搜档网
当前位置:搜档网 › 热工过程控制系统

热工过程控制系统

热工过程控制系统
热工过程控制系统

热工过程控制系统 第一章 过程控制系统概述

1.1过程控制定义及认识 1.2过程控制目的 *1.3过程控制系统的组成 1.4过程控制系统的特点 *1.5过程控制系统的分类 *1.6过程控制性能指标 1.7 过程控制仪表的发展 1.8 过程控制的地位 1.9 过程控制的任务 1.1过程控制定义及认识 过程控制定义

所谓过程控制(Process Control )是指根据工业生产过程的特点,采用测量仪表、执行机构和计算机等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业生产过程自动化。

1.3 过程控制系统组成 被控过程(Process ),

指运行中的多种多样的工艺生产设备; 过程检测控制仪表(Instrumentation ), 包括:

测量变送元件(Measurement ); 控制器(Controller ); 执行机构(Control Element ); 显示记录仪表

1.5 过程控制系统的分类

按系统的结构特点来分::反馈控制系统,前馈控制系统,复合控制系统(前馈-反馈控制系统)

要求

观察

思考

调节变换显示记录调节给定值

执行

机构检测仪表

记录仪显示器调节器

控制器

测量变送

被控过程

执行器

r(t)e(t)

u(t)

q(t)

f(t)

y(t)

z(t)

-

按给定值信号的特点来分: 定值控制系统,随动控制系统,程序控制系统 性能指标:

对自动控制系统性能指标的要求主要是稳、快、准。

最大超调量σ%反映系统的相对稳定性,稳态误差ess 反映系统的准确性,调整时间ts 反映系统的快速性。 第三章 过程执行器 主要内容

执行器 电动执行器 气动执行器 调节阀及其流量特性 变频器原理及应用 本节内容在本课程中的地位 执行器用于控制流入 或流出被控过程的物 料或能量,从而实现 对过程参数的自动控 制。

3.1 调节阀(调节机构)结构

调节阀是一个局部阻力可以改变的节流元件。由于阀芯在阀体内移动,改变了阀芯与阀座之间的流通面积,即改变了阀的阻力系数,被调介质的流量也就相应地改变,从而达到调节工艺参数的目的。 3.1 调节阀

功能:接受控制器输出的控制信号,转换成直线位移或角位移,来改变调节阀的流通截面积。 3.1.1 调节阀的组成

执行机构:执行机构是指根据控制器控制信号产生推力或位移的装置;

控制器 测量变送

被控过

程 执行器 r ( t ) e ( t ) u ( t ) q ( t ) f ( t

) y ( t

) z ( t ) -

调节机构:调节机构是根据执行机构输出信号去改变能量或物料输送量的装置,通常指控制阀。

3.1.2 调节阀分类

根据使用能源不同

气动调节阀:以压缩空气为能源,输入信号20~100kPa,价格便宜;多用于石油、化工等易燃易爆场合。

电动调节阀:以电为能源,输入信号4~20mA DC,价格贵;使用范围广,本质安全(本安)型也可用于易燃易爆场合。

液动调节阀:以高压液体为能源的

阀体相同、执行机构不同

气动薄膜调节阀的气开、气关形式

所谓气开式,即当信号压力增加时,

阀门开大;没气时,阀门关闭

气关式则相反,即信号压力增加时,

阀门关小。没气时,阀门打开

气开、气关形式选择举例

受压容器,采用改变气体排出量以

维持容器内压力恒定,试问调节阀

应选择气开式还是气关式?

答:气关式。

3.3 气动执行机构

电-气转换器

输入信号从4mA改变到20mA时,转换器的输出压力从20-100kPa变化,实现了将电

流信号转换为气压信号的过程。 3.3 调节阀的流通能力

调节阀是一个局部阻力可变的截流元件,通过改变阀芯的行程可以改变调节阀的阻力系数,达到控制流量的目的。

流过调节阀的流量:阀的开度、阀门前后的压差。

为了衡量不同调节阀在某些特定条件下单位时间内流过流体的体积,引入流通能力的概念。

3.9调节阀的流量特性 理想流量特性

调节阀前后压差不变时,得到的流量特性; 理想流量特性完全取决于阀芯的形状; 理想流量特性有: 直线 等百分比 抛物线 快开

理想流量特性曲线

1. 快开

2. 直线

3. 抛物线

4. 等百分比 例题

3.3 已知某调节阀的最大流量 ,可调范围R=30。分别计

3.3100

80

60

40

20

20

40

60

80

100

(q v /q y m a x )%

1

2

3

4

(l/L)%

算直线流量特性和等百分比流量特性在理想情况下阀的相对行程l/L=0.1、0.2、0.8、0.9时的流量值qv ,并比较这两种不同理想流量特性的调节阀在小开度与大开度时的流量变化情况。

第四章 被控过程 重点: 1、自衡过程

2、传递函数中 的物理意义 4.1.1 过程控制动态特性分类

自衡过程(Self-Regulating Processes )

定义:当扰动发生后,被控变量不断变化最后达到新的平衡。 非自衡过程(Non-Self-Regulating Processes ) 定义:当扰动发生后,被控变量不会达到新的平衡。 4.3过程特性参数的物理意义 过程增益的注意事项

过程增益描述输出变量随输入变量变化的灵敏度。 过程增益包含三部分:信号,数值和单位.

过程增益只和稳态值有关,因此过程增益是描述过程稳态特性的参数.

2)数学模型的时间常数T 当对象受到阶跃输入 作用后,被控变量达 到新稳态值的63.2% 所需时间。

C ( t ) C ( ) t

63

. 2 % T

3)滞后时间

滞后时间

第五章常规控制策略

重点:

1、PID调节中各部分的作用及优缺点?

2、为何要整定PID参数,工程上有哪些常用方法?

控制器的控制规律定义

就是控制器的输出信号随输入信号(偏差)变化的规律。

这个规律常常称为控制器的特性。

过程控制最常用控制器:PLC(*)数字调节器IPC DCS 5.1 双位控制

双位控制品质指标

品质指标:振幅、周期

理想情况希望振幅减小,周期长

振幅周期是相互矛盾的

设计原则

满足振幅在允许的范围内后,尽可能使周期长

5.2 PID控制规律

PID控制规律的表示方法

基本PID控制规律

二、PID控制器的基本控制规律

1.比例控制规律(Proportional Control Mode)

2.比例积分控制规律(Proportional-Integral Control Mode)

3.比例微分控制规律(Proportional-Derivative Control Mode)

4.比例积分微分控制规律(Three- Mode)

3、比例控制规律的特点

(二)比例积分控制规律

积分作用的特点

能消除余差

积分控制器输出的控制信号和输入偏差之间没有一一对应关系。只要有偏差,输出的控制信号就会不断变化,执行器就不断动作,直到把偏差信号消除。

慢慢来

在偏差信号出现的瞬间,无控制作用,输出控制信号是由零开始积分,并随时间逐渐积累。控制作用总是落后于偏差信号的变化。具有较强的抗干扰能力。

2、比例积分控制规律

3、积分作用的参数

积分时间TI的定义:在阶跃信号输入下,积分作用的输出变化到等于比例作用的输出所经历的时间就是积分时间TI

积分作用的大小与积分时间TI成反比,即积分时间越小,积分作用越强。

(三)比例微分控制规律

微分作用的特点

2、数字式PID运算式

1)基本数字式PID运算式

3、控制器参数整定

3.1 整定方法

整定控制器参数的方法很多,归纳起来可分为两大类,即理论计算整定法和工程整定法:

