcination method was put forward,that is after first calcination at higher temperature, annealing at temperature a bit less than former.It was found that polycrystalline Li x Mn2O4powders calcined at about550℃crystallize per2 fectly;when the molar ratio of lithium ion to maganese ion was1.08∶2,spinel Li x Mn2O4delivers higher initial capacity of125mAh/g;the properties of spinel material have improved by annealing treatment.

K ey w ords:Li x Mn2O4;PAA;sol2gel method;annealing

四种主要的锂电池正极材料

四种主要的锂电池正极材料 LiCoO2 锂离子从LiCoO2中可逆脱嵌量最多为0.5单元.Li1-xCoO2在x=0.5附近发生可逆相变,从三方对称性转变为单斜对称性。该转变是由于锂离子在离散的晶体位置发生有序化而产生的,并伴随晶体常数的细微变化。但是,也有人在x=0.5附近没有观察到这种可逆相变。当x>0.5时,Li1-x CoO2在有机溶剂中不稳定,会发生释氧反应;同时CoO2不稳定,容量发生衰减,并伴随钴的损失。该损失是由于钴从其所在的平面迁移到锂所在的平面,导致结构不稳定,使钴离子通过锂离子所在的平面迁移到电解质中。因此x的范围为0≤x≤0.5,理论容量为156mA·h/g。在此范围内电压表现为4V左右的平台。当LiCoO2进行过充电时,会生成新的结构 当校子处于纳米范围时,经过多次循环将产生阳离子无序,部分O3相转变为立方尖晶石相结构,导致容量衰减。粒子小时,由于锂离子的扩散路径短,形成的SEI膜较粒子大的稳定,因此循环性能好。例如,70nm的粒子好于300nm 的粒子。粒子大小对自放电也具有明显影响。例如粒子小,自放电速率快。粒径分布窄,粒子的球形性越好,电化学性能越佳。最佳粒子大小取决于电池的要求。 尽管LiCoO 与其它正极材料相比,循环性能比较优越,但是仍会发生衰减, 2 对于长寿命需求的空间探索而言,还有待于进一步提高循环性能。同时。研究过经过长时期的循环后,从层状结构转变为立方尖晶石结构,特别程发现,LiCoO 2 是位于表面的粒子;另外,降低氧化钴锂的成本,提高在较高温度(<65℃)下的循环性能和增加可逆容量也是目前研究的方向之一。采用的方法主要有掺杂和包覆。 作为锂离子电池正极材料的锂钴氧化物能够大电流放电,并且放电电压高,放电平稳,循环寿命长。.因此成为最早用于商品化的锉离子蓄电池的正极材料,亦是目前广泛应用于小型便携式电子设备(移动电话、笔记本电脑、小型摄像机等)的正极材料。LiCoO2具有a-NaFeO2型二维层状结构,适宜于锂离子在层间的嵌人和脱出,理论容量为274 mA·h/g。在实际应用中,该材料电化学性能优异,热稳定性好,且初次循环不可逆容量小。实际可逆容量约为120~150 mA·h/g,即可逆嵌人/脱出晶格的锂离子摩尔百分数接近55 %。 在过充电条件下,由于锂含量的减少和金属离子氧化水平的升高,降低了材料的稳定性。另外由于Co原料的稀有,使得LiCoO2的成本较高。 LiCoO2生产工艺相对较为简单,其传统的合成方法主要有高温固相合成法和低温固相合成法。 高沮固相合成法通常以Li2CO3和CoCO3为原料,按Li/Co的摩尔比为1:1配制,在700~900℃下,空气氛围中灼烧而成。也有采用复合成型反应生成LiCoO2前驱物,然后在350~450℃下进行预热处理,再在空气中于700~850℃下加热合成,所得产品的放电容量可达150 mA·h/g。唐致远等以计量比的钴化合物、锂化合物为合成原料在有机溶剂乙醇或丙酮的作用下研磨混合均匀,先在450℃的温度下处理6h.,待冷却后取出研磨,然后再在6~10 MPa压力下压成块状,最后在900℃的温度下合成12~36 h而制得。日本的川内晶介等用Co3O4和Li2 CO3做原料,按化学计量配合在650℃灼烧10h制的温定的活性物质。章福平等按计量将分析纯LiNO3和Co(NO3)2·6H2O混匀,加适量酒石酸,用氨水调

