搜档网
当前位置:搜档网 › 群论的应用

群论的应用

群论的应用
群论的应用

群论的基础及应用

第二章群论的应用

2.1图论的结构群应用

在所有数学分支以及计算科学中,结构的概念是最基本的,以不正式的角度看,一个结构s是在点集U的一个construction r,它由一对点集组成。

e

4

图 2.1

通常说,U是结构s 的底图集,图2.1描述了两个结构的例子:一个有根树,和一个有向圈。在集合论上,题中的树可以描述为s=(γ,U),其中U={a,b,c,d,e,f},

γ=({d},{{d,a},{d,c},{c,b},{c,f},{c,e}})

出现在γ上第一部分的

根点{d}指的是树的根节点。对于有向圈它可以写成形式为

s=(γ,U),

其中

U={x,4,y,a,7,8},

γ={(4,y)(y,a)(a,x)(x,7)(7,8)(8,4)}

U={a ,b ,c ,d ,e ,f}

σ

V={x ,3,u ,v ,5,4}

图2.2

考虑有根树s=(γ,U )它的底图集是U ,通过图2.2中的σ变换,将U 中每一个元素替换成V 中的元素,这幅图清晰的显示了变换中如何将结构树s 对应到集合V 上相应的树t=(τ,V ),我们说树t 可以由树s 通过变换σ得到。记作t=σ·s.则树s 和树t 是同构的,σ叫做s 到t 的同构。

我们可以将底图的点视为无标记的点,这样就得到同构图的通用形式。如果σ是U 到U ,则它是自同构。此时树的变换σ·S 等价于树s ,即s=σ·s.

我们已经知道结构s 的定义,那么可以定义它在规则F 下的结构群,我们用F[U]表示集合U 上所有满足F 的结构

F[U]={f|f=(γ,U ),γ??[U]}

其中?[U]表示U 中所有未排序的元素对所组成的边。

一个结构群满足规则F :

1.对任意一个有限集U ,都存在一个有限集F[U]

2.对每一个变换σ:U →V ,存在一个作用 F[σ]:F[U]到F[V] 进一步F[σ]满足下列函数性质: 1.对所有的变换σ:U →V 和τ :V →W F[σ·τ]=F[τ]·F[σ];

2.对恒等映射一个元素s 数域F[U]叫做U 上的一个F 结构,作用F[σ]称为F 结构在σ下的变换。

例:对所有的整数0≥n ,指定n S 是由},,2,1{][n n Λ=的置换作成的对称群,在群作用的操作下,集合F[n]是[n]上的F-结构。说明对每个0≥n ,每个F-结构群,通过令)]([s F s σσ=?(对n S ∈σ和][n F s ∈)诱导出群n S 在集合F[n]上的一个作用

][][n F n F S n →?(1)

证明:

设F[n]是[n]上的F-结构,不妨令][)),(,(|{][]2[21n i i i s s n F n ?γγ∈==Λ, 对任意][n F s ∈和n S ∈σσ作用在s 上等价于

)()(2121n n j j j i i i K K ο=σ

即))(,(')]([21n j j j s s F s Λγσσ===?

仍然属于F[n],因此得到群n S 在集合F[n]上的一个作用][][n F n F S n →? 同样的,任何集合作用族

n n n F F S →? (2)

满足一个F-结构群的定义,因为在(1)和(2)的作用族是同构的。

2.2群论在物理学中的应用

在物理学中,群论被广泛应用到固体物理,理论物理中,比如点群的数学理论用于分析晶体对称性,规范场论、弦理论的数学基础李群李代数,还有量子场论中有关对称性运用到的群理论。

群论在固体物理中的一个经典的应用就是对晶体对称性的研究。由于晶体具有平移不变性,通过群理论的方法,就可将晶体进行分类,并计算出晶体可能有11种固定点群、32种点群、7种晶系、14种布拉菲格子、73种简单空间群和230种空间群。单从这方面看,群论对于晶体的研究就起到了不可或缺的作用。

在群论的基础知识中,我们曾经提到过,对于某些变换关系我们也可以构成群,如数域P 上的线性空间V 的全体可逆线性变换对于变换的乘法构成一个群。同样的,由于晶体的原子在三维空间有周期性列(晶格),晶格对三维空间一定的平移变换保持不变

l r r l T r r ρρρρρ

ρ+=='→)(

这样的平移矢量l ρ

叫做晶格矢量。晶格的原胞是晶格最小的周期单元,其不

共面的三条棱可作为晶格的基本矢量,称为晶格矢量,用i a ρ

表示。原始的晶格晶格基本矢量要求晶格矢量都可被基本矢量用整数线性组合表示出来,即

是整数i 31

i i i 332211l l a l a l a l a l ∑==++=ρ

ρρρρ

保持晶体不变的平移变换)(l T ρ的集合构成群,称为晶体的平移群,简称平移群,记作T 。

除了晶体的平移不变性外,晶体理论中晶体的对称操作平移、转动、反演的

协同变换也具有不变性,一般记作),(αρ

R g

∑==+=='→3

1

i i i a r R r R g r r ααααρρρρρρρρ,),(

其中,

R :三维实正交变换(固有转动和非固有转动),它保持原点不变.

i α:实常数,描述原点的平移.

当R=E 时,i α必须取整数i l ,)

(),(l T l E g ρ

ρ=是平移变换。对称变换的乘

积定义为相继做两次对称变换

βαβαβαρρ

ρρρρρρρR r R R }r R {R g r R g R g ++'=+'='),(),(),(

对于给定的晶体,在它的对称变换),(αρ

R g 中出现的所有实正交变换R 的集合构成群,称为晶格点群,简称点群,记作G 。

空间群是晶体对称变换的集合构成晶体对称群,记作S 。平移群T 是空间群S 的子群,而且是不变子群,因为平移变换的共轭元素仍然是平移变换,

)())(,(),()(),(l R T R -l R E g R g l T R g 1-1-ρρ

ρρρρρ=+=αααα,

l l R ρρ'=,

设i l 是i α的整数部分,则

现在我们来证明:对于给定的晶体和选定的晶格基矢,在对称变换中,每一个R 只能对对应一个t ρ

用反证法,设),()和,(t R g t R g ρ

ρ'都是晶体的对称变换,则

由于式①对t ρ的限制,只能t t ρ

ρ=',得证。

物理学中各个领域还有众多对于群理论的应用,群论对于系统对称性的研究使得群论称为物理工作者必备的工具。

2.3 群论在化学中的应用

在化学研究中,运用群论研究分子的对称性是一种常见的手段。分子中,原子的空间排列是对称的,且原子固定在平衡位置上,运用群论研究其对成性,进一步解决分子的结构和性质问题,是人们认识分子的主要途径和方法。

