搜档网
当前位置:搜档网 › 递推数列常用十种方法

递推数列常用十种方法

递推数列常用十种方法
递推数列常用十种方法

求递推数列通项公式的十种策略例析

递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,亦可采用不完全归纳法的方法,由特殊情形推导出一般情形,进而用数学归纳法加以证明,因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。笔者试给出求递推数列通项公式的十种方法策略,它们是:公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法。仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。

一、利用公式法求通项公式

例1 已知数列}a {n 满足n n 1n 23a 2a ?+=+,2a 1=,求数列}a {n 的通项公式。 解:n n 1n 23a 2a ?+=+两边除以1n 2+,得

23

2a 2a n

n 1

n 1n +

=

++,则2

32a 2a n n 1n 1n

=-++, 故数列}2a {

n n 是以1222a 11==为首,以2

3

为公差的等差数列,由等差数列的通项公式,得

23)

1n (12a n

n -+=,所以数列}a {n 的通项公式为n n 22

1

n 23(a -=。 评注:本题解题的关键是把递推关系式n n 1n 23a 2a ?+=+转化为

2

3

2a 2a n

n

1

n 1n =

-++,说明数列}2

a {n

n 是等差数列,再直接利用等差数列的通项公式求出23

)1n (12a n n -+=,进而求出数列}a {n 的通项公式。

二、利用累加法求通项公式

例2 已知数列}a {n 满足1a 1

n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+

则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---

1

)1n (2

n )1n (21

)1n (]12)2n ()1n [(21

)112()122(]1)2n (2[]1)1n (2[+-+-?=+-++++-+-=++?++?+++-++-= 所以数列}a {n 的通项公式为2n n a =

评注:本题解题的关键是把递推关系式1n 2a a n 1n ++=+转化为1n 2a a n 1n +=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。

例3 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 解:由132a a n n 1n +?+=+ 得132a a n n 1n +?=-+

则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---

3

)1n ()333

3

(23)132()132()132()132(1

22

n 1

n 122n 1n +-+++++=++?++?+++?++?=----

所以1n 32n 3

1332a n n

n -+=++--?

= 评注:本题解题的关键是把递推关系式132a a n n 1n +?+=+转化为132a a n n 1n +?=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。

例4 已知数列}a {n 满足3a 132a 3a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 解:132a 3a n n 1n +?+=+两边除以1n 3+,得

1n n

n 1

n 1n 3

1

323a 3a +++++

=

1n n

n 1

n 1n 3

1

323a 3a ++++=

-

, 故

3a )3a 3a ()3a 3a ()3a a a ()a a 3a (

3a 1

1

1223n 3n 2n 2n 2n 2n 1n 1n 1n 1n n

n n

n +-++-+-+-

=---------- 33

3132()3132(3132()3132(22n 1n n +++++++++=-- 1)3

1

31313131(3)1n (222n 1n n n +++++++-=

-- 因此n

1

n n n n 321213n 2131)

31(313)1n (23

a ?-+=+--?+-=-, 则2

13213n 32a n n n -?+??=

评注:本题解题的关键是把递推关系式132a 3a n n 1n +?+=+转化为

1n n n

1n 1

n 31

323a 3a ++++=

-,进而求出

)3a 3a ()3a 3a ()3a 3a (3n 3n 2n 2n 2n 2n 1n 1n 1n 1n n n -----------+-+-+…+3a )3a 3a (1112

2+-,即得数列}3a {n n

的通项公式,最后再求数列}a {n 的通项公式。

三、利用累乘法求通项公式

例5 已知数列}a {n 满足3a a 5)1n (2a 1n n 1n =?+=+,,求数列}a {n 的通项公式。

解:因为3a a 5)1n (2a 1n n 1n =?+=+,,所以0a n ≠,则

n n

1

n 5)1n (2a a +=+, 则11

22

32

n 1n 1

n n n a a a a a a a a a a ??

?

??

=

---

3]5)11(2[]5)12(2[]5)12n (2[]5)11n (2[122n 1n ??+???+?+-?+-=-- 35]23)1n (n [212)2n ()1n (1n ?????-??=+++-+--

所以数列}a {n 的通项公式为

!n 523a 2

)

1n (n 1n n

???=--

评注:本题解题的关键是把递推关系n n 1n a 5)1n (2a ?+=+转化为

n n

1

n 5)1n (2a a +=+,进而求出

11

2232n 1

n 1n n a a a a a a a a a ?????--- ,即得数列}a {n 的通项公式。

例6 (2004年全国15题)已知数列}a {n 满足)1n (a 3a 2a a 1a 321n 1-++++== , )2n (a )1n (1n ≥-+-,则}a {n 的通项???