各种锂离子电池正极材料分析

锂离子电池现使用的正极材料有如下几种: 1、钴酸锂 钴酸锂也是目前应用最为广泛的正极材料,钴产生3.9V(vs. Li)的电势平 台,对钴酸锂而言,对应于其理论容量,高达274mAh/g,实际容量可达155mAh/g,具有很高的能量密度。主要应用于便携电池领域:如手机,PDA;移动DVD; MP3/MP4、笔记本电脑。 1)结构缺陷 对钴酸锂(LixCoO2,00.55 时,材料的容量发生严重的退化,其层状结构倾向于塌陷,使得实际可利用的容量不超过155mAh/g,为了能够更多的利用LiCoO2 中的锂离子,人们采用掺杂、包覆等办法对其改性。目前,有多种元素应用于LiCoO2 掺杂,但只有Mn 和Al 表现出较好的效果。 在Li 过分脱出时(E>4.2V 时),LiCoO2 发生严重的过充现象,化学键发生断 裂而释出O2,导致体系的不稳定,甚至有使电池爆炸的危险。 2)资源缺乏 钴在我国属于稀缺资源,我国钴矿矿床规模较小,矿区储量大于2 万吨的只 有甘肃金川和青海德尔尼两处,矿区储量大于1 万吨的有河北、四川、海南、新 疆4 省。截至2006 年底,我国探明钴储量47.1 万吨。由于连年开采,我国钴储 量逐年减少。我国钴产量应该在4900 吨左右。2002 年我国钴消费量为4845 吨,比2001 年增加了22%。从2002 年起,电池行业已超过硬质合金行业,成为我国 钴消费的第一大行业。由于目前我国未发现大规模有开采价值的钴矿,我国锂电池正极材料用钴酸锂的生产基本上是从国外进口价格昂贵钴原料。 2、镍酸锂 Ni4+/Ni3+电对能产生3.75V 的电势平台。它能可逆的嵌脱0.7Li,具有接 近200mAh/g 的循环容量,但在实际中,很难得到这个结果。首先在高温下,由于Li 的挥发,很难合成化学计量比LiNiO2,高温时六方相的LiNiO2 很容易向立方相的LiNiO2 转变,这种锂镍置换的立方相的没有电化学活性,而且这个反应的逆过程很慢并且不完全。此外在充放电过程中,LiNiO2 还会发生一系列的结构变化,而导致嵌锂容量的损失。实际上镍酸锂无太大实用价值。 3、镍钴二元材料和多元复合材料 LiCoO2 价格昂贵,LiNiO2 合成困难,如果能够结合二者的优点,用价格相 对低廉的Ni 替代部分Co,合成具有LiCoO2 一样优良电化学性能地电极材料,那么将具有广阔的应用前景。由于半径相近,Ni 和Co 几乎可以以任何比例形成 固溶体。近几年来,多元混合掺杂的层状氧化物得到了大量的研究,不同金属原子比例的镍钴锰多元材料得到了研究,但是颗粒形貌和粒度分布不得到有效的控制,只有在足够高的电势下(大于4.5V)才能获得180mAh/g 的容量,此外没有从根本上改变钴系材料的特点。 4、尖晶石锰酸锂 尖晶石锰酸锂能够产生4.0 V 的电压平台,与钴酸锂相当,理论容量 148mAh/g,实际容量120mAh/g 左右,比现在所用的钴酸锂稍低。早在上世纪80

锂离子电池正极材料镍锰酸锂的制备及其电化学性能研究

目录 摘要................................................................................................................ I Abstract ......................................................................................................... III 第1章绪论 (1) 1.1 引言 (1) 1.2 锂离子电池的基本原理 (2) 1.3 锂离子电池正极材料研究概况 (3) 1.3.1 层状结构正极材料 (3) 1.3.2 聚阴离子型正极材料 (4) 1.3.3 尖晶石型正极材料 (5) 1.4 镍锰酸锂的制备方法 (6) 1.5 镍锰酸锂正极材料的缺陷及其改进 (8) 1.5.1 元素掺杂改性 (8) 1.5.2 表面包覆改性 (9) 1.5.3 形貌改性 (10) 1.5.4 晶面调控改性 (11) 1.6 论文主要研究内容及意义 (13) 第2章实验方法 (15) 2.1 实验所用药品及分析仪器 (15) 2.1.1 实验所用试剂及原料 (15) 2.1.2 实验仪器与设备 (15) 2.2 材料表征手段 (16) 2.2.1 X射线衍射(XRD) (16) 2.2.2 扫描电子显微镜(SEM) (16) 2.2.3 热重分析(TG) (16) 2.2.4 电化学性能测试 (17) 2.3 正极片的制备与电池组装 (17) 2.3.1 正极片的制备 (17) 2.3.2 纽扣半电池的组装 (17) 第3章纳米及纳微结构LiNi 0.5Mn 1.5 O 4 的制备及其性能研究 (18) 3.1 引言 (18) 3.2 实验部分 (18) 3.3 结果与讨论 (19) 3.4 本章小结 (26)

锂离子电池正极材料技术进展_孙玉城.