分子、离子、原子簇所属的对称点群经常要在化学研究中确定。由于群论原理的制约,某个分子具有的对称元素和可能的对称操作是有限的。

例:简述苯分子点群类型并求其群的轨道 首先确定苯分子的点群:

一个是6C 轴;六个62C C ⊥;一个苯分子平面垂直于垂直于6C 轴的镜面h e ;

,(),()

,(),(),(ααβαβαρ

ρρρ

ρρ1-1-1-R -R g R g R R R g R g R g =+'=')

,()(),(,,

t R g l T R g 1t 0t l i i i i ρρρ

=≤≤+=ααl l R t -t l T t R t R -T t R g t R g 1

-1-1-ρρρ

ρρρρρρ'

=='='+=')

()(),(),(

所以苯分子属于h 6D 点群。 其次求群的轨道

2121226E E B A E E B A ⊕⊕⊕=⊕⊕⊕=τ 处理得到

b 2h C a 2h C b 1h C a 1h C 2h C 2h C J E 66E 55E 44E 13B 22A 11+++++=

则 .

2h J b 2h J a 2h J b 1h J a 1h J 2h J 2C E 6C E

5C E 4C E

3C A 1C 654321B

======;;

;;

在上面对苯分子的点群处理之后,我们可以得出苯分子共轭结构大c 键分子

轨道波函数1C J ~6C J 。

2.4欧拉定理的证明

对于学习数学的人来说,欧拉这个人名绝不陌生,因为在数学中,有很多的公式、定理都以欧拉命名。在数论中,欧拉定理也称为费马-欧拉定理,此定理是关于同余性质的理论。这个理论在数学中占有很重要的地位,被称为最美妙的公式之一。下来我们就用群论知识来证明欧拉定理。

定理(欧拉定理)设m 是一个大于1的整数,(a ,m )=1,则我们有

)()(m mod 1a m ≡φ,

其中φ(m )是欧拉函数。

在证明之前,我们提出群论中关于剩余类的概念。对于一个给定模数n ,全体整数按模n 同余分成一些等价类,此时的等价类叫做整数模n 的剩余类。

)(654321E 5O -O -O 2O -O -O 212

1

a 2J +=

(6532E

6O -O O -O 2

1b 2J +=)(654321A 1O O O O O O 6

1

2J +++++=

(6532E

4O O -O O 2

1b 1J ++=)

(654321E 3O O -O 2-O -O O 2121

a 1J ++=)(654321B 2O -O O -O O -O 6

1

2J ++=

证明:

首先我们来考虑这样的情况。用M={[0],[1],[2],...,[m-1]}表示模m 的剩余类。集合N={[1a ],[2a ],...,[)(m a φ]}?M 是模m 的一个简化剩余类,其中[1a ]=1。

我们规定M 的一个二元运算“·”,即[a]·[b]=[ab].进而证明M 的二元运算“·”与剩余类代表元的选取无关.对于任意整数1a ,1b ,若1a ∈[a],1b ∈[b],则1a =a+km ,1b =b+lm ,其中k ,l 是整数,所以1a 1b =ab+(kb+la+klm )m ∈[ab],即有[1a ]·[1b ]=[a]·[b].因此二元运算“·”是M 的一个代数运算,易得“·”也是M 的子集N 的一个代数运算,这时根据前面的群论基础知识,我们可以得到N 关于二元运算“·”是一个阶为φ(m )的有限群。

有了上面的结论,我们来考虑集合N={[1a ],[2a ],...,[)(m a φ]}。由于N 关于二元运算“·”是一个群,其中[1]是单位元,对任意整数a ,若(a ,m )=1,则[a]∈N,用k a ][表示k 个[a]连续做运算,由于N 含有φ(m )个元,即群N 的阶为φ

(m )。于是]1[]a []a [m m ==)()(φφ,从而得到sm 1a m +=)(φ,故)()(m mod 1a m ≡φ成

立。

2.5结论

经过以上对于群论基础的学习和其在各学科中的应用,我们可以清楚的看到群论对于自身所处的数学领域和其他各学科所做出的巨大贡献。本文由于作者才疏学浅,无法把群论在所有学科领域的应用一一列举出来,所以无法把群论更深层次的贡献表达出来,但是可以肯定,群论对于各个学科都做出了或多或少的贡献。并且,随着学科的发展,群论的内容将会更加丰富,对各学科的贡献将会越来越大。

第3讲:群论在杂化轨道中的应用

第二讲群论在杂化轨道中的应用 *特征标表及符号 将点群的所有不可约表示的特征标列成表,称为特征标表。运用群论来解决化学问题时,特征标表是必备的工具。下面以D4h点群的特征标表为例来说明各部分的意义。 特征标表第一行列出了点群的符号及其归类的群元素。表的第一列是由Mulliken提出的不可约表示的符号,标的最后一列是各个不可约表示对应的基函数。分别介绍如下: (1)一维表示用A和B表示,二维用E、三维用T(有时用F)表示。T 和F分别用于电子和振动。 (2) A和B是以绕主轴C n转动2π/n来区分的,对称的(特征标为+1)用A、反对称的用B表示;对于D2和D2h点群,有3个C2轴,而3个C2操作属于不同类,只有3个C2操作的特征标全是+1的一维表示以A标记,其余的一维表示记为B, 对于D nd(n为偶数)的点群,有S n操作的特征标确定一维表示的特征标,为+1的记为A,-1的记为B. (3)下标“1”或“2”是以垂直于主轴的C2轴对称性来区分的。对称的为1,反对称的为2,如果没有C2轴,就要通过主轴的σv镜面来区分,对称的为1,反对称的为2. (4)上标'或''是用区分它们对于σh镜面是对称还是反对称的,'表示是对 称的,''表示是反对称的。 (5)下标g或u表示对于反演是对称还是反对称的,g表示对称,u表示反对称。 (6)关于基函数的说明:x,y,z是一次函数,可以和3个p轨道相联系。也可以和偶极矩的3个分量相联系。二次函数xy,xz,yz,x2-y2,z2可以和5个d轨道相联系。类似地,三次函数可以与f轨道相联系。R x,R y,R z是转动函数,在讨论分子转动时用到它们。 (7) z,z2,x2+y2以及(x, y)或(xy, xz)有不同的含义,没有括号的z,z2,x2+y2可以作为一维表示的基;有括号的的x和y或xy和xz一起作为二维表示的基。 (8)每个点群都有一个一维全对称表示,即对所有对称操作都用矩阵(1)表示(其特征标当然是1),习惯上将它列在每个点群的特征标表的第一行。 (9)原子的s轨道是球形对称的,它总是一维全对称表示的基,但它的角度部分是常数,故特征标表中一般不列出。