??≥==2n 2

!n 1

n 1a n ,,

解:因为)2n (a )1n (a 3a 2a a 1n 321n ≥-++++=-

所以n 1n 3211n na a )1n (a 3a 2a a +-++++=-+

所以②式-①式得n n 1n na a a =-+ 则)2n (a )1n (a n 1n ≥+=+

)2n (1n a a n

1

n ≥+=+ 所以22

32n 1

n 1n n n a a a a a a a a ????=

--- 22a 2

!

n a ]34)1n (n [?=

????-= ③

由)2n (a )1n (a 3a 2a a 1n 321n ≥-++++=- ,取n=2得212a 2a a +=,则12a a =,又知1a 1=,则1a 2=,代入③得

2

!n n 5431a n =

?????= 。

评注:本题解题的关键是把递推关系式)2n (a )1n (a n 1n ≥+=+转化为

1n a a n

1

n +=+(n ≥2),进而求出

22

32n 1

n 1n n a a a a a a a ????--- ,从而可得当n ≥2时n a 的表达式,最后再求出数列}a {n 的通项公式。

四、利用待定系数法求通项公式

例7 已知数列}a {n 满足6a 53a 2a 1n n 1n =?+=+,,求数列}a {n 的通项公式。 解:设)5x a (25x a n n 1n 1n ?+=?+++

将n n 1n 53a 2a ?+=+代入④式,得n n 1n n n 5x 2a 25x 53a 2?+=?+?++,等式两边消去

n a 2,得n 1n n 5x 25x 53?=?+?+,两边除以n 5,得x 25x 3=?+,则x=-1,代入④式,

得)5a (25a n n 1n 1n -=-++

由1565a 11=-=-≠0及⑤式,得05a n

n ≠-,则

25a 5a n

n 1n 1n =--++,则数列}5a {n n -是

以15a 11=-为首项,以2为公比的等比数列,则1n n n 215a -?=-,故n 1n n 52a +=-。 评注:本题解题的关键是把递推关系式n n 1n 53a 2a ?+=+转化为

)5a (25a n n 1n 1n -=-++,从而可知数列}5a {n n -是等比数列,进而求出数列}5a {n n -的

通项公式,最后再求出数列}a {n 的通项公式。

例8 已知数列}a {n 满足1a 425a 3a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 解:设)y 2x a (3y 2x a n n 1n 1n +?+=+?+++

将425a 3a n n 1n +?+=+代入⑥式,得

)y 2x a (3y 2x 425a 3n n 1n n n +?+=+?++?++

整理得y 32x 3y 42)x 25(n n +?=++?+。

令???=+=+y 3y 4x 3x 25,则?

??==2y 5x ,代入⑥式,得

)225a (3225a n n 1n 1n +?+=+?+++

由013121225a 11≠=+=+?+及⑦式,

得0225a n

n ≠+?+,则

32

25a 225a n

n 1n 1n =+?++?+++,

故数列}225a {n n +?+是以13121225a 11=+=+?+为首项,以3为公比的等比数列,因此1n n n 313225a -?=+?+,则225313a n 1n n -?-?=-。

评注:本题解题的关键是把递推关系式425a 3a n n 1n +?+=+转化为

)225a (3225a n n 1n 1n +?+=+?+++,从而可知数列}225a {n n +?+是等比数列,进而求出

数列}225a {n n +?+的通项公式,最后再求数列}a {n 的通项公式。

例9 已知数列}a {n 满足1a 5n 4n 3a 2a 12n 1n =++?+=+,,求数列}a {n 的通项公式。 解:设z )1n (y )1n (x a 21n ++++++

)z yn xn a (22n +++=

将5n 4n 3a 2a 2n 1n ++?+=+代入⑧式,得

z )1n (y )1n (x 5n 4n 3a 222n +++++++??+ )z yn xn a (22n +++=,则

z

2yn 2xn 2a 2)5z y x (n )4y x 2(n )x 3(a 22

n 2n +++=+++++++++

等式两边消去n a 2,得z 2yn 2xn 2)5z y x (n )4y x 2(n )x 3(22++=++++++++,

则得方程组??

?