理论计算整定法有对数频率特性法、根轨迹法等;

工程整定法有现场试凑法、临界比例度法和衰减曲线法等。

3.2工程整定法特点

工程整定不需要事先知道过程的数学模型,直接在过程控制系统中进行现场整定,特点:方法简单实用;计算简便;易于工程应用。

1、现场凑试法

按照先比例(P)、再积分(I)、最后微分(D)的顺序:

置控制器积分时间TI=∞,微分时间TD=0,在比例度δ按经验设置的初值条件下,将系统投入运行,整定比例度δ。求得满意的4:1过渡过程曲线。

引入积分作用(此时应将上述比例度δ加大1.2倍),将TI由大到小进行整定。

若需引入微分作用时,则将TD按经验值或按TD=(1/3~1/4)TI设置,并由小到大加入。

2、临界比例度法

在闭环控制系统里,将控制器置于纯比例作用下(TI=∞ ,TD=0),从大到小逐渐改变控制器的比例度,得到等幅振荡的过渡过程。

此时的比例度称为临界比例度δk,相邻两个波峰间的时间间隔,称为临界振荡周期Tk。据此确定控制器参数。

3、衰减曲线法

先把控制器参数置成纯比例作用

(TI=∞,TD=0),系统投入运行。

再把比例度δ逐渐

t y(t)

s

T

4

1

从大调小,直到

出现4:1衰减

过程曲线。

此时的比例度

为4:1衰减比例

度δc,两个相邻

波峰间的时间间隔,称为4:1衰退减振荡周期Ts。

4 采样周期的选择

采样周期的选择要受到多方面因素的影响,不同系统的采样周期应根据具体情况选择。通常按照过程特性与干扰大小适当选取采样周期:

对于响应快、(如流量、压力)波动大、易受干扰的过程,应选取较短的采样周期;

反之,当过程响应慢(如温度、成份)、滞后较大时,则可选取较长的采样周期。

7.1串级控制系统的定义

采用不止一个控制器,而且控制器间相串联,

一个控制器的输出作为另一个控制器的设定

值的系统,称为串级控制系统。

7.2 串级控制系统常用术语

7.7 串级控制系统方案设计

7.8 串级系统副调节器选型

副调节器常选择P或PI控制律

原因:副回路为随动系统,其设定值变化频繁,一般不宜加微分作用;另外,副回路的主要目的是快速克服内环中的各种扰动,为加大副回路的调节能力,理想上不用加积分作用。但实际运行中,串级系统有时会断开主回路,因而,通常需要加入积分作用。但积

分作用要求较弱以保证副回路较强的抗干扰能力。

主调节器常选择PI或PID控制律

原因:主回路的任务是满足主参数的定值控制要求。因而对于主参数为温度的串级系统,主调节器必须加入较强的积分作用(除主参数为液位的串级均匀控制系统以外)。当主对象的调节滞后较大,而主参数变化较平缓时,可加入通常大小的微分作用。

例1 加热炉出料温度控制系统

加热炉温度-温度串级控制系统

加热炉温度-温度串级控制系统

加热炉温度-温度串级控制系统调节过程

主对象:输入信号为炉膛温度,输出信号为原料出口温度,正作用单元

副对象:输入信号为燃料流量,输出信号为炉膛温度,是正作用单元

调节阀的选择:气开阀,正作用

副调节器:控制规律方块选正作用,调节器则是反作用

主调节器:控制规律方块选正作用,调节器则是反作用

如图所示的反应器温度控制系统,它通过调节进入反应器冷却水的流量来保持反应器温度的

稳定。

反应器温度控制系统

要求:

(1)画出该系统的方块图,并说明它是什么类型的系统;

(2)若反应器的温度不能过高,否则会发生事故,试确定调节阀的气开、气关型式(3)确定主调节器、副调节器的正反作用;

(4)若冷水压力突然升高,试简述该控制系统的调节过程(主副回路同时)。

第八章复杂过程控制系统

前馈控制系统时间滞后控制系统多变量解耦控制系统比值控制系统均匀控制系统超驰控制系统分程控制系统阀位控制系统

8.1 前馈控制系统

理解前馈控制原理及使用场合;

掌握静态前馈控制和常用动态前馈控制补偿模型;

掌握前馈-反馈复合控制系统的特点及工业应用。

8.1.2 前馈控制与反馈控制的比较

2)前馈测量干扰量;反馈测量被控变量

3)前馈需要专用调节器,反馈一般只用通用调节器

4)前馈只能克服所测量的干扰,反馈可克服所有干扰

5)前馈理论上可无差,反馈必定有差

前馈反馈控制系统的设计原则

实现前馈控制的必要条件是扰动量的“可测及不可控性”:

“可测”:指扰动量可以通过测量变送器,在线地将其转换为前馈补偿器所能接受的信号。“不可控”:指这些扰动量难以或不允许通过专门的控制回路予以控制,如生产中的负荷。采用前馈控制主要是针对那些“可测不可控”、变化频繁且幅值较大的扰动量;

工程中,一般选用静态前馈-反馈控制方案即可得到较为满意的控制效果。

8.2 时间滞后控制系统

时间滞后是指纯滞后过程。纯滞后往往是由于物料或能量需要经过一个传输过程而形成的。

纯滞后极大地影响系统动态性能,引起闭环控制系统稳定性明显降低,过渡过程时间加长。τ/T≥0.3时,就被认为是具有较大纯滞后的工艺过程,常用控制方法:

预估补偿方案;采样控制方案。

预估补偿方案

经补偿后,消除了纯滞后部分对控制系统的影响,因为式中的在闭环控制回路之外,不影响系统的稳定性。拉氏变换的位移定理说明,仅将控制作用在时间坐标上推移了一个时间,控制系统的过渡过程及其它性能指标都与对象特性完全一致

可见,Smith预估器可以完全消除时滞的影响,从而成为一种对线性、时不变、单输入单输出时滞系统的理想控制方案。

Smith预估器在实际应用中的限制

Smith预估器在实际应用中很不尽如人意,主要原因在于Smith预估器需要确知被控对象的精确数学模型,而且它只能用于线性定常系统。

也有一些改进型Smith预估器,但由于没有脱离对被控对象模型依赖的本质,在实际中极少使用。

2、采样控制方案

“调一下,等一等”(Wait and See)的办法;

当调节器输出达一定时间后,就不再使增加(或减小)了,而是保持此值(保持的时间比纯滞后时间τ0稍长些),直到控制作用的效果在被控量变化中反映出来为止;

接着,根据偏差的大小再决定下一步控制作用的大小和方向。

采样控制方案的特点

核心思想就是避免控制器不必要的误操作,而宁愿让控制作用弱一些。

无需掌握精确的过程动态特性,就能克服被控过程中纯滞后的不利影响。

需注意采样周期的选取应略大于过程的纯滞后时间。

8.4 比值控制系统

定义:两个或多个参数自动维持一定比值关系的过程控制系统。

例如:

燃烧过程中,为保证燃烧经济性,需保持燃料量和空气量按一定比例混合后送入炉膛; 造纸过程中,为保证纸浆浓度,必须控制纸浆量和水量按一定的比例混合。 主动量和从动量

比值控制系统中,起主导作用的物料流量一般为主动量q1。如燃烧过程中的燃料量、造纸中的纸浆量;