化学思想方法的应用

化学思想方法的应用 1.下列相关知识的对比分析正确的是( ) A. 石墨和金刚石均属于碳的单质,所以二者性质完全相同 B. 水的三态变化和空气的热胀冷缩虽然分子间的间隔都发生了改变,但分子本身没有改变,所以二者均属于物理变化 C. 乙醇和甲苯燃烧产物均为CO2和H2O,所以二者元素组成一定相同 D. 铝和铁均属于比较活泼的金属,所以二者都易锈蚀 2.下列问题的研究中,未利用对比实验思想方法的是( ) 3.对比是学习化学的重要方法。下列关于CO2与CO的比较,错误的是( ) A. CO2可用于人工降雨,CO可用于光合作用 B. 通常情况下,CO2能溶于水,CO难溶于水 C. CO2无毒,CO易与血液中的血红蛋白结合引起中毒 D.一个二氧化碳分子比一个一氧化碳分子多一个氧原子 4.示例:硫在空气、氧气中燃烧,化学反应相同,但反应现象不同。说明反应物的浓度不同,反应现象不同。 请参照示例回答下列问题: (1)碳在氧气不足、氧气充足的条件下燃烧,反应物相同,但产物不同。说明_________不同,产物不同。 (2)二氧化碳与水反应,在常温下生成碳酸,在叶绿体、光照的条件下发生光合作用生成葡萄糖和氧气。反应物相同,但产物不同。说明________________不同,产物不同。 (3)细铁丝(或铁粉)在氧气中能剧烈燃烧,铁钉(或铁制燃烧匙)在氧气中不能燃烧,反应物相同,但反应的速率不同。说明反应物的__________________不同,反应的速率不同。 5.推理是学习化学的一种重要方法,但不合理的推理会得出错误的结论。以下正确的是( ) A. 含碳元素的物质充分燃烧会生成CO2,燃烧能生成CO2的物质一定含碳元素 B. 离子是带电荷的微粒,带电荷的微粒一定是离子 C. 碱溶液的pH都大于7,pH大于7的溶液一定是碱溶液 D. 分子可以构成物质,物质一定是由分子构成的 6.推理是化学学习中常用的思维方法。下列推理正确的是( ) A. 碱溶液的pH>7,所以pH>7的溶液一定是碱溶液 B. 分子或原子都是不带电的微粒,所以不带电的微粒一定是分子或原子 C. 二氧化碳不支持燃烧,所以能使燃着的木条熄灭的气体一定是二氧化碳 D. 物质发生化学变化时伴随着能量变化,所以在缓慢氧化过程中一定有能量变化 7.类推是化学中常用的学习方法,以下类推结果正确的是( ) A. 离子是带电荷的粒子,所以带电荷的粒子一定是离子 B. 盐中含有金属离子和酸根离子,NH4NO3中没有金属离子不属于盐类 C. 厨房洗涤剂对油污有乳化作用,汽油去油污利用的也是乳化作用 D. 点燃H2和O2的混合气体可能会爆炸,则点燃CH4和O2的混合气体也可能爆炸 8.现有如下转化关系:①Zn→ZnSO4,②ZnO→ZnSO4,③Zn(OH)2→ZnSO4。对这三种转化关系比较归纳正确的是( )

几种重要的数学思想方法

几种重要的数学思想方法 韩晓荣 数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。 《数学课程标准》在对初中阶段的教学建议中要求“对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现”。这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。 一、化归思想, 所谓“化归”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。我们也常把它称之为“转化思想”。例如:解分式方程转化为解整式方程,解“二元”方程转化为解“一元”方程,解多边形问题转化为解三角形问题等等。 二、数形结合的思想方法 数形结合思想是指将数与图形结合起来解决问题的一种思维方式。著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。”这就是在强调把数和形结合起来考虑的重要性。在教材《有理数》里面用数轴上的点来表示有理数,就是最简单的数形结合思想的体现。 三、分类讨论的思想方法 在渗透分类讨论思想的过程中,我认为首要的是分类。比如在《有理数》研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的:在《平面图形的认识》一章中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类。这种思想方法主要可以避免漏解、错解。 四、方程思想 方程思想指借助解方程来求出未知量的一种解题策略。我们知道方程是刻画现实世界的一个有效的数学模型。所以方程思想实际上就是由实际问题抽象为方程过程的数学建模思想。例如利用一元一次方程,一元二次方程能解决好多实际问题。 五、从特殊到一般的思想方法

群论的各种应用复习过程

群论的应用 关于几何体或其他数学、物理对象的对称概念看起来很明显,但给对称这个概念一个精确的和一般的描述,特别是对称性质的量上的计算,使用一般的数学工具很困难。为了研究象对称这样的规律,在18世纪末、19世纪初出现了群论。群论最初主要研究置换问题,随着群论研究的深入。群论已成为近世数学的一个重要分支,并分裂成许多或多或少的独立科目:群的一般理论、有限群论、连续群论、离散群论、群的表示论、拓扑群等。19世纪到20世纪,群通过其表示论在自然科学中得到了广泛的应用,例如在几何学、结晶学、原子物理学、结构化学等领域,群的表示经常出现在具有对称性的问题研究中。如今,群论的方法和概念,不仅是解决对称规律的重要工具,而且是解决其他许多问题的重要工具。本文主要是简单说明一下群论在机器人、密码学、网络、原子物理中的应用。 1. 群论在机器人中的应用。 在机器人领域,群论最初主要应用在机器人运动学的研究中,随着研究的进一步深入,机器人的装配,标定和控制等都用到群论。从群论的角度来看,机器人的位置无论是用矢量表示,还是用旋量表示,或以四元数、双四元数等其他形式表示,其运动变换可以看作是群运算。因为在变换过程中,连杆的内部结构不变,其变换可以看作是欧几里德群的子群,群中的变换包括旋转和平移两种。在机器人运动学中,若采用群描述机器人的运动、可以使表达更简洁更通用,便于符号推理,利用群论描述机器人运动还便于设计通用的机器人语言。在机器人操作中,操作物体通常是对称的或具有对称的特性,用一般的数学工具很难描述其相对位置,而用群可以很方便地描述其相对关系。特别是在装配任务中,当相互匹配的两个零件具有对称性时,它们有很多装配位置,用一般的数学工具比较难描述,用群就可很容易地表示并进行推理。机器人在许多操作过程中具有非线性和非完整性,常用的线性控制不能满足其控制性能要求,人们开始用非线性系统的几何理论来解决,其状态变换是在流形上进行的,它使用的工具是李群和李代数,李群是连续群中重要的一种。 2.群论在密码学的应用。 自从1984年N.R.Wager和M.R.Magyarik提出了第一个用组合群论的理论构造公钥密码体制的方法以来,在密码学家们的共同努力下,利用组合群论的理论已经提出多个公钥密码体制和密钥交换协议。由于组合群论中的数学工具和以前数论中的内容截然不同,有必要对组合群论中的一些定义和定理加以说明,从而可运用到密码学中去,得到不同的加密算法。 群G称作是有限生成的,如果G存在有限个生成元 1,2, g g…, n g,满足G中任意一个元素都可以表示成生成元和它们的逆的有限乘积。