??=+++=++=+z

25z y x y 24y x 2x

2x 3,则?????===18z 10y 3x ,代入⑧式,得

18)1n (10)1n (3a 21n ++++++)18n 10n 3a (22n +++=

由0323111811013a 21≠=+=+?+?+及⑨式,得

018n 10n 3a 2n ≠+++

218

n 10n 3a 18

)1n (10)1n (3a 2

n 21n =+++++++++,故数列}18n 10n 3a {2n +++为以

323111811013a 21=+=+?+?+为首项,以2为公比的等比数列,因此1n 2n 23218n 10n 3a -?=+++,则18n 10n 32a 24n n ---=+。

评注:本题解题的关键是把递推关系式5n 4n 3a 2a 2n 1n ++?+=+转化为

)

18n 10n 3a (218)1n (10)1n (3a 2n 21n +++=++++++,从而可知数列

}18n 10n 3a {2n +++是等比数列,进而求出数列}18n 10n 3a {2n +++的通项公式,最后再

求出数列}a {n 的通项公式。

五、利用对数变换法求通项公式

例10 已知数列}a {n 满足5n n 1n a 32a ?=+,7a 1=,求数列}a {n 的通项公式。

解:因为7a a 32a 15n n 1n =?=+,,所以0a 0a 1n n >>+,。在5

n n 1n a 32a ?=+式两边取常用

对数得2lg 3lg n a lg 5a lg n 1n ++=+

设)y xn a (lg 5y )1n (x a lg n 1n ++=++++ ○

11 将⑩式代入○

11式,得)y xn a (lg 5y )1n (x 2lg 3lg n a lg 5n n ++=+++++,两边消去n a lg 5并整理,得y 5xn 52lg y x n )x 3(lg +=++++,则

??

?=++=+y 52lg y x x 5x 3lg ,故???

????

+==42lg 163lg y 43lg x 代入○11式,得4

2

lg 163lg )1n (43lg a lg 1n +

+++

+ 4

2

lg 163lg n 43lg a (lg 5n +++

=

12 由042

lg 163lg 143lg 7lg 42lg 163lg 143lg a lg 1≠++?+=++?+及○

12式, 得04

2lg 163lg n 43lg a lg n ≠+++

, 则

54

2

lg 163lg n 43lg a lg 42

lg 163lg )1n (43lg a lg n 1n =+

+?+++++

+, 所以数列}42lg 163lg n 43lg a {lg n +++

是以4

2

lg 163lg 43lg 7lg +

++为首项,以5为公比的等比数列,则1

n n 5

4

2lg 163lg 43lg 7(lg 42lg 163lg n 43lg a lg -+++=+++,因此4

2

lg 63lg n 43lg 542lg 163lg 43lg 7(lg a lg 1n n -

--+++=-1

n 4

16

14

15)2lg 3lg 3lg 7(lg -+

+

+

==

??-???=----)233lg(5)]2337[lg(2lg 3lg 3lg 4

116

14

n

1n 4

116

14

1

4

1

16

1

4

n

1

n 4

116141

5)2337lg(-???)

237lg()

2337lg()

233lg(41516

1

n 4n 51n 541516154n

51n 54116

14n

1n 1n 1n 1n ------------??=???=??-,

41

516

1n 4n 55

n 1n 1

n 237a -----??=。

评注:本题解题的关键是通过对数变换把递推关系式5n n 1n a 32a ?=+转化为

4

2

lg 163lg n 43lg a (lg 542lg 163lg )1n (43lg a lg n 1n +++=++++

+,从而可知数列

}4

2lg 16

3lg n 4

3lg a {lg n +

+

+

是等比数列,进而求出数列}4

2

lg 163lg n 43lg a {lg n +++

的通项公式,最后再求出数列}a {n 的通项公式。

六、利用迭代法求通项公式

例11 已知数列}a {n 满足5a a a 12

)1n (3n

1n n

==++,,求数列}a {n 的通项公式。 解:因为n

2)1n (3n

1n a a ++=,所以 1

n 2

n 1

n 2n 32

)1n (32

n 2n 31

n n ]a [a a ---??--?-==

2

)

1n (n 1

n )

1n ()2n ()3n (211

n )

1n ()2n ()3n (3

)

1n ()2n (2

3

n )

1n ()2n (2

2

!n 31

2n )1n ()2n (32312n )1n )(2n (33

n 2n )1n (3

2)2n (33

n 2

n )1n (32n a a a ]a [a ---+-+-+++--+-+--+---+-????-?-???---??-?--??--======

又5a 1=,所以数列}a {n 的通项公式为2

)

1n (n 1

n 2

!n 3

n 5a --??=。

评注:本题还可综合利用累乘法和对数变换法求数列的通项公式,即先将等式

n

2

)1n (3n

1n a a ++=两边取常用对数得n n 1n a lg 2)1n (3a lg ?+=+,即n n

1

n 2)1n (3a lg a lg ?+=+,再由累乘法可推知2

)1n (n 1n 2

!n 311

2232n 1

n 1n n n 5lg a lg a lg a lg a lg a lg a lg a lg a lg a lg a lg --??---=?????= ,从而

