搜档网
当前位置:搜档网 › 开关电源的设计实验报告

开关电源的设计实验报告

开关电源的设计实验报告
开关电源的设计实验报告

河西学院物理与机电工程

学院

综合设计实验

开关电源的设计

实验报告

学院:物理与机电工程学院

专业:电子信息科学与技术

:侯涛

日期:2016年4月12日

绪论

开关电源是近年来应用非常广泛的一种新式电源,它具有体积小、重量轻、耗能低、使用方便等优点,在邮电通信、航空航天、仪器仪表、工业设备、医疗器械、家用电器等领域应用效果显著。

一、开关电源的概念和分类

电源是将各种能源转换成为用电设备所需电能的装置,是所有靠电能工作的装置的动力源泉。

1.开关电源的概念

电是工业的动力,是人类生活的源泉。电源是产生电的装置,表示电源特性的参数有功率、电压、电流、频率等;在同一参数要求下,又有重量、体积、效率和可靠性等指标。我们用的电,一般都需要经过转换才能适合使用的需求,例如交流转换成直流,高电压变成低电压,大功率变换为小功率等。

按照电子理论,所谓AC/DC就是交流转换为直流;AC/AC称为交流转换为交流,即为改变频率;DC/AC称为逆变;DC/DC为直流变交流后再变直流。为了达到转换的目的,电源变换的方法是多样的。自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。所以,凡是用半导体功率器件作开关,将一种电源形态转换成另一种形态的电路,叫做开关变换电路。在转换时,以自动控制稳定输出并有各种保护环节的电路,称为开关电源。

开关电源在转换过程中,用高频变压器隔离称之为离线式开关变换器,常用的AC/DC 变换器就是离线式变换器。

开关电源通常由六大部分组成,如图所示。

第一部分是输入电路,它包含有低通滤波和一次整流环节。220V交流电直接经低通滤波和桥式整流后得到未稳压的直流电压Vi,此电压送到第二部分进行功率因数校正,其目的是提高功率因数,它的形式是保持输入电流与输入电压同相。功率因数校正的方法有无源功率因数校正和有源功率因数校正两种。所谓有源功率因数校正,是指电源在校正过程中常采用三极管和集成电路。开关电源电路常采用有源功率因数校正。第三部分是功率转换,它是由电子开关和高频方波脉冲电压。第四部分是输出电路,用于将高频方波脉冲电压经整流滤波后变成直流电压输出。第五部分是控制电路,输出电压经过分压、采样后于电路的基准电压进行比较、放大。第六部分是频率振荡发生器,它产生一种高频波段信号,该信号与控制信号叠加进行脉宽调制,达到脉冲宽度可调。有了高频振荡才有电源变换,所以说开关电源的实质是电源变换。

2.开关电源的分类

DC/DC变换类型是开关电源变换的基本类型,它通过控制开关通、断时间的比例,用电抗器与电容器上蓄积的能量对开关波形进行微分平滑处理,从而更有效地调整脉冲的宽度及频率。从输入、输出有无变压器隔离来说,DC/DC变换分为有变压器隔离和没有变压器隔离两类。每一类有6种拓扑,即降压式(Buck)、升压式(Boost)、升压—降压式(Buck-Boost)、串联式(Cuk)、并联式(Sepic)以及赛达式(Zata)。按激励方式分,有自激式和他激式两种。自激式包括单管式和推挽式,他激式包括调频式(PWF)、调宽式(PWM)、调幅式(PAM)和谐振式(RSM)4种,我们用得最多的是调宽式变换器。调宽式变换器有以下几种:正激式、反激式、半桥式、全桥式、推挽式和阻塞式等6种。

按谐振方式分,有串联谐振式、并联谐振式和串并联谐振式;按能量传递方式分,有连续模式和不连续模式两种。凡是以脉冲宽度来调制的电子开关变换器都叫PWM变换器。

二、开关电源的基本原理

开关稳压电源(简称开关电源)是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般多采用脉冲宽度调制(PWM)控制方式。随着电力电子技术的发展和创新,开关电源逐步向高频化方向发展。高频化使开关电源具有体积小、重量轻、效率高等优点,因此,研究、开发高质量的开关电源就变得十分必要,尤其在节约能源、节约资源及保护环境方面都具有重要的意义。

