搜档网
当前位置:搜档网 › Dynamic modeling of a hybrid wind,solar,hydro microgrid in EMTP,ATP

Dynamic modeling of a hybrid wind,solar,hydro microgrid in EMTP,ATP

Dynamic modeling of a hybrid wind,solar,hydro microgrid in EMTP,ATP
Dynamic modeling of a hybrid wind,solar,hydro microgrid in EMTP,ATP

Dynamic modeling of a hybrid wind/solar/hydro microgrid in EMTP/ATP

Lin Ye a ,*,Hai Bo Sun b ,Xu Ri Song c ,Li Cheng Li a

a

Department of Electric Power Systems,China Agricultural University,P.O.Box 210,Beijing 100083,PR China b

Sui Hua Electric Power Company,Helongjiang Province,Suihua 152061,PR China c

China Electric Power Research Institute (CEPRI),Beijing 100192,PR China

a r t i c l e i n f o

Article history:

Received 23December 2010Accepted 14July 2011

Available online 24August 2011

Keywords:

Wind/solar/hydro hybrid power system (HPS)Microgrid

ElectroMagnetic Transient Program/

Alternative Transient Program (EMTP/ATP)Dynamic model

Distributed generation (DG)

a b s t r a c t

Microgrids are LV or MV electric networks which utilize various distributed generators (DG)to serve local loads.In this paper,dynamic models of the main distributed generators including photovoltaic (PV)cell,wind turbine,hydro turbine as well as the equivalent power electronic interfaces,battery unit of PV and excitation system of hydro turbine have been made in ElectroMagnetic Transient Program/Alternative Transient Program (EMTP/ATP)software package.Control strategies based on active power/frequency and reactive power/voltage droops for the power control of the inverters have been also developed.Case studies have been carried out in a distribution network to investigate the dynamic behavior of the micro-sources in both steady state and fault scenarios.Simulation results verify the feasibility of the proposed models.

ó2011Elsevier Ltd.All rights reserved.

1.Introduction

The increasing consumption and the environmental problems caused by the conventional power generation is drawing atten-tion to the distributed generation (DG).In China,more and more renewables such as wind power,solar power,small hydropower,biomass etc.,have been installed and put into operation in low voltage (LV)power networks,especially in vast rural areas.Nor-mally DG based micro-sources deliver power to the load through hybrid power system (HPS)which can basically solve the problem of energy demand in remote areas.HPS mircrogrids can be connected to the main power network or be operated autonomously [1,2].

Hybrid Power System (HPS)microgrid may use three-phases circuits and be loaded with three-phases loads.These factors generate balanced and unbalanced conditions that can be accen-tuated with line fault,short-circuit,wire-break,etc.When one source is unavailable or insuf ?cient in meeting the load demands,the others can compensate for the difference.Several hybrid power systems have been developed [3e 6].A dynamic simulation model of the Hybrid Power System (HPS)has been developed [4],after determining the most appropriate combination of components

according to the variations in loads.It has been pointed out that a transformer-less small-scale centralized DC-bus grid connected hybrid (wind/PV)power system supplying electric power to a three phase low voltage distribution grid [5].An isolated network for very low voltage decentralized energy production and storage based on photovoltaic and wind was developed,mainly considering the energy management and control of the photovoltaic and wind hybrid system [6].A grid connected hybrid scheme for residential power supply based on an integrated PV array and a wind-driven induction generator were discussed [7].However,all the hybrid power systems didn ’t mention hydro source.Moreover,steady state of hybrid microgrids was mainly discussed,whereas neglecting the transient fault analysis.

In this paper,Alternative Transient Program (ATP)version of Electromagnetic Transient Program (EMTP)and ATPDraw are chosen as a platform to do modeling and simulations.A dynamic model of hybrid power systems including photovoltaic cell,wind turbines and hydro turbines has been created in EMPT/ATP.Nor-mally these sources are directly coupled to the grid through power electronic converters and thus have a direct effect on grid voltage and frequency [7].Therefore,basic models of their equivalent power electronic interfaces,control strategies and batteries have been developed as well.Case studies have been carried out to investigate the dynamic behavior of micro-sources in steady and faulty states.Feasibility of the proposed models has been veri ?ed by simulation results.