2

)

1n (n 2

!n 3n 1n 5

a -??-=

七、利用数学归纳法求通项公式 例12 已知数列}a {n 满足98

a )

3n 2()1n 2()1n (8a a 12

2n 1n =++++=+,,求数列}a {n 的通项公式。

解:由2

2n 1n )3n 2()1n 2()1n (8a a ++++

=+及98

a 1

=,得 2

212)

312()112()

11(8a a +?+?++

= 25

24

2592898=

??+=

49

484925382524)322()122()

12(8a a 2

223=??+=+?+?++

=

81

808149484948)332()132()

13(8a a 2

234=??+=+?+?++

=

由此可猜测22n )1n 2(1

)1n 2(a +-+=,往下用数学归纳法证明这个结论。

(1)当n=1时,98

)

112(1)112(a 2

21=+?-+?=,所以等式成立。 (2)假设当n=k 时等式成立,即2

2k )1k 2(1

)1k 2(a +-+=,则当1k n +=时,

2

2k 1k )3k 2()1k 2()

1k (8a a ++++

=+

222222

22

2

2

22222222)3k 2()1k 2()1k 2()3k 2()1k 2()3k 2()1k 2()

1k (8)3k 2()3k 2()1k 2()3k 2()1k 2()1k (8)3k 2](1)1k 2[()3k 2()1k 2()1k (8)1k 2(1)1k 2(+++-++=

+++++-++=

+++++-+=

+++++-+=

2

222]

1)1k (2[1

]1)1k (2[)3k 2(1)3k 2(++-++=+-+=

由此可知,当n=k+1时等式也成立。 根据(1)(2)可知,等式对任何*N n ∈

评注:本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。

八、利用换元法求通项公式 例13 已知数列}a {n 满足1a )a 241a 41(161

a 1n n 1n =+++=+,,

求数列}a {n 的通项公式。

解:令n n a 241b +=,则)1b (24

1a 2

n n -= 故)1b (241a 21n 1n -=

++,代入)a 241a 41(16

1

a n n 1n +++=+得 ]

b )1b (24

141[161)1b (241n 2n 21n +-?+=-+ 即2n 21n )3b (b 4+=+

因为0a 241b n n ≥+=,故0a 241b 1n 1n ≥+=++ 则3b b 2n 1n +=+,即2

3

b 21b n 1n +=+, 可化为)3b (2

1

3b n 1n -=

-+, 所以}3b {n -是以2312413a 2413b 11=-?+=-+=-为首项,以

2

1

为公比的等比数列,因此2n 1n n 21(21(23b --=?=-,则2n n 21(b -=+3,即32

1

(a 2412n n +=+-,得

3

121()41(32a n n n ++=。

评注:本题解题的关键是通过将n a 241+的换元为n b ,使得所给递推关系式转化

2

3

b 21b n 1n +=+形式,从而可知数列}3b {n -为等比数列,进而求出数列}3b {n -的通项公

式,最后再求出数列}a {n 的通项公式。

九、利用不动点法求通项公式 例14 已知数列}a {n 满足4a 1

a 424

a 21a 1n n 1n =+-=

+,,求数列}a {n 的通项公式。

解:令1

x 424

x 21x +-=

,得024x 20x 42=+-,则3x 2x 21==,是函数1x 424x 21)x (f +-=的

两个不动点。因为9

13

27a 926a 13)1a 4(324a 21)1a 4(224a 213

1a 424a 212

1a 424

a 213a 2a n n n n n n n n n n 1n 1n =

--=+--+--=-+--+-=--++。3a 2a n n --,所以数列}3a 2a {n n

--是以234243a 2a 11=--=--为首项,以913

为公比的等比数列,故3a 2a n n --1n 9

13

(2-=,则319

13

(21a 1n n +-=-。

评注:本题解题的关键是先求出函数1x 424x 21)x (f +-=的不动点,即方程1

x 424

x 21x +-=的

两个根3x 2x 21==,,进而可推出

3a 2a 9133a 2a n n 1n 1n --?=--++,从而可知数列}3

a 2a {n n

--为等比数列,再求出数列}3

a 2

a {

n n --的通项公式,最后求出数列}a {n 的通项公式。

例15 已知数列}a {n 满足2a 3

a 22

a 7a 1n n 1n =+-=

+,,求数列}a {n 的通项公式。

解:令3x 22x 7x +-=

,得02x 4x 22=+-,则x=1是函数)x (f 7x 41

x 3+-=的不动点。 因为3

a 25

a 513a 22a 71a n n n n 1n +-=-+-=

-+,所以

=-+1a 11n 5

21a 11a 251(521a 23a 525a 53a 2n n n n n n +-=-+=-+

?