开关稳压电源具有,效率高,输出功率大,输入电压变化围宽,节约能耗等优点,而被广泛使用在各个行业和领域中。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值即占空比来改变输出电压,通常有三种调制方式:

脉冲宽度调制( P W M ) 、脉冲频率调制( P F M )和混合调制。P W M调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式,因为周期恒定,滤波电路的设计容易,是应用最普遍的调制方式。开关稳压电源的主回路框图如图所示,由隔离变压器产生一个1 8 V的交流,经过整流滤波成一个直流,然后再进行D C - D C 变换,有P W M 的驱动电路,去控制开关电源管的导通和截止,而产生出一个稳定的电压源,如图所示:

三、实验电路图

1.启动电路

2.PWM脉冲控制驱动电路

3.电路输出部分的设计

根据设计要求,输出电路部分采用升压式斩波电路。这一部分电路由电感、续流二级管、电容及负载电阻组成。

升压斩波电路的基本原理:

开关管以UC3842设定的频率周期开闭,使电感L储存能量并释放能量。当开关管导通时,电感以Vi/L的速度充电,把能量储存在L中。当开关截止时,L产生反向感应电压,通过二极管D把储存的电能以(V0-Vi)/L的速度释放到输出电容器C2中。输出电压由传递的能量多少来控制,而传递能量的多少通过电感电流的峰值来控制。

4.实验总电路图

电路图由三部分组成:

(1)启动电路,即降压整流滤波电路,这部分主要是得到DC-DC的输入电压和为UC3842提供驱动电压。

(2)PWM脉冲控制驱动电路,它的主体是一个UC3842芯片,以及它的外围电路组成。用它的⑥脚的输出脉冲控制MOS管的工作,并且它自带保护脚③,简单方便。

(3)输出部分,它是由一个升压直流斩波电路构成,结构原路简单。

5.实验结果(波形)

6.PCB电路板制作过程及图示

1.先在Altium Designer下画出实验图。

2.新建PCB并保存,将原理图导入到PCB中。

3.合理布局并敷铜

4.3D模型

7.实验心得体会及总结

在这个实验中,我知道了开关电源的概念、分类以及如何设计一个简易的开关电源;当然通过这个实验我知道了成功是建立在失败的基础之上的,没有不经历失败就可以直接把实验做成功的;只有通过自己的努力,才会获得相对应的收获。这个实验更加让我对Multisim、Altium Desiger软件的学习与应用;我大概也知道了制PCB板时板尺寸大小以及合理的放置元件,相信我在以后的实验中会做的更好。

开关电源实验报告

开关电源实验报告 一开关电源原理 如下图30W开关电源电路图所示,市电先经过由电容CX1和滤波电感LF1A组成的滤波电路后,再经过型号为KBP210的整流桥BD1和C1组成的整流电路,输出直流电。直流电又经过由UC3842和2N60等元器件组成的高频逆变电路后,变成高频的交流电,经高频变压器输出为低电压的高频交流电。高频交流经肖基特二极管SR1060后变为脉动的直流电,最后经滤波电容和滤波电感变为我们想要的直流电输出。

MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。(2)输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 (3)整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

1.2功率变换电路 (1)MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。(2)常见的原理图: (3)工作原理 R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。

开关电源设计报告

1开关电源主电路设计 1.1主电路拓扑结构选择 由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。其主电路拓扑结构如下图所示: 图1-1 主电路拓扑结构 1.2开关电源电路稳态分析 下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。 由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下: 1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i () t R v i ‘ 图1-2 在S DT t <<0时等效电路 g nv v =s (1-1) v nv v g -L = (1-2) R v i i /-C = (1-3) 2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3 所示。此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 2 1 。。 i () t R i ‘ 图1-3 在S S T t DT <<时等效电路 0=s v (1-4) v v -L = (1-5) R v i i /-C = (1-6) 3) 当S S T D t T )( +1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