*Corresponding author.Tel.:t861062737842,t861062736746.E-mail address:yelin@https://www.sodocs.net/doc/4d17001068.html, (L.

Ye).Contents lists available at ScienceDirect

Renewable Energy

journal ho me page:www.elsevier.co m/lo

cate/renene

0960-1481/$e see front matter ó2011Elsevier Ltd.All rights reserved.doi:10.1016/j.renene.2011.07.018

Renewable Energy 39(2012)96e 106

2.Modeling of the hybrid power system(HPS)

2.1.Modeling of wind turbines(WTs)

The direct-driven Permanent Magnet Synchronous Generator (PMSG)has been widely used in modern wind energy conversion system(WECS),since it does not need external excitation and a gearbox.It consists of wind model,turbine model,generator model,converter model and MPPT controller model for maximum wind energy capture.These features make PMSG a competitive machine type of low cost,weight,size,noise emissions,mainte-nance requirements,and high ef?ciency.The available aero-dynamic power on the turbine rotor is given by the following expression:

p m?0:5r A v3C pelT(1) where r is air density(kg/m3);A is swept area(m3).The power coef?cient C p of the wind turbine in Equation(1)is a function of tip-speed ratio l,which is given by:

l?u R

v(2) where R is the radius of blades and u is the rotational speed of the wind turbine shaft.In order to keep maximum ef?ciency in wind generation,the rotational speed u is adjusted along with wind speed v to maintain l in a constant value which makes C p have its maximum value C pmax.It can keep wind turbine in maximum wind power capturing by changing the output active power of generator according to the wind velocity,theoretically.The rotational speed u is determined by the difference between the mechanical power and the output active power of generator without consideration of the losses[8],which is represented by:

1 2J u2?

Z

eP màP eTd t(3)

where J is the equal inertia of wind generation system(including the inertia of wind turbine,drive train and the rotor of generator) and P e is the output active power of generator.

The generator model carries out the calculation of terminal voltage of PMSG as a function of rotational speed u and stator current in d-q synchronous reference frame.The machine model that has been used is based on the following equations:

8

>< >:u sd?àR s i sdàL d

d i sd

d t

tu s L q i sq

u sq?àR s i sqàL q

d i sq

d t

àu s L d i sdtu s j f

(4) where u sd and u sq are the terminal voltages;i sd,i sq are the stator

currents;R s is the stator winding resistance,L d and L q are the stator direct and quadrature inductances and J f is the excitation?ux linkage.To minimize generator losses,which are mainly caused by the losses in the stator winding resistance,the current should be kept as small as possible[9].

The electrical torque T e of the PMSG can be calculated as follow:

T e?3

2

pi q

h

i d

à

L dàL q

á

tj f

i

(5)

where p is the number of pole-pairs.For a non-salient-pole machine the stator inductances L d and L q are approximately equal.This means that the direct-axis current i d does not contribute to the electrical torque.So i d is kept near to zero in order to obtain the maximal torque with a minimum current.Then,the output active power of generator P e is:P e?u sq i sqtu sd i sd(6) From Equations(3)and(6)we get the rotational speed u under the condition of non-rotational speed.

2.2.Modelling of PV arrays

The electric power generated by a photovoltaic array is?uctu-ating according to the illumination and the temperature.The building block of PV arrays is the PV cell,which is basically a P-N junction semiconductor that products current via the photovoltaic effect.PV arrays are constructed by placing numerous PV cells connected in series and in parallel[2].The most commonly used model of a PV cell is the one-diode equivalent circuit as shown in Fig.1.

The current e voltage characteristic of a PV cell is derived as follow:

I?I phàI D(7) I?I phàI0exp

qeUtR s IT

Ak B T

à1

àUtR s I

R sh

!

(8)

where:I ph?photo current(A),I D?diode current(A), I0?saturation current(A),A?the diode quality constant(when T?28 C,A?28),q?electronic charge(1.6?10à9C), k B?Boltzmann’s gas constant(1.38?10à23),T?cell temperature ( C),R s?series resistance(U),R sh?shunt resistance(U),I?cell current(A),U?cell voltage(V).