=-+,所以数列}1a 1{n -是以11211a 11=-=-为首项,以52为公差的等差数列,则52)1n (11a 1n ?-+=-,故3

n 28n 2a n ++=。

评注:本题解题的关键是先求出函数7

x 41

x 3)x (f +-=

的不动点,即方程3x 22x 7x +-=的根

1x =,进而可推出

521a 11

a 1n 1n +-=

-+,从而可知数列}1

a 1

{n -为等差数列,再求出数列}1

a 1

{

n -的通项公式,最后求出数列}a {n 的通项公式。

十、利用特征根法求通项公式

例16 已知数列}a {n 满足1a a )2n (a a 3a 211n n 1n ==≥-=-+,,求数列}a {n 的通项公

式。

解:)2n (a a 3a 1n n 1n ≥-=-+的相应特征方程为0132=+λ-λ,解之求特征根是

25325321-=λ+=

λ,,所以2

5

3c 253c a 21n -?++?=。 由初始值1a a 21==,得方程组

???

???

?-++=-++=22211

211)253(c )253(c 1)2

53(c )253(

c 1 求得???

????+=-=5525c 55

25c 21

从而n

n n )2

53(5525253(5525a -+++-=

。 评注:本题解题的关键是先求出特征方程的根。再由初始值确定出21c c ,,从而可得数列}a {n 的通项公式。

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法例1 在数列{n a }中,31=a ,) 1(1 1++=+n n a a n n ,求通项公式n a . 解:原递推式可化为:1111+- + =+n n a a n n 则,211112-+=a a 3 1 2123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故n a n 1 4-=. 二、作商求和法 例2 设数列{n a }是首项为1的正项数列,且0)1(12 2 1=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题) 解:原递推式可化为: )]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n 1 . 三、换元法 例3 已知数列{n a },其中913,3421== a a ,且当n ≥3时,)(3 1 211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编). 解:设11---=n n n a a b ,原递推式可化为: }{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31 .故 n n n n b b )31()31(91)31(2211==?=---.故n n n a a )31(1=--.由逐差法可得:n n a )3 1 (2123-=. 例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。解 由1221=+---n n n a a a 得:1)()(211=------n n n n a a a a ,令11---=n n n a a b ,则上式为 121=---n n b b ,因此}{n b 是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b 又2 ) 1(121-=+++-n n b b b n 所以)1(211-= -n n a n ,即)2(2 1 2+-=n n a n

排列组合二项式递推数列求通项常见

排列组合二项式递推数列求通项常见题型解法自用资料集 排列组合的常见题型及其解法 排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。 复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。 一.特殊元素(位置)用优先法 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先 安排的方法。 例1.6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 解法1 :(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有 A4种站法;第二步再让其余的5人站在其他5个位置上,有A种站法,故站法共有:A4-A5 = 48o(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端, 有A种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A:种,故站法共有:A A4 = 480 (种) 二.相邻问题用捆绑法 对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一 个元素,与其他元素进行排列,然后相邻元素内部再进行排列。 例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 6 3 解:把3个女生视为一个元素,与5个男生进行排列,共有A6种,然后女生内部再进行排列,有A3种,所以排法共有:A6 A3 ^4320 (种)。 三?相离问题用插空法 元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。 例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法? 解:先将其余4人排成一排,有A44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 种,所以排法共有:此A =1440 (种) 四.定序问题用除法 对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有A^种, m(m空n)个元素的全排列有A;种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以 利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有虫种排列方法。 A m

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

九类常见递推数列求通项公式方法

递推数列通项求解方法举隅 类型一:1n n a pa q +=+(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ……121(1n p a q p p -=++++…211)11n n q q p a p p p --??+=+ ?+ ? --??。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--?? ,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=??…… 1223(122n -=++++ (211) 332)12232112n n n --+??+=+?+=- ? --?? 。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则1 1342 2n n n a -++=?=,即123n n a +=-。 类型二:1()n n a a f n +=+ 思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+ ∑。