锂离子电池正极材料技术进展 孙玉城 1, 2 (1. 青岛科技大学新材料研究重点实验室 , 山东青岛 266042; 2. 青岛新正锂业有限公司 摘要 :概述了国内外近 30a 有关锂离子电池正极材料的研究进展以及笔者在锰系正极材料方面的研究结果 ; 比较了几种主要正极材料的性能优缺点 ; 阐明了正极材料发展方向。近期镍钴锰酸锂三元材料将逐步取代钴酸锂 , 而改性锰酸锂和镍钴锰酸锂三元材料以及两者的混合体将在动力型锂离子电池中获得广泛使用。在未来 5~10a , 高容量的层状富锂高锰型正极材料或许会是下一代锂离子电池正极材料的有力竞争者。 关键词 :锂离子电池 ; 正极材料 ; 技术进展 中图分类号 :TQ131.11文献标识码 :A 文章编号 :1006-4990(2012 04-0050-05 Technology development in cathode materials of lithium ion battery Sun Yucheng 1, 2 (1. Novel Material Research Focus Laboratory , Qingdao University of Science and Technology , Qingdao 266042, China ; 2. Qingdao LNCM Company Abstract :The technology development in the main cathode materials of lithium ion battery at home and abroad of the past 30 years and the author ′ s research results of Mn-based cathode materials were discussed respectively.Advantages and disadvan -tages of the main cathode materials and opinions of the development trend in the cathode materials of lithium ion battery were summarized.It was believed that Li (Mn , Co , Ni O 2is going to replace LiCoO 2and LiMn 2-x A x O 4or Li (Mn , Co , Ni O 2or the mixture

锂电池几种正极材料的优缺点

锂电池几种正极材料的优缺点 锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:(1)正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;(2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;(3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;(4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电;(5)正极材料应有较高的电导率,能使电池大电流地充电和放电;(6)正极不与电解质等发生化学反应;(7)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电;(8)价格便宜,对环境无污染。 锂离子电池正极材料一般都是锂的氧化物。研究得比较多的有LiCoO2,LiNiO2,LiMn2O4,LiFePO4和钒的氧化物等。导电聚合物正极材料也引起了人们的极大兴趣。 1、LiCoO2 在目前商业化的锂离子电池中基本上选用层状结构的LiCoO2作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。 2、LiNiO2

煅烧温度对523型镍钴锰酸锂正极材料电化学 性能的影响

Advances in Analytical Chemistry 分析化学进展, 2018, 8(4), 198-203 Published Online November 2018 in Hans. https://www.sodocs.net/doc/4915065491.html,/journal/aac https://https://www.sodocs.net/doc/4915065491.html,/10.12677/aac.2018.84024 Effects of Calcination Temperature on Electrochemical Properties of 523-Type Lithium Nickel-Cobalt-Manganese Oxide as Positive Electrode Materials Beiping Wang*, Zhongli Zou, An Huang, Qing Wang School of Materials Science and Engineering, North Minzu University, Yinchuan Ningxia Received: Oct. 24th, 2018; accepted: Nov. 5th, 2018; published: Nov. 16th, 2018 Abstract The effect of calcination temperature on the phase and electrochemical properties of lithium nickel-cobalt-manganese oxide was studied. The target product was prepared by liquid phase co- precipitation and solid phase calcination, and the phase and electrochemical properties of the material were characterized by XRD, constant current charge-discharge technique and AC imped-ance technique. The results show that the product obtained by calcination at 900?C has a well-developed layered structure, high crystallinity and low ionic mixing. The initial discharge capacity is up to 166.3 mAh?g?1. The charge transfer impedance of the product is small, which im-proves the diffusion rate of lithium ion and improves charge/discharge rate. Keywords Lithium Ion Battery, Transition Metal Oxides, Calcination Temperature, Electrochemical Property 煅烧温度对523型镍钴锰酸锂正极材料电化学 性能的影响 王北平*,邹忠利,黄安,汪青 北方民族大学材料科学与工程学院,宁夏银川 收稿日期:2018年10月24日;录用日期:2018年11月5日;发布日期:2018年11月16日 *通讯作者。

镍钴锰三元正极制备方法

1镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2,其中x+y+z=1;依据3种元素的摩尔比(x∶y∶z比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1的三元材料,简称为333型。摩尔比为5∶2∶3的体系,称之为523体系等。 333型、523型和811型等三元材料均属于六方晶系的α-NaFeO2型层状岩盐结构,如图1。 镍钴锰三元材料中,3种元素的的主要价态分别是+2价、+3价和+4价,Ni为主要活性元素。其充电时的反应及电荷转移如图2所示。 一般来说,活性金属成分含量越高,材料容量就越大,但当镍的含量过高时,会引起Ni2+占据Li+位置,加剧了阳离子混排,从而导致容量降低。Co正好可以抑制阳离子混排,而且稳定材料层状结构;Mn4+不参与电化学反应,可提供安全性和稳定性,同时降低成本。 2镍钴锰三元正极材料制备技术的最新研究进展 固相法和共沉淀法是传统制备三元材料的主要方法,为了进一步改善三元材料电化学性能,在改进固相法和共沉法的同时,新的方法诸如溶胶凝胶、喷雾干燥、喷雾热解、流变相、燃烧、热聚合、模板、静电纺丝、熔融盐、离子交换、微波辅助、红外线辅助、超声波辅助等被提出。 2.1固相法