常见数学思想方法应用举例

常见数学思想方法应用举例 所谓数学思想,就是对数学知识和方法地本质认识,是对数学规律地理性认识.所谓数学方法,就是解决数学问题地根本程序,是数学思想地具体反映.数学思想是数学地灵魂,数学方法是数学地行为.运用数学方法解决问题地过程就是感性认识不断积累地过程,当这种量地积累达到一定程序时就产生了质地飞跃,从而上升为数学思想. 其实,在初中数学中,许多数学思想和方法是一致地,两者之间很难分割.它们既相辅相成,又相互蕴含.因此,在初中数学教学中,加强学生对数学方法地理解和应用,以达到对数学思想地了解,是使数学思想与方法得到交融地有效方法.比如化归思想,可以说是贯穿于整个初中阶段地数学,具体表现为从未知到已知地转化、一般到特殊地转化、局部与整体地转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方法等.在教学中,通过对具体数学方法地学习,使学生逐步领略内含于方法地数学思想;同时,数学思想地指导,又深化了数学方法地运用. 初中阶段《数学大纲》要求我们了解地常用地基本数学思想有:整体思想与分类地思想、数形结合地思想、化归地思想、函数与方程地思想,抽样统计思想等. 《数学大纲》中要求“了解”地方法有:分类法、类比法、反证法等.要求“理解”或“会应用”地方法有:建模法、待定系数法、消元法、降次法、代入法、加减法、因式分解法、配方法、公式法、换元法、图象法(也称坐标法)以及平行移动法、翻折法等. 1、 整体思想 整体思想是一种常见地数学方法,它把研究对象地某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部地有机联系,从而在客观上寻求解决问题地新途径.往往能起到化繁为简,化难为易地效果.它在解方程地过程中往往以换元法地形式出现. 例1、整体通分法计算11 2+--x x x 解:原式1 111)1)(1(1122--=----+=--+=x x x x x x x x x 评注:本题若把1,+x 单独通分,则运算较为复杂;一般情况下,把分母为1地整式看作一个整体进行通分,运算较为简便. 例2、整体代入法:(绵阳市05)已知实数a 满足0822=-+a a ,求3412131 1222+++-?-+-+a a a a a a a 地值. 解:化简得原式2)1(2+=a ,由0822 =-+a a 得9)1(2=+a ,∴ 原式92=. 评注:本题通过整体变形代入,起到降次化简地显著效果. 例3、换元法(温州市05)用换元法解方程(x 2+x)2+(x 2+x)=6时设x 2+x =y,则原方程可变形为( ) A 、y 2+y -6=0 B 、y 2-y -6=0 C 、y 2-y +6=0 D 、y 2+y +6=0 解:选A 例4、平移法(泸州05改编)如图,在宽为20m ,长为30m 地矩形地面 上修建两条同样宽地道路,余下地耕地面积为551m 2,试求道路地宽x = m 解析:我们只要用平移法把两条道路分别移到矩形地两侧,合并为一个整体,而面积却没有改变,得方程551)30(20=--x x )(得.1=x 2、分类思想 分类思考地方法是一种重要地数学思想,同时也是一种解题策略.在数学中,我们常常需要根据研究对象性质地差异,按照一定地标准,把有关问题转化为几个部分或几种情况,从而使问题明朗化,然后逐个加以解决,最后予以总结得出结论地思想方法.

数学知识在物理中的应用

高中物理中数学知识的应用

如图讨论绳子变长时,绳子的拉力和墙面的支持力如何变化?解析法: θ cos 2G F =如果绳子变长,θ角减小,θcos 变大,F 2减小;θtan 1 G F =,θ角减小,θtan 减小,F 1减小。此题图解法较容易在此省略。在力(速度、加速度)的合成与分解问 题中正弦、余弦、正切函数知识用的很多。 (2)正弦定理应用实例: 如图所示一挡板和一斜面夹住一球,挡板饶底端逆时针旋转直到水平,讨论挡板和斜面对球的弹力如何变化?此题图解法较容易在此省略。

解析法:βθαsin sin sin 12F F G == α θ sin sin 2G F = 因为θ不变α从锐角变成90 大再变小,所以F 2先变小后变大; () ()θβθβθβ βθβαβοcos cot sin sin sin 180sin sin sin sin 1-= =+= --== G G G G F β角从钝角变为零的过程中,βcot 一直变大,所以F 1一直变小。 (用到了正弦定理、诱导公式、两角和的正弦函数这种解法理论性较强。 ) (3)化θθcos sin b a +为一个角的正弦应用实例 如图所示物体匀速前进时,当拉力与水平方向夹角为多少度时最省力?动摩擦因数设为μ。 解答:匀速运动合力为零()θμθsin cos F G F -= ()() θβμμθβθβμμθμμθμμμθ μθμ++= ++= ??? ? ??++++= += sin 1sin cos cos sin 1sin 1cos 111sin cos 22222G G G G F 所以当θβ+为直角时F 最小,也就是当1 1 arcsin 2 2 2 +-= -= μπ βπ θ时F 最小。 5.组合应用实例 如图所示一群处于第四能级的原子,能发出几种频率的光子?这个还可以用一个一个查数的办法解决,如果是从第五能级开始向低能级跃迁问可以发出几种频率的光子就很难一个一个地数了。 利用组合知识很容易解决,处于第四能级有623 42 4=?==! C N 种 处于第五能级有10! 24 5!3!2!52 5=?=?= =C N 种 6.平面几何(1)三角形相似应用实例 例题1:如图所示当小球沿着光滑圆柱缓慢上升时,讨论绳子的拉力 和支持力如何变化? 由三角形相似可得 l T h G R N ==可以N 不变T 减小。 例题2:(2013新课标)水平桌面上有两个玩具车A 和B ,两者用一轻质 橡皮筋相连,在橡皮绳上有一红色标记R 。在初始时橡皮筋处于拉直状态,A 、B 和R 分别位于直角坐标系中的(0,l 2),(0,l -)和(0,0)点。已 知A 从静止开始沿y 轴正向做加速度大小为a 的匀加速运动:B 平行于x 轴朝x 轴正向匀速运动。两车此