电子工程师的设计经验笔记

电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。

电感是电容的死对头。另外,电感还有这样一个特点:电流和磁场必需同时存在。电流要消失,磁场会消失;磁场要消失,电流会消失;磁场南北极变化,电流正负极也会变化。 电感内部的电流和磁场一直在“打内战”,电流想变化,磁场偏不让变化;磁场想变化,电流偏不让变化。但,由于外界原因,电流和磁场都可能一定要发生变化。给电感线圈加上电压,电流想从零变大,可是磁场会反对,因此电流只好慢慢的变大;给电感去掉电压,电流想从大变成零,可是磁场又要反对,可是电流回路都没啦,电流已经被强迫为零,磁场就会发怒,立即在电感两端产生很高的电压,企图产生电流并维持电流不变。这个电压很高很高,甚至会损坏电子元件,这就是线圈的自感现象。 给一个电感线圈外加一个变化磁场,只要线圈有闭合的回路,线圈就会产生电流。如果没回路的话,就会在线圈两端产生一个电压。产生电压的目的就是要企图产生电流。当两个或多个丝圈共用一个磁芯(聚集磁力线的作用)或共用一个磁场时,线圈之间的电流和磁场就会互相影响,这就是电流的互感现象。 大家看得见,电感其实就是一根导线,电感对直流的电阻很小,甚至能够忽略不计。电感对交流电呈现出很大的电阻作用。 电感的串联、并联非常复杂,因为电感实际上就是一根导线在按一定的位置路线分布,所以,电感的串联、并联也跟电感的位置相关(主要是磁力场的互相作用相关),如果不考虑磁场作用及分布电容、导线电阻(Q值)等影响的话就相当于电阻的串联、并联效果。 交流电的频率越高,电感的阻碍作用越大。交流电的频率越低,电感的阻碍作用越小。 电感和充满电的电容并联在一起时,电容放电会给电感,电感产生磁场,磁场会维持电流,电流又会给电容反向充电,反向充电后又会放电,周而复始……如果没损耗,或能及时的补充这种损耗,就会产生稳定的振荡。 电子工程师必备基础知识(四)

简易风力摆报告设计

设计了一个简易风力摆控制装置,由直流风机组,陀螺仪,直流减速电机以及激光笔等组成。以MSP430F14单片机为核心,用PW波控制控制电机转速,调节风力大小,并以四个风机上下与左右同面两两并在一起对碳素管及激光笔进行工作,使细杆及激光笔在 风机的作用下可进行自由摆动且进一步可控摆动在地上划线,具有很好的重复性,并且可 以设定摆动方向且画短线,已经能够在将风力摆拉起一定角度放开后可以在规定时间内达到平衡。 关键词:风力控制摆、陀螺仪、轴流风机、PWM B速、MSP43C单片机 风力摆控制系统(B题) 1方案设计与选择 1.1设计内容 要求一个下端悬挂有(2~4只)直流风机的细管上端固定在结构支架上,只由风机提供动力,构成一个风力摆,风力摆上安装一个向下的激光笔。通过单片机代码指令控制驱动风机使风力摆按照一定的规律运动,并使激光笔在地面画出要求的轨迹,风力摆结构图如图1所示。 图1风力摆结构图 1.2设计要求 1.2.1基本要求 (1)从静止开始,15s内控制风力摆做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于50cm的直线段,其线性度偏差不大于土 2.5cm,并且具有较好的重复性; ⑵从静止开始,15s内完成幅度可控的摆动,画出长度在30~60cm间可设置,长度偏差不大于土 2.5cm的直线段,并且具有较好的重复性; (3)可设定摆动方向,风力摆从静止开始,15s内按照设置的方向(角度)摆动,画

出不短于20cm的直线段; (4)将风力摆拉起一定角度(30~45 ° )放开,5s内使风力摆制动达到静止状态。 1.2.2发挥部分 (1) 以风力摆静止时激光笔的光点为圆心,驱动风力摆用激光笔在地面画圆,30s内 需重复3次;圆半径可在15~35cm范围内设置,激光笔画出的轨迹应落在指定半径 ± 2.5cm的圆环内; (2) 在发挥部分(1)后继续作圆周运动,在距离风力摆1~2m距离内用一台50~60W台扇在水平方向吹向风力摆,台扇吹5s后停止,风力摆能够在5s内恢复发挥部分(1)规定的圆周运动,激光笔画出符合要求的轨迹; (3) 其他。 2总体方案设计与选择 2.1单片机选择 方案一:采用STC89S51芯片,该款芯片具有高性能低功耗的特点,具有32位输入/ 输出,可以实现处理、存储等功能⑴,但是其灵活性不高,需实时保护软件现场,否则易丢失信息,存储能力较弱。 方案二:采用MSP430F14芯片,该款芯片具有高性能,低功耗的特点,其抗干扰能力比较强,存储空间较大,稳定性较强。 二者比较之下,选择方案二作为此次设计的核心控制部分。 2.2直流风机选择 方案一:采用12V 4.5A的轴流风机,风力很大,可以将自身轻松吹起,但是体积较大,质量较重。 方案二:采用12V 1.5A的小风机,体积小,质量轻。但是风力足够大,单电机产生 的风力可吹起4个相同电机