随主动量变化的物料流量称为从动量q2。如燃烧过程中的空气量、造纸中的水量。 q2与q1保持一定的比值 ,即: 比值控制方案

根据工业生产过程的不同需求,有3种常用的比值控制方案: 单闭环比值控制; 双闭环比值控制; 变比值控制。

单闭环或双闭环比值控制中,比值系数固定不变;而变比值控制中,比值系数可变。 8.5 均匀控制系统

均匀控制可使被控量y(t)与控制量q(t)在一定范围内均匀缓慢地变化。

在定值控制系统中,为了保持被控量为定值,控制量可作较大幅度变化。而在均匀控制中,控制量和被控量同样重要,控制的目的要使它们都缓慢而均匀地变化。 8.6 超弛控制

将生产过程中的限制条件所构成的逻辑关系叠加到正常控制系统上去的一种组合控制方法。

即在一个过程控制系统中,设有两个控制器,通过选择判断,选出能适应生产安全状况的自动控制。一般从生产安全角度提出来,如要求温度、压力、物位不能越限等。

1212

k q q q q k ==或

超弛控制又被称为选择性控制、取代控制或软保护控制。

氨冷器超弛控制

在正常情况下根据物料出口温度控制液氨的进入量,但氨冷器中液位不允许过高,否则会使气氨中带液,以致损坏后续设备(压缩机),故在液位高于某个数值后,将用液位控制器取代温度控制器,对液氨进入量进行控制。

超弛控制应用发展

随着计算机控制技术的发展,采用软件方法取代以前的硬件选择器实现超弛控制已变得十分方便。

在基于计算机的过程控制系统中,许多控制回路都有超弛控制以避免故障或危险的发生或扩大,保证生产的正常进行。

8.7 分程控制

一个控制器的输出信号分段分别去控制两个或两个以上调节阀动作的系统。

控制器的输出被分割成若干个信号范围段,而由每一段信号去控制一只调节阀。

分程控制是通过阀门定位器来实现的。它将调节器的输出压力信号分成几段,不同区段的信号由相应的阀门定位器转化为20~100kPa信号压力,使调节阀全行程动作。

分程控制方框图

《工程热力学A》(含实验)课程教学大纲.

《工程热力学A》(含实验)课程教学大纲 课程编码:08242025 课程名称:工程热力学A 英文名称:Engineering Thermodynamics A 开课学期:4 学时/学分:54 / 4 (其中实验学时:6 ) 课程类型:学科基础课 开课专业:热能与动力工程(汽车发动机方向)、热能与动力工程(热能方向) 选用教材:陈贵堂《工程热力学》北京理工大学出版社,1998; 陈贵堂王永珍《工程热力学》(第二版)北京理工大学出版社,2008 主要参考书: 1.陈贵堂王永珍《工程热力学学习指导》北京理工大学出版社,2008 2.华自强张忠进《工程热力学》.高等教育出版社.2000 3.沈维道,蒋智敏,童钧耕.工程热力学.第三版.北京:高等教育出版社,2001 4.曾丹苓,敖越,张新铭,刘朝编.工程热力学.第三版.北京:高等教育出版社,2002 5.严家马录.工程热力学.第三版.北京:高等教育出版社,2001 执笔人:王永珍 一、课程性质、目的与任务 该课程是热能与动力工程专业、建筑环境与设备工程专业基础课,是本专业学生未来学习、生活与工作的基石。通过它的认真学习可以可使学生了解并掌握一种新的理论方法体系,了解并掌握关于能量转换规律及能量有效利用的基本理论、树立合理用能思想,并能应用这些理论对热力过程及热力循环进行正确的分析、计算,为学生学习专业课程提供充分的理论准备,同时培养学生对工程中有关热工问题的判断、估算和综合分析的能力,为将来解决生产实际问题和参加科学研究打下必要的理论基础。 二、教学基本要求 通过本课程的学习可使学生了解并掌握关于能量转换规律及能量有效利用的基本理论、树立合理用能思想,并能应用这些理论对热力过程及热力循环进行正确的分析、计算。同时学生还可了解并掌握一种新的理论方法体系——外界分析法(The Surrounding Analysis Method, SAM),有利与开阔学生分析问题、解决问题的思路,有利于培养学生对工程中有关热工问题的判断、估算和综合分析的能力与素质,为将来解决生产实际问题和参加科学研究打下必要的理论基础。 三、各章节内容及学时分配 绪论introduction(1学时) 主要内容是让学生了解工程热力学的研究对象及研究方法、经典热力学理论体系的逻辑结构、SAM体系的逻辑结构及其主要特点。 一、热力学的定义、研究目的及分类Definition, Purpose, Classification 二、本门课的主要内容Contents 三、本门课的理论体系theory systems 第一章基本概念及定义Basic Concepts and Definitions(3学时,重点) 1-1 热力学模型The Thermodynamic Model of the SAM System 让学生了解并掌握热力学系统、边界、外界等概念,了解并重点掌握外界分析法的基本热力学

一电厂热工控制DCS系统设计

| 67 PLC and DCS 一电厂热工控制DCS系统设计 刘景芝,孙 伟 (中国矿业大学信息与电气工程学院,江苏 徐州 221008) 摘 要:以西山孝义金岩公司自备电厂为背景,主要结合循环流化床锅炉机组的运行特点和控制特性,对其热工系统运用集散控制方式进行控制,并采用浙大中控的WebFiled JX-300X系统对单元机组的热工控制系统做了初步的整体设计。 关键词:热工控制系统;集散控制系统(DCS);循环流化床锅炉 中图分类号:TP393.03 文献标识码:B 文章编号:1003-7241(2007)12-0067-03 A DCS system for thermal control of a power station LIU Jing-zhi, SUN Wei (The School of Information and Electrical Engineering ,China University of Mining and Technology , Xuzhou 221008 China) Abstract: This paper introduces a distributed control system for the power station of the Xishan Jinyan company. According to the operation and control requirements of the circulating fluidized bed boiler, the distributed control for the thermal system of a power unit is designed with the SUPCON WebFiled JX-300X. Keywords: thermal control system; distributed control system(DCS); circulating fluidized bed boiler 1 引言 火力发电是现代电力生产中的一种主要形式,火力发电厂 运行系统多而且复杂,各系统之间要协调运行又要对负荷变化 具有很强的适应能力,因此有效的控制火力发电厂运行极其重 要。目前火电机组都普遍采用DCS[3],因为DCS系统给电厂在 安全生产与经济效益方面带来巨大作用,使以往任何控制系统 无法与其相提并论。随着各项技术的发展和用户对生产过程控 制要求的提高,一种全数字化的控制系统——现场总线控制系 统(FCS)问世了,并得到了快速发展。虽然现场总线控技术 代表了未来自动化发展的方向并将逐步走向实用化,但由于火 电厂的具体环境和控制特点,经过论证与分析,近期内热控系统 只能以DCS为主[1][2]。 西山孝义金岩公司自备电厂包括2台75t/h循环流化床锅 炉、2台15MW抽汽式汽轮发电机组。本文主要针对循环流化床 锅炉,将其改造为单元机组运行。根据循环流化床锅炉和火电机 组的运行特点,分析其热控系统的功能要求,采用集散控制系统 (DCS)实现热工自动化,并以浙大中控的WebFiled JX-300X为 例,进行具体系统的初步设计。 收稿日期:2007-07-03 JX-300X集散控制系统全面应用最新的信号处理技术、高 速网络通信技术、可靠的软件平台和软件设计技术和现场总线技 术,采用高性能的微处理器和成熟的先进控制算法,兼具高速可靠 的数据输入输出、运算、过程控制功能和PLC联锁逻辑控制功 能,能适应更广泛更复杂的应用要求,是一套全数字化的、结构灵 活、功能完善的新型开放式集散控制系统。 JX-300X体系结构如下图: 2 系统介绍及方案描述 2.1 系统总体方案描述 根据单元机组运行特点及要求,其控制系统一般配有以下系统: (1) 数据采集系统(DAS); 图1 JX-300X体系结构图