专题二 化学思想方法的应用

专题二化学思想方法的应用 专题解读 化学思想方法的应用包括对比法、类比法、推理法、归纳法等方法。这类题型考查的知识点比较基础,但是综合性比较强。对比法,是保持其他条件不变,改变其中一个条件用于探讨该条件对实验的影响;类比法,就是根据两种事物在某些特性上的相似,推理出它们在另一些特性上也可能相似的思维形式,把未知的化学问题和熟悉的问题作比较,寻找两者在某些方面的同一性,找出两者共同遵循的规律,达到解决化学问题的目的;推理法,此类题主要以选择题的形式出现,选项前半部分一般是正确的规律性结论,后半部分则是根据前半部分类推或反推出的结论;归纳法,它是将零散的化学知识、复杂的化学内容、不同知识间的联系和区别简单化、条理化、系统化,从而使化学学习事半功倍,可以大大提高解题速率和质量。 1.(2015,聊城)“类推”是化学学习过程中常用的思维方法。现有以下类推结果,其中正确的是(D) A.因为碱溶液呈碱性,所以呈碱性的溶液一定是碱溶液 B.金属铝与盐酸反应生成AlCl 3和H 2 ,所以金属铁与盐酸反应生成FeCl 3 和 H 2 C.因为燃烧需要同时满足三个条件,所以灭火也要同时控制这三个条件D.因为蜡烛燃烧生成二氧化碳和水,所以蜡烛中一定含有碳元素和氢元素

2.逻辑推理是化学学习中常用的思维方法。下列推理正确的是(B) A.中和反应生成盐和水,所以生成盐和水的反应一定是中和反应 B.化合物是由不同种元素组成的纯净物,所以由不同种元素组成的纯净物一定是化合物 C.单质中只含有一种元素,所以只含有一种元素的物质一定是单质 D.在同一化合物中,金属元素显正价,所以非金属元素一定显负价 3.(2016,威海)化学知识中有很多“相等”,下列关于“相等”的说法正确的是(D) A.将食盐加入水中,所得溶液的质量与加入的食盐和水的总质量一定相等B.溶解度曲线相交,表示曲线所代表的物质的溶液质量一定相等 C.将两种液体混合,混合后的体积与混合前两种液体体积之和一定相等D.化学反应前后,原子的种类和数目一定相等 4.微粒观是化学基本观念的重要组成部分,从微粒视角认识物质世界是学习化学的重要方法。以下描述正确的是(C) A.原子是最小的粒子,不可再分 B.自然界中一切物质都是由分子构成的 C.元素的种类是由原子核内的质子数决定的 D.原子最外层电子数的多少决定了原子质量的大小

群论在化学中的应用

4.5.4 群论在化学中的应用实例 增加如下内容: 4. 构成对称性匹配的分子轨道 我们知道,原子轨道构成分子轨道的前提是对称性匹配。在简单情况下,这很容易看出来,但在复杂情况下,要使原子轨道构成对称性匹配的分子轨道(亦称对称性匹配的线性组合,SALC),就需要借助于系统的群论方法。下面以环丙烯基C3H3为例来说明:假设该分子为D3h群,垂直于分子平面的碳原子p轨道φ1、φ2、φ3如何构成对称性匹配的π型分子轨道。 (1)首先以φ1、φ2、φ3为基,记录它们在D3h群各种对称操作下的特征标,得到可约表示: E2C33C2σh2S33σv D 3h φ1 1 0 -1 -1 0 1 φ2 1 0 0 -1 0 0 φ3 1 0 0 -1 0 0 Γ 3 0 -1 -3 0 1 需要注意的是,3C2这个类的可约表示特征标是(-1)而不是(-3),这是因为,我们可以从这个类的3个对称操作C2中任选1个作为代表,对基集合φ1、φ2、φ3进行操作,结果是只有1个φ被改变符号而其余两个φ被改变位置,从而得到可约表示特征标为(-1)。但是,不能用该类中3个不同的C2分别作用来得到(-3)。根据同样的理由,3σv这个类的可约表示特征标是1而不是3。

(2)利用D 3h 的特征标表 将可约表示约化为如下不可约表示: (3)构成这些具有确定对称性的分子轨道,必须采用投影算符。投影算符有不同的形式,最便于使用的形式是只利用特征标的投影算符: 其中l j 是第j 个不可约表示的维数, 代表对称操作, 是第j 个不可约表示的特征标。注意:投影算符中的求和必须对所有对称操作进行,而不能像约化公式中那样改为乘以类的阶后对于类求和,这是因为:尽管同一类中各个对称操作的特征标相同,但各个对称操作的操作效果却不同。 接下来的做法是:从3个p 轨道φ1、φ2、φ3的集合中任意取1个,例如φ1,将第j 个不可约表示的投影算符作用于它,就会得出属于这个不可约表示的对称性匹配分子轨道(SALC )的基本形式,然后加以归一化即可。对于一维不可约表示A 2”, 这是非常简单的事,因为它只需要构成1 个 2"" A E Γ=⊕????()j j j R l P R R h χ=∑?()j R χ?R

数学思想与方法作业

数学思想与方法作业一 一、简答题 1、分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。 答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。 代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。 它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。 2、比较决定性现象和随机现象的特点,简单叙述确定数学的局限。 二、论述题 1.论述社会科学数学化的主要原因。 2、论述数学的三次危机对数学发展的作用。 答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。 第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。 第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。 由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的 历史,斗争的结果就是数学领域的发展。 三、分析题 1.分析《几何原本》思想方法的特点,为什么? 2、分析《九章算术》思想方法的特点,为什么? 答:(1)开放的归纳体系 从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。 在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综 合起来,就得到整个《九章算术》。 另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。因此,《九章算术》是一个开放的归纳体系。 (2)算法化的内容 《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。因此,内容的算法化是《九章算术》思想方法上的特点之一。 (3)模型化的方法 《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。