三元材料创始人OHZUKU最初就是采用固相法合成333材料,传统固相法由于仅简单采用机械混合,因此很难制备粒径均一电化学性能稳定的三元材料。为此,HE等、LIU等采用低熔点的乙酸镍钴锰,在高于熔点温度下焙烧,金属乙酸盐成流体态,原料可以很好混合,并且原料中混入一定草酸以缓解团聚,制备出来的333,扫描电镜图(SEM)显示其粒径均匀分布在0.2~0.5μm左右,0.1C(3~4.3V)首圈放电比容量可达161mAh/g。TAN等采用采用纳米棒作为锰源制备得到的333粒子粒径均匀分布在150~200nm。 固相法制得的材料的一次粒子粒径大小在100~500nm,但由于高温焙烧,一次纳米粒子极易团聚成大小不一的二次粒子,因此,方法本身尚待进一步的改进。 2.2共沉淀法 共沉淀法是基于固相法而诞生的方法,它可以解决传统固相法混料不均和粒径分布过宽等问题,通过控制原料浓度、滴加速度、搅拌速度、pH值以及反应温度可制备核壳结构、球形、纳米花等各种形貌且粒径分布比较均一的三元材料。 原料浓度、滴加速度、搅拌速度、pH值以及反应温度是制备高振实密度、粒径分布均一三元材料的关键因素,LIANG等通过控制pH=11.2,络合剂氨水浓度0.6mol/L,搅拌速度800r/min,T=50℃,制备得到振实密度达2.59g/cm3,粒径均匀分布的622材料(图3),0.1C(2.8~4.3V)循环100圈,容量保持率高达94.7%。 鉴于811三元材料具有高比容量(可达200mAh/g,2.8~4.3V),424三元材料则可提供优异的结构和热稳定性的特点。有研究者试图合成具有核壳结构的(核为811,壳层l为424)三元材料,HOU等采用分布沉淀,先往连续搅拌反应釜(CSTR)中泵入8∶1∶1(镍钴锰比例)的原料,待811核形成后在泵入镍钴锰比例为1∶1∶1的原料溶液,形成第一层壳层,然后再泵入组成为4∶2∶2的原溶液,最终制备得到核组成为811,具有壳组成为333、424的双层壳层的循环性能优异的523材料。4C倍率下,这种材料循环300圈容量保持率达90.9%,而采用传统沉淀法制备的523仅为72.4%。 HUA等采用共沉淀法制备了线性梯度的811型,从颗粒内核至表面,镍含量依次递减,锰含量依次递增,从表1可明显看到线性梯度分布的811三元材料大倍率下放电容量和循环性明显优于元素均匀分布的811型。

锂离子电池正极相关材

锂离子电池具有工作电压高、无记忆效应、环境友好等优点,已经成为21世纪绿色电池的首选。锂离子电池的关键材料之一是正极材料,目前商品化锂离子电池的正极材料主要是LiCoO2,但存在成本高、实际比容量偏低、抗过充电性能差、安全性能不佳等问题,严重阻碍了锂离子电池的进一步发展,限制了它在更广领域的应用,迫切需要研究者开发出成本低、性能优良、安全性高的锂离子电池正极材料以满足电动汽车等新兴行业的需求。 锂离子电池是绿色环保电池,是二次电池中的佼佼者。与镍镉电池(Cd.Ni)和镍氢电池(Ni.H)相比,锂离子电池具有工作电压高、比能量大、充放电寿命长、自放电率低等显著优点,且没有Cd-Ni电池中镉的环境污染问题。锂离子电池的上述特点,使其可以向小型化方向发展,因而适合于小型便携式电器电源,如移动电话、笔记本电脑、照相机等。这些电器与人们的商务活动和日常生活紧密相连,使用的群体广,新旧换代快。锂离子电池还可以用于电动工具和电动车电源替代Cd.Ni电池和铅酸电池,一方面Cd-Ni电池和铅酸电池的原材料上涨,成本提高,发展受限,我国出口退税政策调整;另一方面欧盟在2005和2006年相继出台了两项与化学品相关的RollS和REACH法令,前者限制了铅、镉等6种化学元素的使用,后者则规定上万种化学药品要重新注册。所以这为锂离子电池行业发展带来了新的机遇【l】。此外,锂离子电池也是航空航天和军事等领域要求空间上移动使用的新一代清洁安全能源,以及作为家庭和交通照明、备用电源、储能电站等时间上移动使用的储能调峰电源。因此锂离子电池有非常广阔的应用范围。 1.2锂离子电池发展简况 锂离子电池的发展可以追迥到锂二次电池,锂二次电池的研究最早始于20世纪60--70年代的石油危机,当时主要集中在以金属锂及其合金为负极的锂二次电池体系,但锂在充放电过程中由于电极表面的凹凸不平,导致表面电位分布不均匀,造成了锂的不均匀沉积。这种不均匀沉积导致锂在一些部位沉积过快,产生锂枝晶,当锂枝晶发展到一定程度时,一方面会发生折断,造成锂的不可逆损失;另一方面锂枝晶的产生会刺穿电池的隔膜,将正极与负极连接起来,引起短路,产生大电流进而生成大量的热,引起电池着火甚至爆炸,从而引发严重的安全问题,因此这种电池未能实现商品化【2】。锂二次电池的突破性发展源于Armand 的“摇椅电池(Rocking chair batteries)”的构想,即采用低插锂电势的嵌锂化合物代替会属锂为负极,与高插锂电势的嵌锂化合物组成二次锂离子电池。Scrosati等【3】以LiWO2或Li6FeO3为负极,以TiS2、WO3、NbS2或V2O5为正极组装成二次电池。1987年,Aubom等【4】装配了以MoO2或WO2为负极,LiCoO2为正极的“摇椅式”电池。与金属锂为负极的二次锂电池相比,这些电池的安全性能和循坏性能大大提高。但由于MoO2和WO2等负极材料的嵌锂电位较高(07~2.0 V vs Li+/Li),因此未能得到实际应用。1990年日本Sony能源技术公司首先推出实用型锂离子电池。该电池既克服了二次锂电池循环寿命短、安全性差的缺点,又较好地保持了二次锂电池高电压、高比能量的优点。由此,二次锂离子电池在全世界范围内掀起了研究开发热潮,并取得了巨大的进展净。 锂离子电池的关键材料之一是正极材料,所以锂离子电池对正极材料的要求也很高。从上世纪70年代开发锂电池起,经过30多年的研究,多种嵌锂化合物可作为锂离子电池的正极材