几种常见的递推数列通项的求法之教学反思

《几种常见的递推数列通项的求法》之教学反思 数学是一门研究数量关系和空间形式的科学。数列恰好是研究数量关系的一个章节。 数列通项公式直接表述了数列的本质,是给出数列的一种重要方法。数列通项公式具备两大功能,第一,可以通过数列通项公式求出数列中任意一项;第二,可以通过数列通项公式判断一个数是否为数列的项以及是第几项等问题;因此,求数列通项公式是高中数学中最为常见的题型之一,它既考察等价转换与化归的数学思想,又能反映学生对数列的理解深度,具有一定的技巧性,是衡量考生数学素质的要素之一,因而经常渗透在高考和数学竞赛中。 我在这几年的高中教学中,从每年各省的高考真题和模拟题中,发现“数列通项公式”求法在高中解题中占有很大的比重。求数列(特别是以递推关系式给出的数列)通项公式的确具有很强的技巧性,与我们所学的基本知识与技能、基本思想与方法有很大关系,因而在平日教与学的过程中,既要加强基本知识、、基本方法、基本技能和基本思想的学习,又要注意培养和提高数学素质与能力和创新精神。这就要求无论教师还是学生都必须提高课堂的教与学的效率,注意多加总结和反思,注意联想和对比分析,做到触类旁通,将一些看起来毫不起眼的基础性命题进行横向的拓宽与纵向的深入,通过弱化或强化条件与结论,揭示出它与某类问题的联系与区别并变更为出新的命题。这样无论从内容的发散,还是解题思维的深入,都能收到固本拓新之用,收到“秀枝一株,嫁接成林”之效,从而有利于形成和发展创新的思维。 高考改革的的变化趋势是强调基础,提高能力。相对于旧版教材,当前的新课标教材以意大利著名数学家斐波那契在兔子繁殖问题中提出的“斐波那契数列12(3)n n n a a a n --=+≥”,专门定义了数列的递推公式的概念,并由此产生出了怎样应用递推关系求解数列通项公式. 正是基于数列通项求法的重要性,我决定在赛课选题中把这个知识点作为切入点。 一、要有明确的教学目标 教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。高三备课时要依据考纲,但又不拘泥于考纲,灵活运用变通。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。本节课的重点在数形结合,所以我选择的每一道例题和练习题都以数形结合为中心。 二、要能突出重点、化解难点 每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,我应该加强学生在课堂上对习题过程的展示,对数形结合思想的领悟,以图解题,让学生在黑板上亲自演练,或用投影仪展示其做题的思路和过程。 三、要善于应用现代化教学手段 在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量,从而把原来40

高中数学几种常见的数列递推关系式专题辅导

高中数学几种常见的数列递推关系式 数列的递推关系是指数列中的前一项(前几项)与后一项的关系式。递推数列是数列中的重要内容,通过递推关系,观察,探求数列的规律,进而可求出整个数列的通项公式。通过递推关系的学习,可以培养学生的观察能力,归纳与转化能力,综合运用知识等能力,因此,是近几年高考与竞赛的热点。 下面针对几种高中常见的递推形式及处理方法做一总结。 一. 定义法 常见形式: 已知:a a a a d n n 11==++, ① 或a a a a q n n 110=≠=+, ② (其中,d 常数,q ≠0为常数) 定义法即高中所学的两大基本数列——等差数列与等比数列的基本定义式。 已知首项,与递推关系,数列的通项即知,在此不做赘述。但这两个基本数列的求通项公式的方法在后续学习中,在方法上起到了指导作用。即我们下面要介绍的方法。 二. 迭代法 常见形式:已知 a a a a f n n n 110=≠=++,() ③ 或a a a a f n f n n n 110=≠=+,,()()不恒为零 ④ (这里的f n ()是关于n 的关系式)。 这两个形式的递推关系式,虽然不是等差与等比数列,但表达方式上非常接近。我们可以利用迭代的方法来求出通项a n 也可以分别称为叠加法和叠乘法。 如:③a a f 211-=() a a f 322-=() …… a a f n n n N n n -=-≥∈-112()()*, 将以上n -1个式子叠加,可得 a a f f f n n n N n -=+++-≥∈11212()()()()*…, 这里,我们只须已知数列的首项a 1利用求和求出上述等式右端的和,即可求出数列 {}a n 的通项公式来。 如:④的具体例子: 例1. (2006年东北三省三校一模试题21)已知数列{}a n ,S n 是数列的前n 项和, a S n a n n 212 ==,。求S n 。 解:因为S n S S n n N n n n =-≥∈-2 21()()*, 所以n S n S n n 22 21-=- S S n n n n N n n -= -≥∈123()*, S S S S S S S S n n n n n n N n n n n 324312131425364132 3·…····… ·,---=---≥∈()*