《高等数学》知识在物理学中的应用举例

《高等数学》知识在物理学中的应用举例 一 导数与微分的应用 分析 利用导数与微分的概念与运算,可解决求变化率的问题。求物体的运动速度、加速度的问题是典型的求变化率问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量求变化率。在此基础上,灵活运用各类导数和微分公式解决具体问题。 例 1 如图,曲柄,r OA =以均匀角速度ω饶定点O 转动.此曲柄借连杆AB 使滑块B 沿直线Ox 运动.求连杆上C 点的轨道方程及速度.设,a CB AC == ,?=∠AOB .ψ=∠ABO y 解 1) 如图,点C 的坐标为: ψ?cos cos a r x +=, (1) .sin ψa y = (2) 由三角形的正弦定理,有 ,sin 2sin ? ψa r = o x 故得 .2sin 2sin r y r a == ψ? (3) 由(1)得 r y a x r a x 2 2cos cos --= -=ψ? (4) 由,1cos sin )4()3(2222=+=+??得 ,12422 222222=---++r y a x y a x r y 化简整理,得C 点的轨道方程为: .)3()(422222222r a y x y a x -++=- 2) 要求C 点的速度,首先对(1),(2)分别求导,得 ,sin cos 2cos sin ψψ?ω?ωr r x --=' ,2 cos ? ωr y =' 其中.?ω'=

又因为,sin 2sin ψ?a r = 对该式两边分别求导,得 .cos 2cos ψ ? ωψa r = ' 所以C 点的速度 2 2 y x V '+'=4 cos )sin cos 2cos sin (2222 ?ωψψ?ω?ωr r r + --= .)sin(cos sin 4cos cos 22ψ?ψ??ψ ω ++= r 例2 若一矿山升降机作加速度运动时,其加速度为),2sin 1(T t c a π-=式中c 及 T 为常数,已知升降机的初速度为零,试求运动开始t 秒后升降机的速度及其所走过的路程. 解: 由题设及加速度的微分形式dt dv a = ,有 ,)2sin 1(dt T t c dv π-= 对等式两边同时积分 ? ?-=v t dt T t c dv 0 ,)2sin 1(π 得: ,2cos 2D T t T c ct v ++=ππ 其中D 为常数. 由初始条件:,0,0==t v 得,2c T D π - =于是 )].12(cos 2[-+ =T t T t c v ππ 又因为,dt ds v = 得 ,)]12(cos 2[dt T t T t c ds -+ =ππ 对等式两边同时积分,可得: )].2sin 2(221[2t T t T T t c s -+=πππ

第五章群论在量子化学中的应用

第五章 群论在量子化学中的应用 群论应用于物理和化学问题上,能把分子在外形上具有对称性这一表面现象,与分子的各种内在性质联系起来。 这里起桥梁作用的是群的表示理论。在量子力学中,讨论问题时离不开算符、波因数和矩阵元。从群表示理论的角度看,波函数、算符以及矩阵元的被积函数都具有一定的变换性质,或者说按某种表示变换,因而可以分解为若干不可约表示的基函数。 群的不可约表示反映群的性质,在分子对称群的情况下,也就是反映了分子的对称性质。 把分子体系的波函数用作为不可约表示的基,再研究它所届的不可约表示的性质就能得出分子由对称性决定的那一部分性质。 群沦在量子化学中的应用很广,不可能在这里作详尽的介绍。比较常遇到的是态的分类,能级简并情况,光谱选律的确定,矩阵元的计算,不可约表示基函数的构成和久期行列式的劈因子等几个方面。 §5.1 态的分类和谱项 一、教学目标 1.明确能级和不可约表示,波函数和不可约表示的基之间的关系 二、教学内容 1.能级和不可约表示,波函数和不可约表示的基之M 的关系. 我们首先来阐明,能级和不可约表示,波函数和不可约表示的基之间的关系. 可以证明,如果考虑了分于的所有对称操作并且不存在偶然简并,则对于同—能级的本征函数一定构成分子所属对称群的一组不可约表示基,而分子所属对称群的一组不可约表示基,如果是分子体系的本征函数,则必属于同一能级;分于的能级与分子所属对称群的不可约表示之间满足一定的对应关系. 设ψ是分子的一个本征函数 ?H ?ε?= (1) 在分子所属对称群的任意对称操作作用下,Hamilton 量不变,因此 ?()()() R H H R R ??ε?= = (2) 亦即对称操作R 作用于?得到的函数R ?也是分子的一个本征函数。如果能级是非简并的,则?与R ?最多只能差一个相因子,i R e α??=,α为实数,这说明?必须是分子对称群的一个一维不可约表示的基。如果?属于简并态,即有一组{}i ?属于同一本征能量,则i R ?只可能

数学思想方法的应用

数学思想方法的应用 徐英 数学思想是解决数学问题的灵魂,在初中数学中蕴含着丰富的数学思想方法.需要我们去挖掘并实施于解题过程. 数形结合思想指把数量和图形结合起来进行综合分析解决问题的一种数学思想方法.在解决数学问题时,我们可以把代数知识应用到解决几何问题中,也可以用图形来解决代数问题, 例1如图1(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为y 2 m . (1)写出y 与x 的函数关系式; (2)当x =2,3.5时,y 分别是多少? (3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间? 图1 图2 分析:解决问题需要根据图形进行分析,找出y 与x 之间的关系式.如图2,设移动x 秒后点C 移动点C ,三角形与正方形重叠部分为△DCC ′,由图形数据可知△DCC ′为等腰直角三角形,且CC ′=CD=2x ,根据三角形的面积可以写出y 与x 之间的关系式. 解:(1)因为CC ′=2x ,CD=2x ,所以S △CDC ′= 21×2x ×2x=2x 2,所以y =2x 2 (2)当x=2,时y=8;当x=3.5时,y=24.5 (3)由2x 2=2 1×10×10=50,解得x 1=5,x 2=-5(舍去). 所以当重叠部分的面积是正方形面积的一半时,三角形移动了5秒. 评注:本题通过图形分析找到y 与x 之间的数量关系,是对数形结合思想方法掌握情况的考查. 所谓建模思想,就是从实际问题中建立数学模型,将实际问题转化为数学问题解决的一种数学思想.根据实际问题建立方程模型立方程模型、建立函数模型等等都是建模思想的重要体现. 例2甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价9折优惠.设顾客预计累计购物x 元(x >300). (1) 请用含x 代数式分别表示顾客在两家超市购物所付的费用; (2) 试比较顾客到哪家超市购物更优惠?说明你的理由. 分析:本题是一道与购物有关的实际问题,要判断顾客到哪家 图3 超市购物更优惠,我们可以从实际问题构构建函数模型,通过函数的图象比较如何选择,才使购物更实惠。 解:(1)设在甲超市购物的所付的费用为y 甲,在乙超市所付的购物费用为y 乙,