【CN109987650A】镍钴锰酸锂正极材料、其制备方法及应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910342205.0 (22)申请日 2019.04.26 (71)申请人 清华大学深圳研究生院 地址 518055 广东省深圳市南山区西丽大 学城清华校区 (72)发明人 李宝华 黄彬华 刘玉秀 秦显营  刘冬青 钱坤 周楷 康飞宇  (74)专利代理机构 深圳市鼎言知识产权代理有 限公司 44311 代理人 曾昭毅 郑海威 (51)Int.Cl. C01G 53/00(2006.01) H01M 4/505(2010.01) H01M 4/525(2010.01) H01M 10/0525(2010.01) (54)发明名称 镍钴锰酸锂正极材料、其制备方法及应用 (57)摘要 一种镍钴锰酸锂正极材料的制备方法,包括 以下步骤:配制包括镍源、钴源和锰源的混合溶 液、强碱溶液以及含铵根离子无机盐溶液,将所 述混合溶液、所述强碱溶液以及所述含铵根离子 无机盐溶液同时混合进行快速共沉淀反应,控制 进行所述快速共沉淀反应的pH值为10-12,得到 第一悬浊液,分离所述第一悬浊液得到沉淀物; 将所述沉淀物配制成第二悬浊液,将所述第二悬 浊液进行球磨;将球磨后的第二悬浊液进行喷雾 干燥,得到前驱体粉末;将所述前驱体粉末与锂 源混合,得到混合物;以及将所述混合物煅烧,得 到所述镍钴锰酸锂正极材料。本发明还提供一种 镍钴锰酸锂正极材料、 正极片及锂离子电池。权利要求书2页 说明书8页 附图5页CN 109987650 A 2019.07.09 C N 109987650 A

锂离子电池三元正极材料的分析研究进展

锂离子电池三元正极材料的研究进展 2009年09月01日作者:丁楚雄/孟秋实/陈春华来源:《化学与物理电源系统》编辑:樊晓琳 摘要:本文综述了锂离子电池正极材料层状三元过渡金属氧化物Li-Ni-Co-Mn-O的研究进展,讨论了三元材料的结构特性与电化学反应特征,重点介绍了三元材料的制备方法和掺杂、表面修饰等改性手段,并分析了三元材料目前存在的问题和未来的研究重点。 关键词:锂离子电池;Li-Ni-Co-Mn-O;层状结构;制备方法;改性 Abstract: The research progress of the ternary transition metal oxides LiNi1-x-yCoxMnyO2 as layered cathode materials for lithium ion batteries is reviewed. The structure and electrochemical performances of the materials are discussed. Various synthesis methods, doping and surface-modification approaches are introduced in detail. Finally, the current main problems and further research trend of the materials are pointed out. Key words: lithium ion battery。 cathode。 layered structure。 synthesis methods。modification 1、引言 锂离子电池因其电压高、能量密度高、循环寿命长、环境污染小等优点倍受青睐[1, 2],但随着电子信息技术的快速发展,对锂离子电池的性能也提出了更高的要求。正极材料作为目前锂离子电池中最关键的材料,它的发展也最值得关注。 目前常见的锂离子电池正极材料主要有层状结构的钴酸锂、镍酸锂,尖晶石结构的锰酸锂和橄榄石结构的磷酸铁锂。其中,钴酸锂