开关电源课程设计

电气与电子信息工程学院 《电力电子装置设计与制作课程设计报告》 课设名称:开关直流升压电源(BOOST)设计 专业名称:电气工程及其自动化 班级: 学号: 姓名: 指导教师: 课设时间: 课设地点: 电气与电子信息工程学院

《电力电子装置设计与制作》课程设计任务 书 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目: 开关直流升压电源(BOOST)设计 二、课程设计内容 根据题目选择合适的输入输出电压进行电路设计,在Protel或OrCAD软件上进行原理图绘制;满足设计要求后,再进行硬件制作和调试。如实验结果不满足要求,则修改设计,直到满足要求为止。 题目:开关直流升压电源(BOOST)设计 主要技术指标: 1)输入交流电压220V(可省略此环节)。 2)输入直流电压在11-12V之间。 3)输出直流电压17V,输出电压纹波小于2%。 4)输出电流1A。 5)采用脉宽调制PWM电路控制。 目录

摘要 (5) 第一章方案选择和方案论证 (7) 1.系统方案设计 (7) 2.方案论证 (7) 第二章主电路计算和器件选择 (8) 1.设计要求 (8) 2.选择开关管的频率 (8) 3.占空比计算 (8) 4.电感的计算(按D=35.29%) (8) 5.电容的计算 (8) 6.电感峰值电流的计算(按D=35.29%) (8) 7.开关管的选择 (8) 8.开关损耗的计算(按D=35.29%) (9) 9.二极管的选择 (9) 10.电阻的计算 (9) 第三章系统功能及原理 (10) 1.系统功能 (10) 2. boost电路工作原理 (10) 第四章各模块的功能和原理 (13) 1. TL494工作原理 (13) 2. 开关频率的计算 (13) 第五章 MATLAB仿真 (15) 1.仿真原理图 (15) 2.仿真结果 (15) 3.仿真结果分析 (16) 第六章实验结果以及分析 (17) 1.实验结果 (17) 2.结果分析 (17) 第七章硬件电路 (18) 1.焊接电路主电路图 (18) 2.焊接电路控制电路图 (18)

精通开关电源设计

《精通开关电源设计》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

模电课程设计—开关电源

《模拟电子线路》 课程设计报告 题目:基于TL3842的升压电路设计班级:12电信本2 学号:1111111111 姓名:XXX 同组成员:姚X阳、严X涛 指导教师:X琼、X文X 2014年6月25日

目录 1 课程设计目的 (1) 2 题目描述和要求 (1) 3 电路设计 (1) 3.1 系统设计思路 (1) 3.2 Boost电路结构分析 (3) 3.3 推导与计算 (5) 4 LTspice仿真 (6) 5 电路焊接与调试 (8) 5.1 元件清单 (8) 5.2 电路焊接 (9) 5.3 电路测试 (9) 6 总结 (12) 7 指导教师意见 (13) 参考文献 (13)

基于TL3842的升压电路 1 课程设计目的 模拟电子线路课程设计是对自身的模拟电子线路知识的一个检验,基础知识扎实与否很大程度决定了设计出来的产品效果,若出现问题可运用所学过的知识进行判断修改,具体目的如下。 (1)加强对模拟电路知识的运用。 (2)学习Proteus、LTspice等仿真软件的使用。 (3)会运用LTspice工具对所做出的理论设计进行模拟仿真测试,进一步完善理论设计。 (4)通过查阅元件手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则,找到最合适电路的元器件。 (5)熟悉电子仪器的正确使用方法,能够分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的意外问题。 (6)学会撰写课程设计报告。 2 题目描述和要求 开关电源是一种效率高、功耗小、稳定性可靠性高的电源,相比线性稳压电源有点明显,因此与时俱进,我们小组决定做开关电源,具体描述如下。(1)课程设计题目:利用TL3842制作一个BOOST DC-DC变换器,即升压式开关电源。 (2)课程设计要求:输入直流电压Vmin=18V,Vmax=30V。输入稳定的36V直流电压,并且纹波电压V<10mV。 3 电路设计 3.1 系统设计思路 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W 以上的DC/DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的