[最新]中考化学专题突破讲义:第11讲-解决问题的程序化思想(含答案)

最新教学资料·中考化学 化学思想方法的应用 第十一讲解决问题的程序化思想 【题型特点】 程序化解决问题是指解决问题时按照某种机械程序步骤一定可以得到结果的处理过程。这种程序必须是确定的、有效的、有限的。简单地说就是遇到某些化学问题的时候有相对固定的解答方法和步骤。学生通过模仿、操作、探索,发展有条理的思考与表达的能力,提高逻辑思维能力。 程序化解决问题的思想在化学学科的应用充分体现了“能运用所学知识与观点,通过比较、分析与综合等方法对某些生物学问题进行解释、推理,作出合理的判断或得出正确的结论”的考纲能力要求。 【主要考查内容】 1. 正确书写各类方程式的程序化; 2. 化学计算的程序化; 3. 化学实验装置与实验操作的程序化; 4. 解答化学问题的程序化; 【典型例题】 例1:(2017?雅安)下列反应的化学方程式正确的是() A.铁在氧气中燃烧:2Fe+3O22Fe2O3 B.硫酸铵与烧碱混合:(NH4)2SO4+2NaOH═Na2SO4+2H2O+2NH3↑ C.铝片放入硝酸银溶液中:Al+AgNO3═AlNO3+Ag D.向氯化镁溶液中滴入硫酸钾溶液:MgCl2+K2SO4═MgSO4↓+2KCl 【解析】A.生成物错误,生成物应是四氧化三铁,正确的化学方程式为:3Fe+2O2Fe3O4;B.化学方程式书写完全正确;C.生成物硝酸铝化学式书写错误,正

确的化学方程式为:Al +3AgNO 3═Al (NO 3)3+3Ag ;D.硫酸镁不是沉淀,该反应不能发生; 【答案】B 例2:(2017?毕节).早在西汉时期的《淮南万毕术》中就记载“曾青得铁则化为铜”, 成为现代湿法冶金的先驱。现将2.8g 铁粉投入40g 硫酸铜溶液中,充分搅拌后,两者恰好完全反应。请计算: (1)反应后生成铜的质量是多少? (2)反应前硫酸铜溶液中溶质的质量分数是多少? (3)反应后溶液中溶质的质量分数是多少?(结果精确至0.1%) 【解析】解:(1)设反应生成铜的质量为x ,参加反应的硫酸铜的质量为y ,反应生成硫酸亚铁的质量为z 。 Fe + CuSO 4 === FeSO 4 + Cu 56 160 152 64 2.8g y z x 6456 2.8g x = 16056 2.8g y = 15256 2.8g z = x=3.2g y=8g z=7.6g (2)反应前硫酸铜溶液的溶质质量分数为8g 40g ×100%=20% (3)反应后溶液的溶质质量分数为7.6g 2.8g+40g-3.2g ×100%=19.2% 答:(1)反应后生成铜的质量为3.2g 。(2)反应前硫酸铜溶液的溶质质量分数为20%。(3)反应后溶液的溶质质量分数为19.2%。 例3:(2017?新疆) 毎年的6-7月,新疆的许多地区都要举办“薰衣草”节。薰衣草精油的 主要成分为芳樟醇、伽罗木醇等物质。其中芳樟醇的化学式C 10H 18O ,请计算: (1)芳樟醇的化学式分子中的原子个数比为 _。 (2)芳樟醇的化学式的相对分子质量是(154),计算该物质组成中氧元素的质量分数 为 _(精确到0.1%) 【解析】(1)芳樟醇的化学式为(C 10H 18O )可知,一个芳樟醇分子是由10个碳原子18个氢 原子1个氧原子构成的,芳樟醇分子中C 、H 、O 三种元素的原子个数比为10:18:1; (2)该物质组成中氧元素的质量分数为16/154×100%=10.4%. 例4:(2017?内江)元素周期表中,某周期元素的原子结构示意图如下:

重要的化学思想方法

重要的化学思想方法 化学思想方法是在一定的化学知识和方法基础上形成的,化学思想对理解、掌握、运用化学知识和化学方法,解决化学问题起到促进和深化的作用。从中学阶段来看,化学学科中要有结构与性质、量变与质变、一般与特殊、定性与定量等思想方法。 1、结构与性质的思想方法。这是化学学科核心的思想方法。我们知道,结构与性质的关系是:结构决定性质、性质反映结构。这一思想贯穿化学学习与研究过程的始终。根据这一思想,与之相关的思想方法还有“性质与用途”、“位置(周期表中的位置)与结构”、“位置与性质”以及“位置、结构与性质”等,在物质结构、性质与用途以及元素位置、结构与性质等相互之间的推断中经常用到。 2、量变与质变的思想方法。这是一种哲学的思想方法。量变和质变是两个相互依存的过程。通过量的积累产生质的变化,量变是质变的前提,而质变又是量变的最终结构。这一思想在元素周期律(元素周期表)中得到最好的体现。在一些化学反应中也得到很好的体现。如过量问题(量对反应产物的影响),物质性质(氧化性或还原性)与物质浓度的关系等。如硝酸浓度的改变,氧化性强弱发生变化,导致反应产物的变化;浓硫酸具有强的氧化性,而稀硫酸则不具有氧化性;浓盐酸有较强的还原性,稀盐酸则弱的多(通常不体现)等等。 3、一般与特殊的思想方法。该方法是化学思想方法中的基本方法,也是哲学的一种思想方法。化学的研究,通常总是通过对某些特殊的事物或事物的某些特殊方面的研究,得出一般性(或普遍性)的规律,并加以推广;同时事物在具有普遍性(一般性)的同时,由于不同事物存在某些独特的一面,因此有具有特殊性一面。换句话说,任何事物与同类事物之间有普遍性(共性)一面,同时又有自己独特的一面。象同主族元素化学性质存在共性的一面,同时不同的元素又存在差异。 4、定性与定量的思想方法。这是化学研究中通常用到的两种思想方法。这两种方法从不同的深度和角度对事物进行研究。定性的思想方法,主要从是否存在某种属性、存在程度的深浅或大小等角度进行初步确定;而定量的思想方法,则在定性的基础上精确地对事物的属性进行深度的、量化的表达。如对某溶液酸碱性的描述和酸碱度的表达,又如物质溶解性的描述和溶解度的描述,都是从定性和定量两个方面来对事物进行研究的。 中学化学的学科思想 分类思想(由小到大、由表及里、由现象到本质)—系统化 解决问题程序化思想——策略化 在相似中找差别,在差别中找变化规律的思想——辩证化 由定性到定量的思想——精细化 结构决定性质,性质决定用途的思想——因果化 微观和宏观相互转化的思想——本质化 化学结论来自化学实验的思想——重事实 抽象问题具体化的思想——直观化