镍锰酸锂锂电正极材料概述

镍锰酸锂锂电正极材料概述 1、镍锰酸锂是什么? 镍锰酸锂(化学式:LiNi0.5Mn1.5O4)是一种电压平台约在 4.7V 的锂离子电池正极材料,理论比容量为 146.7mAh/g,实际比容量大约在 130mAh/g左右,其结构上类似通常的锰酸锂,但在电压平台、实际比容量、热循环稳定性等方面要比锰酸锂好得多,也因为镍锰酸锂在纳米尺度下也可以很稳定,因此不必像锰酸锂一样通过增大晶粒来提高稳定性,故在提高倍率方面也有非常大的优势(注:电极材料颗粒纳米化是提高充放电倍率的重要途径)。 2、跟其它锂离子电池正极材料有什么优势? 目前使用中的和正在开发的锂离子电池正极材料主要有钴酸锂、锰酸锂、磷酸亚铁锂等。 2.1 钴酸锂(化学式:LiCoO2) 作为正在使用中的钴酸锂材料,因为资源少、价格贵、不环保、安全性差,不适合作为一种普及型的正极材料在未来大型化电源(如电动力车电源、储能电源)中使用,即使是在现有材料基础上发展起来的二元、三元材料,也没有从根本上解决这些问题,因此将来只能在小型化便携设备上使用。 2.2 锰酸锂(化学式:LiMn2O4) 锰酸锂材料价格低廉、环保、安全、倍率性能好,但在应用中的最大问题是循环性能不好,特别是高温下,材料中的三价锰离子和大倍率放电时在颗粒表面形成的二价锰离子,使得材料在电解液中的溶

解明显,最终破坏了锰酸锂的结构,也降低了材料的循环性能。目前在市场上真正能使用的锰酸锂材料都是通过改性措施得到的,这种改性措施一方面需要高规格的合成设备,另一方面也需要是以降低材料的可逆容量为代价,即使是这样,来自日本的高品质锰酸锂价格上也达到了每吨25万以上。 2.3 磷酸亚铁锂(化学式:LiFePO4) 磷酸亚铁锂是目前被各科研机构和企业广泛看好的处于开发状态的锂离子电池正极材料。如果从组成元素、结构、电压平台、比容量等方面看,磷酸亚铁锂可以说具有价格低廉、环保等优点。但其结构却是“过于稳定”了,甚至连电子、锂离子也难以在电化学过程中表现出相应的活性来,因此导电性不好,影响了材料的倍率性能。目前改进磷酸亚铁锂的主要措施是纳米化(减小材料颗粒尺寸)和元素体相掺杂和表面包覆,目前磷酸亚铁锂在倍率性能上已经不成问题了。但这些改进措施随之也带来新的问题,那就是材料的振实密度过低(0.9~1.3g/cm3),导致极片涂布困难等一系列实用电池制作中的问题。磷酸亚铁锂的另一个关键问题是合成条件苛刻,因为材料中的+2 价铁是一种亚稳价态,在合成中,过强的还原气氛容易导致形成单质铁,而太弱的还原气氛又容易有+3 价铁出现。因此,即使是已经合成出来的磷酸亚铁锂,长期在空气和水的作用下也容易发生+2 价铁到+3价铁的转变。因此可以预见,未来磷酸亚铁锂在合成、储存、使用一系列过程中均存在一定的问题。 2.4镍锰酸锂(化学式:LiNi0.5Mn1.5O4)

系锂离子电池正极材料输出电压的影响

* ? ( , , 200050) (2012 1 18 ;2012 3 7 ) LiMnO2 Li2MnO3 , . , . 5% 0.1V. , , , ; Li2MnO3 , .Li2MnO3 , , , . : , , ,Li2MnO3 PACS:31.15.es,62.20.de,82.45.Fk,82.47.Aa 1 , (>150W·h/kg) (<50W·h/kg), , [1?3]. Li M O2(M=Co, Ni,Mn ), Li M2O4(M=Mn,Ti ) Li M PO4(M=Fe,Mn,Co ), . , Li2MnO3 , x Li2MnO3·(1?x)Li M O2(M=Mn,Ni,Co ), [4?6]. , , . , ; , . , , [4?6]; , [7,8]; LiFePO4 [9]. , , [10]. , , [11]. , , , , , . LiMnO2 Li2MnO3 , * ( :50825205) . ?E-mail:jliu@https://www.sodocs.net/doc/4915065491.html, c 2012 Chinese Physical Society https://www.sodocs.net/doc/4915065491.html,

, . 2 , 3 , 4 , Li2MnO3 . 2 2.1 LiMnO2 Li2MnO3 . x2 Li x2A, (x1?x2) Li x 2 A+(x1?x2)Li=Li x1A,(1) , [12?14] V=?E Li x1 A?E Li x2A?(x1?x2)E Li (x1?x2)F ,(2) F ,E Li x1A ,E Li L i x A . ,L i x2A , e i, (1) , L i x1A e j; , , . (<5%) (2) , (2) E Li x2 A E Li x1A E Li x 2A E Li x 1 A , . . , [15?17] E=E0+1 2 ?0 ∑ ij (C i j e i e j),(3) E0 ,C ij e i e j ,?0 . (2) (3) , : V=V0+1 2 ∑ ij (? 0C ij e i e j??0C ij e i e j),(4) V0 , ,?0 ? 0 x1 x2 . “ ” . ,(4) . , , ,e(x2)=e(x1+?x)≈e(x1). (4) V=V0+ 1 2 ∑ ij (? 0C ij??0C ij)e i e j.(5) , (5) .(5) , , (2) . , , 5%[11,14], , (5) , . LiMnO2 Li2MnO3 , ( 1(b)—(e)). , e e i,e j e k, V=V0+ 1 2 [? 0(C ii+2C ij+C jj+2C jk +C kk+2C ik)??0(C ii+2C ij+C jj +2C jk+C kk+2C ik)]e2.(6) , e e i e j, V=V0+ 1 2 [? 0(C ii+2C ij+C jj) ??0(C ii+2C ij+C jj)]e2;(7) e k (5) V=V0+ 1 2 (? 0C kk??0C kk)e2k.(8) (8) , , . , , , , .