常见递推数列通项公式的求法

数列复习课(3)———常见递推数列通项公式的求法 主备人:刘莉苹 组长:李英 时间:2013-9-16 教学目标: 1.通过求出数列前几项,了解递推公式是给出数列的一种方法,并能根据特殊的递推公式求出数列的通项公式. 2.掌握把一些简单的数列变形转化为等差数列、等比数列的方法,体验解决数列问题的基本方法及理解运用的过程. 教学重点:处理递推关系的基本方法. 教学难点:通过变形转化成等差、等比数列的有关问题. 研讨互助 问题生成 引入新课: 由递推公式求数列的通项公式的类型: (1) (2) (3) (4)()n f pa a n n +=+1型数列(p 为常数) (5)n n n qa pa a +=++12(其中p ,q 均为常数)。 (6)递推公式为n S 与n a 的关系式()n n S f a = 即n a 与n s 的关系11(1)(2)n n n s n a s s n -=?=?-≥? (7)r n n pa a =+1)0,0(>>n a p (8)) ()()(1n h a n g a n f a n n n +=+ (9)周期型 思考:各类型通项公式的求法? 合作探究 问题解决 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 1() n n a a f n +=+1() n n a a f n +=?1(0,1) n n a pa q p p +=+≠≠

变式: 1. 已知数列{}n a 满足211=a ,112 n n a a +=+,求n a . 2.若数列{}n b 满足11b =,112n n n b b +??-= ???(1)n ≥,求数列{}n b 的通项公式. 3.已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 变式: 1. 已知31=a ,132n n a a += ,求n a 。 2.已知31=a ,n n a n n a 23131 +-=+ )1(≥n ,求n a 。

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

递推数列通项公式求法(教案)讲解学习

递推数列通项公式求 法(教案)

由递推数列求通项公式 马鞍中学 --- 李群花 一、课题:由递推数列求通项公式 二、教学目标 1、知识与技能: 会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 2、过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出叠加法的试用题型。 ③学生分组讨论完成叠乘法及待定系数法的相关题型。 3、情感态度与价值观: ①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列递推公式问题的分析和探究,使学生养成细心观察、 认真分析、善于总结的良好思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课型,课时:复习课 1课时 六、教学手段:多媒体课件,黑板,粉笔 七、教学方法:激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾:

1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1: 在数列{a n }中 a 1=1,a n -a n-1=2n-1(n ≥ 2),求数列{a n } 的通项公式。 活动:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学生细致讲解整个解题过程。 总结:类型1:)(1n f a a n n =-+,利用叠加法(逐差相加法)求解。 问题2:例2在数列{a n }中 a 1=1, (n ≥ 2),求数列{a n } 的通项公式。 方法归纳:利用叠乘法求数列通项 活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。 练习2设{a n }是首项为1的正项数列,且(n+1)a n 2+1 –na n 2 +a n+1a n =0, n n n a a 21 =-

数列的递推关系

数列的递推关系 ? 教学重点: 数列的任意连续若干项能满足的关系式称为该数列的一个递推公式,由递推公式和相应有尽有前若干项可以确定一个数列.这种表示方法叫做递推公式法或递推法. ? 教学难点: 1.根据数列的首项和递推公式写出它的前几项,关归纳出通项公式. 2.n n S a 的关系 ???-=-1 1S S S a n n n )1() 2(=≥n n . ? 教学过程: 一、复习 数列的定义,数列的通项公式的意义(从函数观点出发去刻划). 二、递推公式 钢管的例子 3+=n a n 从另一个角度,可以: 1 4 11+==-n n a a a Λ ) 2() 1(≥=n n “递推公式”定义:已知数列{}n a 的第一项,且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式. 例1.已知21=a ,41-=+n n a a 求n a . 解一:可以写出:21=a ,22-=a ,63-=a ,104-=a ,…… 观察可得:)1(42)4)(1(2--=--+=n n n a n 解二:由题设: 41-=-+n n a a

∴ Λ Λ4 4 432211-=--=--=------n n n n n n a a a a a a ) +412-=-a a )1(41--=-n a a n ∴ )1(42--=n a n 例2.若记数列{}n a 的前n 项之和为S n 试证明:?? ? -=-1 1 S S S a n n n ) 1()2(=≥n n 证:显然1=n 时 ,11S a = 当1≠n 即2≥n 时, n n a a a S +++=Λ21 1211--+++=n n a a a S Λ ∴ n n n a S S =--1 ∴???-=-1 1S S S a n n n )1() 2(=≥n n 注意:1? 此法可作为常用公式; 2? 当)(11S a =时 满足1--n n S S 时,则1--=n n n S S a . 例3.已知数列{}n a 的前n 项和为① n n S n -=22 ② 12 ++=n n S n ,求数列{}n a 的 通项公式. 解:1.当1=n 时,111==S a 当2≥n 时,34)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合 34-=n a n 2.当1=n 时,311==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n 例4.已知21=a ,n n a a 21=+ 求n a .