火电厂热工自动化概述

第一章火电厂热工自动化概述 第一节引言 随着我国国民经济的高速发展,工、农业生产和人民生活对电力的需求不断增长,电力工业通过引进、消化、吸收国外的先进技术和管理经验,使电力工业得到了迅速的发展。随着单机发电容量的增大和电网容量的迅速扩大,我国已进入了大电网、大机组、高参数、高度自动化的时代。由于300MW、600MW以及以上大容量、高参数机组的新技术发展迅速,装机数量日益增多,机组对热工自动化水平的要求越来越高。另外由于微电子技术的迅猛发展,大型自动化装备的现代化程度快速提高,促使大型火力发电厂现代热工自动化技术发展迅猛。其特点是上世纪70年代中期,以计算机技术(Computer)、通讯技术(Communication)、控制技术(Control)和显示技术(CRT)为基础的计算机分散控制系统(简称DCS-Distributed Control System)的问世和其技术的日臻完善。分散控制系统广泛应用于大型发电机组的自动控制中,并将热工自动化水平推上了一个崭新的台阶,取得了十分显著的经济效益和社会效益。 与中、小容量火力发电机组相比,600MW及以上大容量机组的特点之一是监视点多、参数变化速度快和被控对象数量大,而且各个控制对象相互关联,操作稍有失误就会引起严重的后果。因此,大型发电机组必须采用完善的自动化系统。如果将大型发电机组的监视和操作任务仅交给运行人员去完成,不仅体力和脑力劳动强度大,而且很难做到及时调整和避免人为的误操作。大量事实证明,自动化技术的运用对于提高大型发电机组的安全经济运行水平是行之有效的。在机组正常运行过程中,自动化系统能根据机组运行要求,自动维持运行参数在规定值的范围内,以取得较高的热效率和较低的消耗(煤耗和厂用电率等)。当机组运行出现异常时,自动化系统能迅速按照预定的规律进行处理,以保证机组尽快恢复正常运行。如辅机故障减负荷(简称RB- RunBack)、迫升/迫降(RUNUP/RUNDOWN)、机组快速甩负荷(简称FCB-Fast Cut Back)等功能。当运行工况异常发展到可能危及到设备及人身安全时,能自动采取保护措施,以防止事故的进一步扩大和保护生产设备不受破坏。如锅炉主燃料跳闸(MFT),汽机超速保护(OPC)等功能。在机组启停过程中,自动化系统能根据机组启停时的状态和条件进行相应的控制,以避免机组产生不允许的热应力而影响机组的运行寿命,如汽机顺序控制系统。通常,自动化系统按照预先制定的规律进行工作,不需要人工干预。但在特殊情况下却要求人工给以提示或协调,即需要人的更高层次的干预。所以,随着自动化水平的提高,也要求运行人员具有更高的文化和技术素质。 建国以来,随着机组容量的增大,参数的提高,对于机组安全经济运行的要求越来越高。火电厂的自动化系统迅速发展,其功能已从单台辅机和局部热力系统发展到整个单元机组的监测与控制,并且随着整个单元机组自动化的不断完善,以及电网发展的要求,火电厂热工自动化的功能正和电网调度自动化相协调,以实现电网的自动化。尤其是目前随同整套大型火电机组同时引进的和国产的DCS系统的普遍使用,以及单元机组协调控制系统(CCS)和

热工控制系统

1、被调量(被控制量):表征生产过程是否正常运行并需要加以调节的物理量。 2、给定值:按生产要求被调量必须维持的希望值,简称给定值。 3、控制对象(被控对象):被调节的生产过程或设备称为控制对象。 4、调节机构:可用来改变进入控制对象的物质或能量的装置称为调节机构。 5、控制量(调节量):由调节机构(阀门、挡板等)改变的流量(或能量),用以控制被调量的变化,称为控制量。 6、扰动:引起被调量偏离其给定值的各种原因称为扰动。如果扰动不包括在控制回路内部(例如外界负荷),就称为外扰。如果扰动发生在控制回路内部,称为内扰。其中,由于调节机构开度变化造成的扰动,称为基本扰动。变更控制器给定值的扰动称为给定值扰动,有时也称控制作用扰动。 7、控制过程:(调节过程):原来处于平衡状态的控制对象,一旦受到扰动作用,被调量就会偏离给定值。要通过自动控仪表或运行人员的调节作用使被调量重新恢复到新的平衡状态的过程,称为调节过程。 8、自动控制系统:自动控制仪表和控制对象通过信号的传递互相联系起来就构成一个自动控制系统。 9、自动控制系统分类:一 按系统结构特点分类:①反馈控制系统、②前馈控制系统、③前馈—反馈控制系统 二 按给定值特点分类:①定制控制系统(给定值保持不变,或给定值在某一很小范围内变化)例如:锅炉汽包水位控制系统、炉膛负压控制系统 ②随动控制系统(给定值是按预先不能确定的一些随机因素而变化(变化规律事先未知)的,因而要求其被调量以一定精度跟随给定值变化。)例如:锅炉燃烧控制系统。 ③程序控制系统(给定值是预定的时间函数)。 10、热工控制系统类型:有自平衡能力和无自平衡能力。 11、单回路控制系统由测量变送器、调节器、执行器及控制对象组成。 12、热工对象的动态特性一般具有以下特点:(1)对象的动态特性是不震荡的 (2)对象的动态特性在干扰发生的开始阶段有迟延和惯性 (3)在阶跃响应曲线的最后阶段,被调量可能达到新的平衡(有自平衡能力);也可能不断变化而不在平衡下来(无自平衡能力) (4)描述对象动态的特性参数有放大系数K ,时间常数T (无自平衡能力用飞升时间Ta ),迟延时间(包括迟延和容积迟延)或另一组参数飞升速度ε,自平衡率ρ和迟延时间η 13、PID 调节器传递函数表达式:)11(1 )() (PID s T s T S E s W d i ++==δμ 14、比例作用(P 作用):比例作用能单独的执行调节任务,并能使控制过程趋于稳定,但使被调量产生静态偏差。 15、积分作用(I 作用):积分作用只有极少的情况(对象自平衡能力大,惯性和迟延很小等)才能单独使用,会使控制过程变成震荡甚至不稳定,但能使被调量无静态偏差。 16、微分作用(D 作用):微分作用不能单独使用,但能提高控制系统的稳定性,有效的减少被调量的动态偏差。 17、调节阀的理想流量特性:(理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性)①等百分比特性、②线性特性、③抛物线特性 18、调节阀的工作流量特性:(在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系,称为工作流量特性) 19、调节阀工作流量特性满足什么调节才能工作: 20、电动调节阀大致工作原理:通过接收工业自动化控制系统的信号(如:4~20mA )来驱动阀门改变阀芯和阀座之间的截面积大小控制管道介质的流量、温度、压力等工艺参数,实现自动化调节功能。 21、气动调节阀大致工作原理:气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的:流量、压力、温度等各种工艺参数。 22、控制系统性能指标:①静态偏差e(∞) ②最大动态偏差y m 或超调量ζ ③衰减率ψ和衰减比η ④控制过程时间t s 23、控制系统整定:控制系统的结构已经确定、控制仪表与控制对象都处于正常的情况下,适当选择调节器的参数(δ、Ti 、Td)使控制仪表的特性和控制对象的特性配合,从而使控制系统的运行达到最佳状态,取得最好的控制效果。 24、工程整定法:①响应曲线法:

《工程热力学及内燃机原理》教学大纲

《工程热力学及内燃机原理》教学大纲 开课单位:汽车工程系 课程代号: 学分:4 总学时:64 H 课程类别:限选考核方式:考试 基本面向:车辆工程专业 一、本课程的目的、性质及任务 本课程为车辆工程专业的一门专业课。通过本课程的学习,学生掌握热力学的基本概念和内燃机基本原理,能对内燃机的性能进行全面的、系统的分析,具备一定的热力学过程和内燃机主要参数的计算能力,并为以后学习机械方面的专业课程打好基础。 二、本课程的基本要求 掌握热力学的基本概念和内燃机基本原理,掌握热力学第一定律和热力学第二定律;了解各种常用工质的热力性质;能根据热力学基本定律,结合工质的热力性质,分析计算实现热能和机械能相互转换的各种热力过程和热力循环;了解提高热效率的正确途径和措施。了解内燃机排污、噪声、振动的知识,掌握内燃机台架试验的基本知识和基本技能。 三、本课程与其他课程的关系 学习本课程前,应先修“高等数学”、“大学物理学”、“机械原理”、“汽车构造”等课程。只有在学好上述课程的基础上才能更好的学习本课程。 四、本课程的教学内容 第一部分工程热力学部分 绪论

(一)热能及其利用 (二)热力学发展简史 (三)工程热力学的主要内容及研究方法 第一章基本概念(一)热能在热机中转变成机械能的过程(二)热力系统 (三)工质的热力学状态及其基本状态参数(四)平衡状态,状态方程式,坐标图(五)工质的状态变化过程 (六)过程功和热量 (七)热力循环 第二章热力学第一定律(一)热力学第一定律的实质 (二)热力学能和总能 (三)能量的传递和转化 (四)焓 (五)热力学第一定律的基本能量方程式(六)开口系统能量方程式 (七)能量方程式的应用 第三章理想气体的性质(一)理想气体的概念 (二)理想气体状态方程式 (三)理想气体比热容 (四)理想气体的热力学能、焓和熵

热工控制系统课程设计样本

热工控制系统课程设计 题目燃烧控制系统 专业班级: 能动1307 姓名: 毕腾 学号: 02400402 指导教师: 李建强 时间: .12.30— .01.12

目录 第一部分多容对象动态特性的求取 (1) 1.1、导前区 (1) 1.2、惰性区 (2) 第二部分单回路系统参数整定 (3) 2.1、广义频率特性法参数整定 (3) 2.2、广义频率特性法参数整定 (5) 2.3分析不同主调节器参数对调节过程的影响 (6) 第三部分串级控制系统参数整定....................... (10) 3.1 、蒸汽压力控制和燃料空气比值控制系统 (10) 3.2 、炉膛负压控制系统 (10) 3.3、系统分析 (12) 3.4有扰动仿真 (21) 第四部分四川万盛电厂燃烧控制系统SAMA图分析 (24) 4.1、送风控制系统SAMA图简化 (24) 4.2、燃料控制系统SAMA图简化 (25) 4.3、引风控制系统SAMA图简化 (27) 第五部分设计总结 (28)

第一部分 多容对象动态特性的求取 某主汽温对象不同负荷下导前区和惰性区对象动态如下: 导前区: 136324815.02++-S S 惰性区: 1 110507812459017193431265436538806720276 .123456++++++S S S S S S 对于上述特定负荷下主汽温导前区和惰性区对象传递函数, 能够用两点法求上述主汽温对象的传递函数, 传递函数形式为 w(s)= n TS K )1(+,再利用 Matlab 求取阶跃响应曲线, 然后利用两点法确 定对象传递函数。 1.1 导前区 利用MATLAB 搭建对象传递函数模型如图所示:

热工过程控制仪表课程实习与设计

《热工过程控制仪表课程设计》实践环节教学大纲 适用专业: 自动化(热工过程自动化方向) 先修课程:电路理论,模拟电子技术,热工测量与仪表,自动控制理论 一、目的 热工过程控制仪表课程实习与设计是学习热工过程控制仪表课程后的一个重要的综合实践环节。 1.通过课程设计实践,树立正确的设计思想,培养综合运用热工过程控制仪表课程和其他先修课程的理论与生产实际知识来分析和解决仪表控制系统设计问题的能力。 2.学习仪表控制系统设计的一般方法,掌握仪表控制系统的一般规律。 3.进行仪表控制系统设计基本技能的训练:例如计算、绘图、查阅资料和手册、运用标准和规范,进行计算机辅助设计和绘图的训练。 二、基本要求 1.能从仪表控制系统功能要求出发,制订或分析设计方案,合理地选择传感器,变送器、调节器和执行机构。 2.能按工艺的控制要求,选择相关模块,设计的调节器的组态图,填写相关控制数据表。 3.能考虑仪表安装与调整、使用与维护、经济和安全等问题,对仪表控制系统的安装技术要求进行设计。 4.图面符合国家有关标准,尺寸及公差标注正确,技术要求完整合理。三、实践内容与时间分配 见表1。 表1

四、实践条件与地点建议 1. 实践基本条件要求 提供学生进行课程设计的专用教室,并能提供学生一定的实验设备、实验条件,条件允许的话提供学生到生产实践场所短期参观学习的机会。 2. 实践地点建议 校内专用教室、实验室及火力发电厂。 五、能力培养与素质提升 1. 能力培养 通过课程设计实践,能够树立正确的设计思想,培养综合运用热工过程控制仪表课程和其他先修课程的理论与生产实际知识来分析和解决仪表控制系统设计问题的能力。在实践环节中进行仪表控制系统设计基本技能的训练。 2. 素质提升 通过实践,深入掌握理论教学内容,并将其运用到实践环节,具备一名专业工程师的基本素质。 六、考核方式与评分标准 1.考核方式:考查 2.成绩评定:按平时表现,设计说明书及答辩三部分综合考核,按优,良,中,及格,不及格计分。其中:平时表现(30%),设计说明书(40%)答辩(30%)。

《热工基础实验》课程实验教学大纲

《热工基础实验》课程实验教学大纲 课程名称:热工基础实验 英文名称::Fundamental experiments of thermodynamics and heat transfer 是否独立设课:是实验类别:专业基础 实验课程性质:必修实验项目数:8个 必做实验项目数:8个选做实验项目数:0 开放实验项目数:8个综合性、设计性实验数:7个 一、学时、学分 课程总学时:16实验学时:2/个 课程总学分: 1 实验学分:1 二、实验教学目的与基本要求 在本科生实验教学工作中,不断更新实验教学观念,改革实验教学内容和方法,探索一种可发掘学生个性和特长的多层次实验教学方法。 学生应集中时间,独立、系统、详细、全面的研究和实践,在知识、能力、素质等方面协调发展。 三、主要仪器设备