开关电源实验报告

开关电源实验报告 一、开关电源电路图及清单 1.1 60W-12V开关电源电路图 图1-1 开关电源电路原理1.2.60W-12V开关电源电清单

二、开关电源介绍 开关电源大致由主电路、控制电路、检测电路、辅助电源四大部份组成。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED 灯袋,电脑机箱,数码产品和仪器类等领域。它是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。 模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有中国

最新开关电源学习笔记

开关电源学习笔记

开关电源学习笔记 阅读书记名称《集成开关电源的设计调试与维修》 开关电源术语: 效率:电源的输出功率与输入功率的百分比。其测量条件是满负载,输入交流电压标准值。 ESR:等效串联电阻。它表示电解电容呈现的电阻值的总和。一般情况下,ESR值越低的电容,性能越好 输出电压保持时间:在开关电源输出电压撤消后,依然保持其额定输出电压的时间。 启动浪涌保护:它属于保护电路。它对电源启动时产生的尖蜂电流起限制作作用。为了防止不必要的功率损耗,在设计这一电路时候,一定要保证滤波电容充满电之前,就起到限流的作用。 隔离电压:电源电路中的任何一部分与电源基板之间的最大电压。或者能够加在开关电源的输入与输出端之间的最大直流电压。 线性调整率:输出电压随负载在指定范围内的变化百分率。条件是线电压和环境温度不变。 噪音和波纹:附加在直流信号上的交流电压的高频尖锋信号的峰值。通常是mV度量。 隔离式开关电源:一般指开关电源。它从输入的交流电源直接进行整流滤波,不使用低频隔离变压器。 输出瞬态响应时间:从输出负载电路产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间。

过载过流保护:防止因负载过重,是电流超过原设计的额定值而造成电源的损坏的电。远程检测:电压检测的一种方法。为了补偿电源输出的电压降,直接从负载上检测输出电压的方法。 软启动:在系统启动时,一种延长开关波形的工作周期的方法。工作周期是从零到它的正常工作点所用的时间。 快速短路保护电路:一种用于电源输出端的保护电路。当出现过压现象时,保护电路启动,将电源输出端电压快速短路。 占空比:开关电源中,开关元件导通的时间和变换工作周期之比。 元件选择和电路设计: 一:输入整流器的一些参数 最大正向整流电流:这个参数主要根据开关电源输出功率决定,所选择的整流二极管的稳态电流容量至少应是计算值的2倍。 峰值反向截止电压(PIV):由于整流器工作在高压的环境,所以它们必须有较高的PIV值。一般600V以上。 要有能承受高的浪涌电流的能力:浪涌电源是用开关管导通时的峰值电流产生。 二:输入滤波电容 输入滤波电容对开关电源的影响 电源输出端的低频交流纹波电压 输出电压的保持时间 滤波电容的计算公式: C=(I*t)/ΔV

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

开关电源课程设计

目录 前言 (1) 第一章开关电源技术课程设计任务书 (2) 第二章主电路原理设计 (7) 第三章开关变压器设计 (9) 第四章主要元器件的选型 (16) 第五章电路仿真及结果 (23) 总结 参考文献 附表一 附表二

前言 电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。 UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。

第一章开关电源技术课程设计任务书 一、课程设计的目的 通过开关电源技术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文 献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 一、题目 题目:反激型开关电源电路设计 注意事项: ①学生也可以选择规定题目方向外的其它开关电源电路设计。 ②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计内容。 设计装置(或电路)的主要技术数据

简易开关电源设计报告

四川教育学院应用电子设计报告 课程名称:Protel99 电路设计系部:物理与电子技术系专业班级:应用电子技术0901 学生姓名:x x x 学号: 指导教师: 完成时间:

开关电源电路设计报告 一. 设计要求: 直流稳定电源主要包括线性稳定电源和开关型稳定电源,由于开关稳压电源的优点是体积小,重量轻,稳定可靠,适用性强,故选择设计可调开关稳压电源,其具体设计要求如下: (1).所选元器件和电路必须达到在一定范围内输出电压连续可调,输出电压U0=+6V —— +9V连续可调,输出额定电流为500mA; (2).输出电压应能够适应所带负载的启动性能,且输出电压短路时,对各元器件不会产生影响; (3).电路还必须简单可靠,有过流保护电路,能够输出足够大的电流。 二.方案选择及电路的工作原理 方案一: 首先用一个桥式整流电路将输入的交流电压变成直流电压,然后经过电容滤波,然后在经过一个NPN型三级管Q1调整管,最后整过电路形成一个通路,达到最终的效果。 方案二: 开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘栅双极型晶体管)兼有场效

应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件[6]。IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。 为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。 在短路电流出现时,为了避免关断电流的过大形成过电压,导致IGBT 锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。 在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。 为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。下面是几种IGBT短路保护的实用电路及工作原理。 利用IGBT的Vce设计过流保护电路

反激设计最牛笔记

【最牛笔记】大牛开关电源设计全过程笔记! 反激变换器设计笔记 1、概述 开关电源的设计是一份非常耗时费力的苦差事,需要不断地修正多个设计变量,直到性能达到设计目标为止。本文step-by-step 介绍反激变换器的设计步骤,并以一个6.5W 隔离双路输出的反激变换器设计为例,主控芯片采用NCP1015。 基本的反激变换器原理图如图1 所示,在需要对输入输出进行电气隔离的低功率(1W~60W)开关电源应用场合,反激变换器(Flyback Converter)是最常用的一种拓扑结构(Topology)。简单、可靠、低成本、易于实现是反激变换器突出的优点。 2、设计步骤

接下来,参考图2 所示的设计步骤,一步一步设计反激变换器 1.Step1:初始化系统参数 ------输入电压范围:Vinmin_AC 及Vinmax_AC ------电网频率:fline(国内为50Hz) ------输出功率:(等于各路输出功率之和) ------初步估计变换器效率:η(低压输出时,η取0.7~0.75,高压输出时,η取0.8~0.85)根据预估效率,估算输入功率: 对多路输出,定义KL(n)为第n 路输出功率与输出总功率的比值:

单路输出时,KL(n)=1. 2. Step2:确定输入电容Cbulk Cbulk 的取值与输入功率有关,通常,对于宽输入电压(85~265VAC),取2~3μF/W;对窄范围输入电压(176~265VAC),取1μF/W 即可,电容充电占空比Dch 一般取0.2 即可。

一般在整流后的最小电压Vinmin_DC 处设计反激变换器,可由Cbulk 计算Vinmin_DC: 3. Step3:确定最大占空比Dmax 反激变换器有两种运行模式:电感电流连续模式(CCM)和电感电流断续模式(DCM)。两种模式各有优缺点,相对而言,DCM 模式具有更好的开关特性,次级整流二极管零电流关断,因此不存在CCM 模式的二极管反向恢复的问题。此外,同功率等级下,由于DCM模式的变压器比CCM 模式存储的能量少,故DCM 模式的变压器尺寸更小。但是,相比较CCM 模式而言,DCM 模式使得初级电流的RMS 增大,这将会增大MOS 管的导通损耗,同时会增加次级输出电容的电流应力。因此,CCM 模式常被推荐使用在低压大电流输出的场合,DCM 模式常被推荐使用在高压小电流输出的场合。

课程设计_可调直流稳压电源

电子科学与技术专业课程设计 目录 一、设计目的作用 (1) 二、设计要求 (1) 2.1 直流稳压电源的种类及选用 (1) 2.2 稳压电源的技术指标及对稳压电源的要求 (2) 2.3 串联型直流稳压电源的设计要求 (2) 三、设计的具体实现 (2) 3.1 系统概述 (2) 3.2 单元电路设计与分析 (4) 3.2.1 降压电路 (5) 3.2.2 整流电路 (5) 3.2.3 滤波电路 (7) 3.2.4 稳压电路 (9) 3.3 元件电路参数计算 (10) 3.4 改进方案 (11) 3.5 电路主要测试数据 (12) 四、总结 (12) 五、附录 (12)

六、参考文献 (14)