团体标准《NCM811型镍钴锰酸锂》-编制说明(预审稿).doc

《NCM811型镍钴锰酸锂》 团体标准编制说明 (预审稿) 一、工作简况 1.1 任务来源与计划要求 根据《关于下达2018年第二批协会标准制修订计划的通知》(中色协科字[2018]75号)的文件精神,由北京当升材料科技股份有限公司负责起草《NCM811型镍钴锰酸锂》协会标准,项目计划编号:T/CNIA 046-2018,计划完成年限2019年。 1.2 产品简介 新能源车用动力锂电池选用的正极材料主要有锰酸锂、磷酸铁锂和镍钴锰酸锂三元材料,其中镍钴锰酸锂三元材料以其高容量、长寿命、高安全性等综合优势成为动力电池的首选。而三元材料又包括以LiNi1/3Co1/3Mn1/3O2,LiNi0.5Co0.2Mn0.3O2,LiNi0.6Co0.2Mn0.2O2及LiNi0.8Co0.1Mn0.1O2等为代表的不同镍、钴、锰含量组成的材料。 LiNi0.8Co0.1Mn0.1O2(称为NCM811型镍钴锰酸锂)即为镍钴锰酸锂三元材料的一种,其组成为镍钴锰摩尔含量约为79%~85%、5%~16%、5%~16%。 商品化的NCM811型镍钴锰酸锂,从形貌上区分为团聚型和单晶型两种,团聚型为一次颗粒团聚成球形或类球形的二次颗粒,单晶型为颗粒之间无团聚的单晶颗粒,其SEM图如图1所示。 图1 NCM811型镍钴锰酸锂产品SEM图(左为团聚型,右为单晶型)NCM811型镍钴锰酸锂作为应用前景优良的正极材料,制作成的锂离子电池可被应用于电动汽车,3C等领域。

1.3 标准编写的目的和意义 作为国家战略新兴产业,新能源汽车是应对能源危机、大气污染和汽车产业转型升级的有效途径。新能源汽车的续航里程、寿命和安全性等是人们关注的重点,这主要取决于动力锂离子电池尤其是正极材料。目前国内外动力锂电正极材料技术路线主要有3个材料体系:磷酸铁锂体系、锰酸锂体系、三元体系(NCM,NCA)。其中磷酸铁锂作为正极材料的电池充放电循环寿命长,但其缺点是能量密度、高低温性能、充放电倍率特性均存在较大差距,且生产成本较高,磷酸铁锂电池技术和应用已经遇到发展的瓶颈;锰酸锂电池能量密度低、高温下的循环稳定性和存储性能较差,因而锰酸锂仅作为国际第一代动力锂电的正极材料;而多元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,逐步超越磷酸铁锂和锰酸锂成为主流的技术路线。国内外主要电池供应商所选用的材料类型如表1所示。 表1国内外主要电池供应商所选用材料类型 国内外主要电池供应商主要选用镍钴锰酸锂三元材料。镍钴锰三元材料主要有LiNi1/3Co1/3Mn1/3O2(简称NCM111),LiNi0.5Co0.2Mn0.3O2(简称NCM523),LiNi0.6Co0.2Mn0.2O2(简称NCM622),LiNi0.8Co0.1Mn0.1O2(简称NCM811)等。在三元材料系列,技术相对成熟的为NCM111,已经在电动工具、电动自行车、充电宝等产品中得到应用,材料的比容量达到158mAh/g,循环寿命500周。但由于该材料的Co含量占过渡金属(Ni-Co-Mn)总量的33%,Ni+Co总量占比达到67%,材料的成本相对较高,而且由于专利垄断进一步