四、实验课程内容与学时分配 注:适用专业、年级:1、能动大三本科生土木学院大二本科生2、 3、4、

五、考核方式 1、实验报告:本门课程对实验报告的要求(应包括对报告内容、格式的要求)。 1)学习目的;2)实验原理;3)实验数据采集;4)实验数据处理;5)结论分析6)统一的作业册 2、考核方式: (1)实验课的考核方式; 1)预习回答问题和实验操作; 2)实验报告 (2)实验课考核成绩确定,实验课成绩占课程总成绩的比例等。 预习回答问题和实验操作占40% 实验报告占60% 六、使用教材、主要参考书 1、使用教材:热工基础实验讲义 (1)编者.书名.出版地:出版社, 出版年 李河.《热工基础实验讲义》.大连理工大学.大工印刷厂.2008 2、主要参考书: 编者.书名.出版地:出版社, 出版年 (1)施明恒.《热工实验的原理和技术》. 东南大学出版社 (2)《量热技术和热物性测定》. 中国科学技术大学出版社 实验教学大纲制订者:李河 审定者: 能源与动力工程学院学院(系、部)实验中心(实验室)

热工控制系统课程设计56223

热工控制系统课程设计 ----某直流锅炉给水控制系统设计 二○一○年十二月 目录 第一部分多容对象动态特性的求取 (2) 第二部分单回路系统参数整定 (4) 一、广义频率特性法参数整定 (5) 二、临界比例带法确定调节器参数 (6) 三、比例、积分、微分调节器的作用 (9) 第三部分串级控制系统参数整定 (10) 一、主蒸汽温度串级控制系统参数整定 (10) 二、给水串级控制系统参数整定 (13) 三、燃烧控制系统参数整定 (15)

第四部分 某电厂热工系统图分析 ........................................................ 16 参考文献: (19) 第一部分 多容对象动态特性的求取 选取某主汽温对象特定负荷下导前区和惰性区对象动态特性如下: 导前区: 1 40400657 .12++-s s 惰性区: 1 1891542269658718877531306948665277276960851073457948202 .1234567+++++++s s s s s s s 对于上述特定负荷下主汽温导前区和惰性区对象传递函数,可以用两点法求上述主汽温对象的传递

函数,传递函数形式为n Ts K s W )1()(+=,利用Matlab 求取阶跃响应曲线,然后利用两点法确定对象 传递函数。 导前区阶跃响应曲线: 图1-1 由曲线和两点法可得: 657.1=K 637.28,663.0657.14.0)(4.01==?=∞t y 165.61,326.1657.18.0)(8.02==?=∞t y 2092.25.0075.12 121≈=??? ? ??+-=t t t n ,8.2016.22 1≈+≈n t t T 即可根据阶跃响应曲线利用两点法确定其传递函数:2 ) 18.20(657 .1)(+-= s s W 惰性区阶跃响应曲线:

1-1 热工控制仪表的作用是什么

1-1 热工控制仪表的作用是什么? 热工控制仪表的作用为:变送器对被控参数进行测量和信号转换;控制器将给定值与被控参数进行比较和运算;执行器将控制器的运算输出转换为开关阀门或挡板的位移或转角,从而调节工质流量,最终使生产过程自动地按照预定的规律运行。 1-3 热工控制仪表有哪些主要分类方法? 按能源形式、结构形式和信号是否连续分类。 1-4按系统的结构形式来分,它可分为哪几类仪表? 可以分为基地式、单元组合式、组件组装式、单回路调节器、分散控制系统、现场总线控制系统等六类。 1-5按系统能源形式来分,它可分为哪几类仪表? 可分为自力控制仪表、液动控制仪表、气动控制仪表、电动控制仪表、混合式控制仪表等五类。 1-6按系统的信号随时间的变化是否连续来分,它可分为哪几类仪表? 可分为模拟控制仪表、数字控制仪表两大类。 1-7数字控制仪表指哪些? 单回路控制器;DDZ-S型电动单元组合式仪表;DCS、PLC;FCS。 1-9 DDZ-I、DDZ-Ⅱ、DDZ-Ⅲ、DDZ-S的主要区别是什么? DDZ-I(电子管)、DDZ-Ⅱ(晶体管)、DDZ-Ⅲ(集成块)、DDZ-S(微处理器) 1-11自动化仪表的发展方向是什么? 现场总线控制系统(FCS)。 3-9终端器的作用是什么? 一是防止信号反射,二是将电流转换为电压。 4-1何谓干扰? 所谓干扰,就是出现在仪表传输线上各种影响仪表正常工作的非信号电量。 4-3最为普遍和最为严重的干扰是什么? 电和磁的干扰对于控制仪表来说,是最为普遍和最为严重的干扰。 4-5形成干扰的三个因素是什么? 形成干扰的三个因素是:干扰源;干扰途径;干扰对象。 5-1 SAMA组合符号如图5-6所示,试说明组合符号的名称,并解释各组成符号的含义。

-15自动化专业(火电厂热工自动化方向)

自动化专业(火电厂热工自动化方向)培养方案 一、培养目标 本专业培养德、智、体、美全面发展,较系统地掌握过程控制、计算机控制、检测与自动化仪表等技术方面的基础理论和专业知识,具有较强的专业技能和实际操作能力,具有创新精神、合作精神和工程意识,能在火电厂和电建安装公司从事热工过程控制、计算机控制、检测与自动化仪表方面的安装、调试、检修和维护的应用型高素质工程技术人才。 二、培养要求 1.政治素质与思想品德要求: 毕业生应具有热爱社会主义祖国,具有为国家富强,民族昌盛而奋斗的志向和责任感,能树立科学的世界观和人生观,具有敬业爱岗、团结协作和品质及良好的思想品德,遵纪守法,严谨务实,具有较好的文化修养和心理素质。 2.基本素质要求: 具有较扎实的自然科学基础,较好的人文科学、社会科学、经济管理科学知识,具有较强的外语综合应用能力。 3.专业素质要求: 系统地掌握电工技术、电子技术、控制技术、计算机技术方面较为宽阔的基础理论知识及其综合应用能力;具有较强的工程实践能力和良好的工程意识,具有熟练的计算机软、硬件综合应用能力。 具有必需的制图、试验技术、信息处理、文献检索和电子仪表工艺操作等基本技能。 4.自学能力与创新意识要求: 具有较强的信息获取能力,能对自动控制新理论、新技术、新设备及其应用保持跟踪,能综合运用多种方法来分析问题、解决问题,具有较强的自主研究能力。 5.身体、心理素质要求:

掌握科学锻炼身体的方法和基本技能,达到国家规定的大学生体育合格标准。 三、主要课程 1.核心课程 公共基础课: I、高等数学(一) II、大学外语(一) 学科基础课: III、电厂热力设备及运行 IV、微机原理及应用 V、自动控制理论 VI、PLC原理及应用 专业课: VII、检测技术及仪表 VIII、过程控制仪表 IX、热工过程控制系统 X、计算机控制系统 2.主要实践环节 I、PLC原理及应用课程设计 II、计算机控制系统课程设计 III、PLC创新实践训练 IV、DCS创新实践训练 V、毕业设计 四、学制与学位