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

专题由递推关系求数列的通项公式(含答案)

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a =,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

数列的递推公式练习

数列的递推公式练习 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

课时作业5数列的递推公式(选学) 时间:45分钟满分:100分 课堂训练 1.在数列{a n}中,a1=,a n=(-1)n·2a n-1(n≥2),则a5=() A.- C.- 【答案】 B 【解析】由a n=(-1)n·2a n-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=. 2.某数列第一项为1,并且对所有n≥2,n∈N,数列的前n项之积为 n2,则这个数列的通项公式是() A.a n=2n-1 B.a n=n2 C.a n=D.a n= 【答案】 C 【解析】∵a1·a2·a3·…·a n=n2,a1·a2·a3·…·a n-1=(n-1)2,∴两式相除,得a n=. 3.已知数列{a n}满足:a4n-3=1,a4n-1=0,a2n=a n,n∈N+,则a2009= ________,a2014=________. 【答案】10 【解析】考查数列的通项公式. ∵2009=4×503-3,∴a2009=1, ∵2014=2×1007,∴a2014=a1007,

又1007=4×252-1,∴a1007=a4×252-1=0. 4.已知数列{a n},a1=0,a n+1=,写出数列的前4项,并归纳出该数列的通项公式. 【解析】a1=0,a2==,a3===,a4===. 直接观察可以发现,把a3=写成a3=, 这样可知a n=(n≥2,n∈N+). 当n=1时,=0=a1, 所以a n=(n∈N+). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n}满足:a1=-,a n=1-(n≥2),则a4=() C.- 【答案】 C 【解析】∵a1=-,a n=1-(n≥2), ∴a2=1-=1-=5, a3=1-=1-=, a4=1-=1-=1-=-. 2.数列{a n}满足a1=,a n=-(n≥2,n∈N+),则a2013=() B.- C.3 D.-3 【答案】 A

专题由递推关系求数列的通项公式含答案

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a = ,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积 例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式 评注 此类问题关键是化 ()1 n n a g n a -=,且式子右边累乘时可求积,而左边中间项可消。 4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法 称为转化法。常用的转化途径有: ⑴凑配、消项变换——如将一阶线性递推公式1n n a qa d +=+(q, d 为常数,0,1q q ≠≠)通过凑配变成 11n d a q ++ -=1n d q a q ??+ ?-?? ,或消常数项转化为()211n n n n a a q a a +++-=- 例4、已知数列{n a }中,11a =,()1212n n a a n -=+≥,求数列{n a }的通项公式 点评: 此类问题关键是利用配凑或消项变换将其转化为等比数列

常见递推数列通项公式的求法典型例题及习题

.. . 常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -= ---n n a a n n ……

.. . 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- = (2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-= k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-1 1)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n

数列四种递推公式解题

浅谈四种数列递推公式求通项公式的方法 寿县一中数学组 邵兵荣 摘要:本文是介绍数列通项公式的求法,数列的通项公式是研究数列性质的关键,对数列的单调性,数列的最大项,最小项,数列的求和等都有重大作用,通过构造等比数列将四种数列的递推公式转化为等比数列,先有等比数列的通项公式再求所求数列的通项公式。 关键词:等比数列 递推公式 通项公式 数列的递推公式是数列的一种表示方法,它反映的是数列相邻项之间的关系式,如果要研究某个数列的性质,我们就要确定其通项公式。本文就介绍了四种根据数列的递推公式求通项公式的方法。 一、数列}{n a 中,已知q pa a a a n n +==-11,,()+∈>N n n ,1,0,1≠≠q p ,求数列}{n a 的通项公式。 解析:可以设()x a p x a n n +=+-1,化简得()x p pa a n n 11-+=- 比较系数得到(),1q x p =-即1 -=p q x , 所以数列}{n a 满足:??? ? ??-+=-+-111p q a p p q a n n 即数列}1{-+p q a n 是以首项为1 -+p q a ,公比为p 的等比数列。 即111-??? ? ??-+=-+n n p p q a p q a 所以111--???? ? ?-+=-p q p p q a a n n ,(0,1,≠≠∈+q p N n ) 【例1】设数列}{n a 满足, 23,111+==-n n a a a ()+∈>N n n ,1,求数列}{n a 的 通项公式。 解:根据231+=-n n a a 可以得到()1311+=+-n n a a 即数列}1{+n a 是以211=+a 为首项,公比为3的等比数列。 所以1321-?=+n n a 即1321-?=-n n a 二、数列}{n a 中,已知a a =1,r qn pa a n n ++=-1,()+∈>N n n ,1,R r q a p ∈≠≠≠,0,0,1 ,求数列}{n a 的通项公式。 解析:可以设()]1[1y n x a p y xn a n n +-+=++-,可以得到

相关主题