各种锂离子电池正极材料分析

各种锂离子电池正极材料分析 锂离子电池现使用的正极材料有如下几种: 1、钴酸锂 钴酸锂也是目前应用最为广泛的正极材料,钴产生3.9V(vs. Li)的电势平台,对钴酸锂而言,对应于其理论容量,高达274mAh/g,实际容量可达155mAh/g,具有很高的能量密度。主要应用于便携电池领域:如手机,PDA;移动DVD;MP3/MP4、笔记本电脑。 1)结构缺陷对钴酸锂(LixCoO2,00.55 时,材料的容量发生严重的退化,其层状结构倾向于塌陷,使得实际可利用的容量不超过155mAh/g,为了能够更多的利用LiCoO2 中的锂离子,人们采用掺杂、包覆等办法对其改性。目前,有多种元素应用于LiCoO2 掺杂,但只有Mn 和Al 表现出较好的效果。在Li 过分脱出时(E>4.2V 时),LiCoO2 发生严重的过充现象,化学键发生断裂而释出O2,导致体系的不稳定,甚至有使电池爆炸的危险。 2)资源缺乏钴在我国属于稀缺资源,我国钴矿矿床规模较小,矿区储量大于2 万吨的只有甘肃金川和青海德尔尼两处,矿区储量大于1 万吨的有河北、四川、海南、新疆4 省。截至2006 年底,我国探明钴储量47.1 万吨。由于连年开采,我国钴储量逐年减少。我国钴产量应该在4900 吨左右。2002 年我国钴消费量为4845 吨,比2001 年增加了22%。从2002 年起,电池行业已超过硬质合金行业,成为我国钴消费的第一大行业。由于目前我国未发现大规模有开采价值的钴矿,我国锂电池正极材料用钴酸锂的生产基本上是从国外进口价格昂贵钴原料。 2、镍酸锂 Ni4+/Ni3+电对能产生3.75V 的电势平台。它能可逆的嵌脱0.7Li,具有接近200mAh/g 的循环容量,但在实际中,很难得到这个结果。首先在高温下,由于Li 的挥发,很难合成化学计量比LiNiO2,高温时六方相的LiNiO2 很容易向立方相的LiNiO2 转变,这种锂镍置换的立方相的没有电化学活性,而且这个反应的逆过程很慢并且不完全。此外在充放电过程中,LiNiO2 还会发生一系列的结构变化,而导致嵌锂容量的损失。实际上镍酸锂无太大实用价值。 3、镍钴二元材料和多元复合材料 LiCoO2 价格昂贵,LiNiO2 合成困难,如果能够结合二者的优点,用价格相对低廉的Ni 替代部分Co,合成具有LiCoO2 一样优良电化学性能地电极材料,那么将具有广阔的应用前景。由于半径相近,Ni 和Co 几乎可以以任何比例形成固溶体。近几年来,多元混合掺杂的层状氧化物得到了大量的研究,不同金属原子比例的镍钴锰多元材料得到了研究,但是颗粒形貌和粒度分布不得到有效的控制,只有在足够高的电势下(大于 4.5V)才能获得180mAh/g 的容量,此外没有从根本上改变钴系材料的特点。 4、尖晶石锰酸锂 尖晶石锰酸锂能够产生4.0 V 的电压平台,与钴酸锂相当,理论容量148mAh/g,实际容量120mAh/g 左右,比现在所用的钴酸锂稍低。早在上世纪80 年代Goodenough 就发现锂离子能够在尖晶石结构的锰酸锂中电化学可逆的嵌脱,从而得到了众多研究者的关注。与钴酸锂和镍酸锂相比,锰酸锂原料来源广泛,价格非常便宜(只有Co 的10%),而且没有毒性,对环境友好。曾一度被认为是替代LiCoO2 的首选锂离子电池正极材料。尖

锂离子电池正极材料镍钴锰酸锂的研究进展

锂离子电池正极材料镍钴锰酸锂的研究进展 杨杰10070134 摘要:对镍钴锰酸锂的制备方法(如高温固相合成法、溶胶一凝胶法、共沉淀法)进行了重点论述,并讨论了相应的电化学性能、结构特征和目前存在的问题。并对层状镍钴锰酸锂正极材料的发展进行了展望。关键词:锂离子电池;正极材料;理论容量;层状镍钴锰酸锂Progress in Research of Layered LiNi1/3 Co1/3 Mn1/3 O2 Cathode Material fjDr Lithium—ion Batteries Abstract:The preparation methods of layered LiNi1/3Co1/3Mn1/3 O2 calhode, such as high一tempemture solidrection method,sol-gel method,co—precipitation metllod and etc,was reviewed in this paper.The related electmchemical properties,stmcturecharacteristics and existing problems were discussed as well.The development of the layered“Ni1/3 Co1/3 Mn1/3 O2 cathode material was forecasted. Key words:lithium-ion battery;cathode material;theoretical capacity; layeredNi1/3 Co1/3 Mn1/3 O2 层状LiNi1/3Co1/3Mn1/3O2作为一种新型的锂离子电池正极材料,其理论容量高达278 mAh/g。LiNi1/3Co1/3Mn1/3O2具有a-NaFeO2型层状结构,Ni为+2价,co为+3价,Mn为+4价,少量的Ni3+和Mn3+。充电时,Mn4+不变价,Ni2+变为Ni4+,C03+变为c04+。LiNi1/3Co1/3Mn1/3O2集中了LiCoO2,LiNiO2,LiMnO2三种材料各自的优点,成本比LiNi0.8Co0.2O2稍低,电性能比LiNi1/2Mn1/2O2好。 由于存在三元协同效应,其综合性能优于任何一单组合化合物。本文着重对最近层状LiNi1/3Co1/3Mn1/3O2的制备方法以及电化学性能进行了综述。

相关主题