热工基础教学大纲

课程编号:241123 总学分:2 热工基础 (Basis of Heat Energy Engineering) 课程性质:专业基础课/选修 适用专业:车辆工程 学时分配:课程总学时:32 学时,其中:理论课学时:32 学时 先行、后续课程情况:先行课:高等数学、大学物理;后续课:发动机原理。 教材:傅秦生,何雅玲,赵小明. 热工基础与应用,机械工业出版社,2003. 参考书目:1. 童钧耕主编. 工程热力学(4版),北京:高等教育出版社,2007. 2. 姚仲鹏、王瑞君编. 传热学(2版),北京:北京理工大学出版社,200 3. 一、课程的目的与任务 学习本课程可使学生认识到在能源危机日趋严重的情况下节能工作的重要性,了解并掌握有关能量转换和热量传递规律方面的知识,探索提高各种热工设备热效率的技术措施,使学生能在各自以后的工作岗位上有效地开展节能技术改造工作,这是培养复合型工程技术人才科学素质的一个不可缺少的环节。 二、课程的基本要求 通过本课程的学习,要求学生: (1)熟练掌握热能转换和热量传递的基本概念和基本定律,并能应用于实际的分析计算; (2)掌握热能传递与转换的一般规律以及热能在工程上有效合理利用的基本知识; (3)掌握各种工作介质的热力性质,了解各种热工设备的工作原理、工作过程。 三、课程教学内容 第一章:绪论 1.该章的基本要求与基本知识点: 能源及其利用,热能及其利用,热工学的研究对象及主要内容,学习本课程的意义;工程热力学的发展,工程热力学的研究方法;传热学的发展及研究方法,热量传递的三种基本方式,传热过程,热阻。 2.要求学生掌握的基本概念、理论、原理 无 3.教学重点与难点 无 第二章:热能转换的基本概念 1.该章的基本要求与基本知识点: 热力系统,热力状态及状态参数,基本状态参数,热力平衡状态及状态参数坐标图,热力过程,功,热量与熵,热力循环。 2.要求学生掌握的基本概念、理论、原理 功,热量与熵,热力循环 3.教学重点与难点 准静态过程的特点和实际意义,可逆过程的特点和实现条件,熵的引出和定义。 第三章:热力学第一定律 1.该章的基本要求与基本知识点: 热力学第一定律,闭口系统能量方程,稳定流动系统的能量方程,稳定流动系统能量方

热工过程控制系统

热工过程控制系统 第一章 过程控制系统概述 1.1过程控制定义及认识 1.2过程控制目的 *1.3过程控制系统的组成 1.4过程控制系统的特点 *1.5过程控制系统的分类 *1.6过程控制性能指标 1.7 过程控制仪表的发展 1.8 过程控制的地位 1.9 过程控制的任务 1.1过程控制定义及认识 过程控制定义 所谓过程控制(Process Control )是指根据工业生产过程的特点,采用测量仪表、执行机构和计算机等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业生产过程自动化。 1.3 过程控制系统组成 被控过程(Process ), 指运行中的多种多样的工艺生产设备; 过程检测控制仪表(Instrumentation ), 包括: 测量变送元件(Measurement ); 控制器(Controller ); 执行机构(Control Element ); 显示记录仪表 1.5 过程控制系统的分类 按系统的结构特点来分::反馈控制系统,前馈控制系统,复合控制系统(前馈-反馈控制系统) 按给定值信号的特点来分: 定值控制系统,随动控制系统,程序控制系统 性能指标: 对自动控制系统性能指标的要求主要是稳、快、准。 最大超调量σ%反映系统的相对稳定性,稳态误差ess 反映系统的准确性,调整时间ts 反映系统的快速性。 第三章 过程执行器 主要内容 执行器 电动执行器 气动执行器 调节阀及其流量特性 变频器原理及应用 本节内容在本课程中的地位 执行器用于控制流入 或流出被控过程的物 料或能量,从而实现 对过程参数的自动控 制。 3.1 调节阀(调节机构)结构 调节阀是一个局部阻力可以改变的节流元件。由于阀芯在阀体内移动,改变了阀芯与阀座之 间的流通面积,即改变了阀的阻力系数,被调介质的流量也就相应地改变,从而达到调节工艺参数的目的。 3.1 调节阀 功能:接受控制器输出的控制信号,转换成直线位移或角位移,来改变调节阀的流通截面积。 3.1.1 调节阀的组成 要求观察 思考调节变换 显示记录调节给定值执行机构检测 仪表记录仪显示器调节器控制器测量变送被控过程 执行器r(t)e(t)u(t)q(t)f(t)y(t)z(t)-控制器 测量变送 被控过程 执行器 r ( t ) e ( t ) u ( t ) q ( t ) f ( t ) y ( t ) z ( t ) -

2016热工过程控制实验报告——姜栽沙

热工过程控制工程 实验报告 专业班级:新能源1402班 学生姓名:姜栽沙 学号:1004140220 中南大学能源学院 2017年1月

实验一热工过程控制系统认识与MCGS应用 组号______ 同组成员李博、许克伟、成绩__________ 实验时间__________ 指导教师(签名)___________ 一、实验目的 通过实验了解几种控制系统(基于智能仪表、基于计算机)的组成、工作原理、控制过程特点;了解计算机与智能仪表的通讯方式。了解组态软件的功能和特点,熟悉MCGS组态软件实现自动控制系统的整个过程。掌握MCGS组态软件提供的一些基本功能,如基本画面图素的绘制、动画连接的使用、控制程序的编写、构造实时数据库。 二、实验装置 1、计算机一台 2、MCGS组态软件一套 3、对象:SK-1-9型管状电阻炉一台;测温热电偶一支(K型)。 4、AI818/宇电519/LU-906K智能调节仪组成的温控器一台。 5、THKGK-1型过程控制实验装置(含智能仪表、PLC、变频器、控制阀)一套 6、CST4001-6H电阻炉检定炉(含电阻炉、温度控制器、测温元件、接口)一套 7、电阻炉温度控制系统接线图和方框图如图1-1、1-2所示。 三、实验内容 1、电阻炉温度控制系统(液位、流量、压力) 被控过程: 电阻炉被控变量: 电阻炉温度 操纵变量: 电阻炉的功率主要扰动:环境温度变化,电压值,电流值2、带检测控制点的流程图 3、控制系统方框图

4、控制系统中所用的仪表名称、型号(检测仪表、控制器、执行器、显示仪表)。 检测仪表:CST4001-6H电阻炉检定炉 控制器:AI818/宇电519/LU-906K智能调节仪组成的温控器 执行器:THKGK-1型过程控制实验装置(含智能仪表、PLC、变频器、控制阀) 显示仪表:计算机 5、智能仪表与计算机是怎样进行通讯?有哪几种方式? 智能仪表与计算机通讯一般有三种方式,分别为USB接口,485接口,232接口,通过这些接口进行信号传输,计算机得以对仪表进行温控。 6、什么是组态软件? 组态软件是指对系统的各种资源进行配置,达到系统按照预定设置,自动执行特定任务,满足使用者要求的目的的应用软件。 四、MCGS组态界面 提供电阻炉温度控制系统一套完整组态界面图(共6个图),包括主界面、运行界面、设备工况、存盘数据、实时曲线、历史数据。