群论的应用

群论的基础及应用 第二章群论的应用 2.1图论的结构群应用 在所有数学分支以及计算科学中,结构的概念是最基本的,以不正式的角度看,一个结构s是在点集U的一个construction r,它由一对点集组成。 e 4 图 2.1 通常说,U是结构s 的底图集,图2.1描述了两个结构的例子:一个有根树,和一个有向圈。在集合论上,题中的树可以描述为s=(γ,U),其中U={a,b,c,d,e,f}, γ=({d},{{d,a},{d,c},{c,b},{c,f},{c,e}}) 出现在γ上第一部分的 根点{d}指的是树的根节点。对于有向圈它可以写成形式为 s=(γ,U), 其中 U={x,4,y,a,7,8}, γ={(4,y)(y,a)(a,x)(x,7)(7,8)(8,4)}

U={a ,b ,c ,d ,e ,f} σ V={x ,3,u ,v ,5,4} 图2.2 考虑有根树s=(γ,U )它的底图集是U ,通过图2.2中的σ变换,将U 中每一个元素替换成V 中的元素,这幅图清晰的显示了变换中如何将结构树s 对应到集合V 上相应的树t=(τ,V ),我们说树t 可以由树s 通过变换σ得到。记作t=σ·s.则树s 和树t 是同构的,σ叫做s 到t 的同构。 我们可以将底图的点视为无标记的点,这样就得到同构图的通用形式。如果σ是U 到U ,则它是自同构。此时树的变换σ·S 等价于树s ,即s=σ·s. 我们已经知道结构s 的定义,那么可以定义它在规则F 下的结构群,我们用F[U]表示集合U 上所有满足F 的结构 F[U]={f|f=(γ,U ),γ??[U]} 其中?[U]表示U 中所有未排序的元素对所组成的边。 一个结构群满足规则F : 1.对任意一个有限集U ,都存在一个有限集F[U] 2.对每一个变换σ:U →V ,存在一个作用 F[σ]:F[U]到F[V] 进一步F[σ]满足下列函数性质: 1.对所有的变换σ:U →V 和τ :V →W F[σ·τ]=F[τ]·F[σ]; 2.对恒等映射一个元素s 数域F[U]叫做U 上的一个F 结构,作用F[σ]称为F 结构在σ下的变换。 例:对所有的整数0≥n ,指定n S 是由},,2,1{][n n Λ=的置换作成的对称群,在群作用的操作下,集合F[n]是[n]上的F-结构。说明对每个0≥n ,每个F-结构群,通过令)]([s F s σσ=?(对n S ∈σ和][n F s ∈)诱导出群n S 在集合F[n]上的一个作用 ][][n F n F S n →?(1) 证明: 设F[n]是[n]上的F-结构,不妨令][)),(,(|{][]2[21n i i i s s n F n ?γγ∈==Λ, 对任意][n F s ∈和n S ∈σσ作用在s 上等价于

常见的数学思想方法

x y 2= 常见的数学思想方法 一、中考考点: 1.方程(组)是解决应用题、实际问题和许多方面数学问题的重要基础知识。在解决问题时,把某个未知量设为未知数,根据有关的性质、定理或公式,建立起未知数和已知数间的等量关系,列出方程(组)来解决,这就是方程思想。 2. 数形结合思想是一种重要的数学思想方法。通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。 3. 所谓化归思想就是化未知为已知、化繁为简、化难为易.通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机。 二、基础练习: (一)整体思想 1.如果代数式 1322+-x x 的值为2, 那么代数式x x 322 -的值等于( )A .2 1 B .3 C .6 D .9 2.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿( ) A .图(1)需要的材料多 B .图(2)需要的材料多 C .图(1)、图(2)需要的材料一样多 D .无法确定 (二)方程思想 的图象在第一象限内的交点, 3.如图,已知点A 是一次函数x y =的图象与反比例函数 点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( )A .2 B .2 2 C .2 D .22 (三)数形结合思想 4.如图,A 是硬币圆周上一点,硬币与数轴相切于原点OA (A 与O 点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A′重合,则点A′对应的实数是___________. 5.函数)0(≠= k x k y 的图象如图所示,那么函数k kx y -=的图象大致是( ) (四)化归思想 6.如图,当半径为30cm 的转动轮转过60°角时,传送带上的物体A 移动的距离为________cm .(计算结果不取近似值) 7.将边长为8cm 的正方形ABCD 的四边沿直线l 向右滚动(不滑动),当正方形滚动两面三刀周时,正方形的顶点A 所经过的路线的长是__________cm . 8.在图中,所有多边形的每条边的长都大于2,每个扇形的半径都是1.则第n 个多边形中,所有扇形的面积之和是__________. (五)数学建模思想 9.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角.在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长.(结果保留根号) (六)函数思想 10.某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表: 煤的价格为400元/吨.生产1吨甲产品除原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生 产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的关第式; (2)写出y 与x 的函数表达式(不要求写自变量的范围); (3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大最大利润是多少 (七)统计思想 11.某地区有一条长100千米,宽千米的防护林.有关部门为统计该防护林的树木量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木树量如下(单位:棵):65100、63200、64600、64700、67400.那么根据以上数据估算这一防护林总共约有_________棵树. 12.甲袋中放着19只红球和6只黑球、乙袋则放着170只红球、67只黑球和13只白球,这些球

相关主题