设计要求 2.1 直流稳压电源的种类及选用 直流稳定电源按习惯可分为化学电源、线性稳定电源和开关型稳定电源,它们又分别具有各种不同类型: (1)化学电源:平常所用的干电池、铅酸蓄电池、镍镉、镍氢、锂离子电池均属于这一类,各有其优缺点。随着科学技术的发展,又产生了智能化电池;在充电电池材料方面,美国研制员发现锰的一种碘化物,用它可以制造出便宜、小巧、放电时间,多次充电后仍保持性能良好的环保型充电电池。 (2)线性稳压电源:线性稳定电源有一个共同的特点就是它的功率器件调整管工作在线性区,靠调整管之间的电压降来稳定输出。由于调整管静态损耗大,需要安装一个很大的散热器给它散热,而且由于变压器工作在工频(50Hz)上,所以重量较大。该类电源优点是稳定性高,纹波小,可靠性高,易做成多路,输出连续可调的成品;缺点是体积大、较笨重、效率相对较低。 (3)开关型直流稳压电源:电路型式主要有单端反激式,单端正激式、半桥式、推挽式和全桥式。它和线性电源的根本区别在于它变压器不工作在工频而是工作在几十千赫兹到几兆赫兹,功能管不是工作在饱和及截止区即开关状态,开关电源因此而得名。开关电源的优点是体积小,重量轻,稳定可靠;缺点相 对于线性电源来说纹波较大(一般≤1% V ) (P P o-,好的可做到十几mV P P- 或更小)。 它的功率可自几瓦-几千瓦均有产品。 2.2 稳压电源的技术指标及对稳压电源的要求 (1)稳定性好 当输入电压Usr(整流、滤波的输出电压)在规定范围内变动时,输出电压Usc的变化应该很小一般要求。由输入电压变化而引起输出电压变化的程度,称为稳定度指标,常用稳压系数S来表示:S的大小,反映一个稳压电源克服输入电压变化的能力。在同样的输入电压变化条件下,S越小,输出电压的变化越小, 电源的稳定度越高。通常S约为10-2~10-4。 (2)输出电阻小 负载变化时(从空载到满载),输出电压Usc,应基本保持不变。稳压电源这方面的性能可用输出电阻表征。输出电阻(又叫等效内阻)用rn表示,它等于输出电压变化量和负载电流变化量之比。rn反映负载变动时,输出电压维持恒定的能力,rn越小,则Ifz 变化时输出电压的变化也越小。性能优良的稳压

电力电子课程设计心得-单端反激式输出开关电源设计【模版】

电力电子技术课程设计报告

单端反激式单路输出开关电源 一、设计任务及要求 本课程设计要求根据所提供的元器件设计并制作一个小功率的单端反激式开关电源。我们设计的反激式开关电源的输入是180V,输出是10V。要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务,并具有1A的带负载能力以及过流保护功能。 二、设计原理及思路 1、反激变换器工作原理 假设变压器和其他元器件均为理想元器件,稳态工作下: (1)当有源开关Q导通时,变压器原边电流增加,会产生上正下负的感应电动势,从而在副边产生下正上负的感应电动势,无源开关VD1因反偏而截止,输出由电容C向负载提供能量,而原边则从电源吸收电能,储存于磁路中。 (2)当有源开关Q截止时,由于变压器磁路中的磁通不能突变,所以在原边会感应出上负下正的感应电动势,而在副边会感应出上正下负的感应电动势,故VD1正偏而导通,此时磁路中的存储的能量转到副边,并经二极管VD1向负载供电,同时补充滤波电容C在前一阶段所损失的能量。输出滤波电容除了在开关Q导通时给负载提供能量外,还用来限制输出电压上的开关频率纹波分量,使之远小于稳态的直流输出电压。 U o 图 1 反激变换器的原理图 反激变换器的工作过程大致可以看做是原边储能和副边放电两个阶段。原边电流和副边电流在这两个阶段中分别起到励磁电流的作用。如果在下一次Q导通之前,副边已将磁路的储能放光,即副边电流变为零,则称变换器运行于断续电流模式(DCM),反之,则在副边还没有将磁路的储能放光,即在副边电流没有变为零之前,Q又导通,则称变换器运行于连续电流模式(CCM)。通常反激变换器多设计为断续电流模式(DCM)下。

相关主题