工程热力学课程教学大纲

《工程热力学》课程教学大纲 一、课程的性质和任务 本课程是建筑环境与能源应用工程及能源与动力工程专业必修的一门专业基础课。 本课程的任务是:通过对本课程的学习,使学生掌握有关物质热力性质、热能有效利用以及热能与其它能量转换的基本规律,培养学生运用热力学的定律、定理及有关的理论知识,对热力过程进行热力学分析的能力;初步掌握工程设计与研究中获取物性数据,对热力过程进行相关计算的方法。 二、课程的基本内容及要求 1、绪论 了解热能及其利用,热能装置的基本工作原理。 掌握工程热力学的研究对象、研究内容、研究方法及发展概况。 2、基本概念 了解工程热力学中一些基本术语和概念:热力系、平衡态、准平衡过程、可逆过程等。 掌握状态参数的特征,基本状态参数p,v,T的定义和单位等。 熟练应用热量和功量过程量的特征,并会用系统的状态参数对可逆过程的热量、功量进行计算。 3、气体的热力性质 了解理想气体与实际气体、混合气体的性质、气体常数、通用气体常数、比热容等。 掌握气体的状态方程及其应用。 熟练应用气体状态方程解决气体的变化过程参数的变化。 4、热力学第一定律 了解能量、储存能、热力学能、迁移能、膨胀功、技术功、推动功的概念,深入理解热力学第一定律的实质。 掌握热力学第一定律及其表达式、掌握体积变化功、推动功、轴功和技术功

的概念及计算式。注意焓的引出及其定义式。 熟练应用热力学第一定律表达式来分析计算工程实际中的有关问题。 5、理想气体的热力过程及气体压缩 了解理想气体热力学能、焓和熵的变化。了解活塞式压气机的余隙影响及多级压缩的过程 掌握正确应用理想气体状态方程式及4种基本过程以及多变过程的初终态基本状态参数p,v,T之间的关系。 熟练应用4种基本过程以及多变过程系统与外界交换的热量、功量的计算。能将各过程表示在p-v图和T-s图上,并能正确地应用在p-v图和T-s图判断过程的特点。 6、热力学第二定律 了解用可用能、有效能的概念及其计算。在深刻领会热力学第二定律实质的基础上,认识能量不仅有"量"的多少,而且还有"质"的高低。 掌握热力学第二定律的表述和实质,掌握熵的意义、计算和应用;掌握孤立系统和绝热系统熵增的计算,从而明确能量损耗的计算方法。 熟练应用孤立系统熵增原理、可用能的损失及计算对热力过程进行热工分析,认识提高能量利用经济性的方向、途径和方法。 7、水蒸气 了解水蒸相变过程、蒸气图表的结构及有关蒸气的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸气、饱和液体、饱和温度、饱和压、三相点、临界点、汽化潜热等。 掌握水蒸汽的定压汽化过程及水蒸汽的P—V图和T—S图。 熟练应用水蒸气图表分析水蒸气基本热力过程中热量及功量的变化。 8、湿空气 了解湿空气的组成,及焓湿图的绘制方法、了解实际应用的湿空气过程。 掌握湿空气状态参数的意义及其计算方法,并能区别哪些参数是独立参数,哪些参数存在相互关系。熟练掌握相对湿度、绝对湿度、含湿量等概念。 熟练应用含湿图分析湿空气的状态变化过程。 9、气体和蒸汽的流动

热工控制系统故障专项应急预案

热工控制系统故障专项 应急预案 1总则 1.1编制目的:为防止热工控制系统故障导致事故扩大,避免由于热工控制系统故障导致设备损坏事件的发生,特制定本预案。 1.2编制依据:本应急预案依据《火力发电厂设计技术规程》、《火力发电厂热工控制系统运行检修导则》、《火力发电厂热工仪表及控制装置技术监督规定》、《枣庄市建阳热电有限公司公司重大突发事件应急预案》等结合《防止电力生产重大事故的二十五项重点要求》编写。 1.3热工控制系统故障:指热工控制系统硬件、软件以及系统出现故障导致锅炉、汽轮发电机组本体设备、辅助设备、其他相关系统及设备的控制故障,造成设备被迫停止运行,对机组安全运行及设备健康状况构成严重威胁的事件。 1.4适用范围:本应急预案适用于枣庄市建阳热电有限公司热工控制系统故障事件的应对工作。 1.5热工控制系统现况:枣庄市建阳热电有限公司#1、#2炉、1 #机DCS系统为XDPS分散控制系统。DCS系统的控制范围覆盖模拟量控制系统MCS、顺序控制系统SCS、燃烧器管理系统BMS、数据采集

系统DAS、汽轮机控制系统DEH、给泵汽轮机控制系统MEH和电气控制系统ECS。控制室里,采用CRT控制并辅以大屏幕显示。 2事故类型和危害程度分析 2.1分散控制系统操作员站和过程控制单元等故障,导致控制信号消失或被控对象失去控制; 2.2分散控制系统网络或模件总线通信故障,导致信息传输中断或坏质量; 2.3热工控制系统软件存在缺陷、错误,导致控制系统发出错误指令; 2.4热工控制系统电源故障,导致控制系统停止工作; 2.5汽机控制系统(DEH)或给水泵汽机控制系统(MEH)故障,导致汽机或给水泵汽机不能正常控制和运行。 3应急处置基本原则 3.1当分散控制系统局部故障,重要的局部区域信号异常、部分主重要运行参数失去控制或其显示不能真实反映实际工况时,由值长按照规程,通过运行方式的调整、现场监视和操作等可以利用的一切手段,尽可能使机组运行稳定、设备处于安全状态。当部分操作员站(OIS)出现故障时,应由可用操作员站继续承担机组监控任务(此时应尽量减少操作),同时迅速排除故障。 3.2当全部操作员站出现故障时(所有OIS"黑屏"或"死机"),若主要后备硬手操及监视仪表可用且暂时能够维持机组现况,则转用后备操作方式运行,同时排除故障并恢复操作员站运行方式,由值长

《表演基础》课程教学大纲

《表演基础》课程教学大纲 一、课程基本信息 课程代码:129903 课程名称:表演基础 英文名称:Fundamentals of Acting 课程类别:必修课 学时:64学时 学分:4学分 适用对象: 数字媒体艺术本科专业 考核方式:考查 先修课程:《数字媒体艺术导论》 二、课程简介 《表演基础》课程是数字媒体艺术专业的重要专业拓展课。本课程以数字媒体专业学生的实际情况来制定教学内容,使学生掌握一定的表演创作方法基础,达到表演艺术与数字媒体两个专业间的跨领域结合地目的。教学手段上,通过课堂讲授、讨论与训练建立学生正确的表演艺术创作观,提升观察、体验生活的感知能力,同时具备舞台表演和镜头前表现的基本方法技能,消除紧张、解放天性,也使学生逐步了解和掌握表演与各元素的有机联系,明白生活与艺术的关系,自觉将生活作为创作的源泉。 【英文课程简介】 The course "Basic Performance" is an important professional development course for the major of digital media art. This course is based on the actual situation of students majoring in digital media to formulate the teaching content, so that students can grasp the basis of certain performance creation methods, and achieve the goal of integrating performing arts and digital media in different fields. In terms of teaching methods, through classroom teaching, discussion and training, students can establish correct concepts of performing art creation, enhance their perception of observing and experiencing life, possess basic skills of stage performance and on-camera performance, eliminate tension and emancipate their nature, and gradually make students understand and master the organic relationship between performance and various elements, understand the relationship between life and art, and be conscious. Take life as the source of creation. 三、课程性质与教学目的 《表演基础》是数字媒体艺术专业的一门专业必修课。本课程旨在通过课堂教学和实践训练,使学生了解戏剧表演的基本规律,掌握观察人物、观察生活的基本方法,具备舞台表演和镜头前表现的基本方法技能,消除紧张、解放天性,并能够在规定情境中还原生活,真实地积极地有机行动,独立完成单人行动小品或多人小品短剧的构思和表演。

相关主题