There are several parameters(I ph,I0,R s,R sh,T,etc)which need to be determined before the I e U relationship can be obtained.In this paper a mathematical model of relation between the power,output current and output voltage is given based on technical parameters, such as short-circuit current(I sc),open-circuit voltage(U oc), maximum power current(I m)and maximum power voltage(U m), which could re?ect the output characteristic of the PV cells[10]. The novel models are presented as follow.

At Standard Test Conditions(STC)(T?25 C,S?1000W/m2), the current e voltage characteristic of a PV cell can be modeled mathematically using Equation(9).

I?I sc

1àC1

&

exp

U o

C2U oc

!

à1

'

(9) C1?

I m

I sc

exp

àU m

C2U oc

(10)

Fig.1.One-diode equivalent circuit model of a PV cell.

L.Ye et al./Renewable Energy39(2012)96e10697

C 2?

U m

U oc

à1 ln

I m I sc

!à1

(11)

where:I sc ?short-circuit current (A),U oc ?open-circuit voltage (V),I m ?maximum power current (A),U m ?maximum power voltage (V),U o ?cell voltage (V),I ?cell current (A).

According to the I sc ,U oc ,I m ,U m on reference condition,the new parameters (I sc 0,U oc 0,I m 0,U m 0)can be developed,thus getting the new I e U relationship considering the illumination intensity and temperature on the output characteristic of PV cell.

8>>>>>>>>>>>>><>>>>>>>>>>>>>:D T ?T àT ref D S ?S S ref à1I 0

sc ?I sc

S S ref

e1ta D T TU 0oc ?U oc e1àc D T Tln e1tb D S TI 0m ?I m S ref e1ta D T TU 0m

?U m e1àc D T Tln e1tb D S T

(12)

where:S ref ?reference illumination intensity (1000W/m 2),T ref ?reference cell temperature (25 C),D T ?difference between actual temperature and reference one ( C),D S ?difference between actual illumination intensity and reference one ( C),a ?0.0025/ C,b ?0.5/ C,c ?0.00288/ C.

2.3.Modeling of hydro turbines

The EMTP/ATP models of the small hydropower system,including hydro turbine,synchronous machine and excitation control system.

2.3.1.Small hydro turbine

In general,ordinary turbines and waterwheels use the energy that can be evaluated as the sum of the three forms of energy given by Bernoulli ’s theorem [11].This expression remains constant for a given cross section and position in a channel:

v 22g

th tp r g ?

P r gQ (13)

where v is water ?ow speed (m/s),g is gravity constant (9.8m/s 2),h is height of the water (m),p is pressure of the water (N/m 2),r is density of the water (kg/m 3),P is power (kg m/s)(1HP ?75kg m/s ?746W),Q is ?ow of the watercourse (m 3/s).

For ordinary modern turbines,the effective power at their input may be obtained from Equation (13)neglecting the terms v and p for the potential energy in the watercourse as:

P t ?h t r gQH m

(14)

where h t is the turbine simpli ?ed ef ?ciency (for standard turbines it is taken as 0.80)and H m is the water head.The available ?ow of a watercourse (m 3/s)is expressed by:

Q ?A v (15)

where A is the area of the cross section (m 2)and v is water ?ow

speed (m/s).

2.3.2.Synchronous machine

First assume:(1)ignoring the motor iron core saturation;(2)excluding the eddy current and hysteresis motor loss;(3)perma-nent magnets in the stator windings create a sinusoidal ?ux distribution.Based on above assumptions,a mathematical model of synchronous motor has been built in the EMTP/ATP software platform.Hydroelectric power unit adopts an equivalent models of winding synchronous generators [12e 16].

Usually,in the d-q coordinate system,winding synchronous generator has the following ?ux equation in the view of the generator stator coils point:

8

>>>>><

>>>>>:v ds ?àR s i ds àu m j qs td j ds v qs ?àR s i qs àu m j ds td j qs

d t v fd ?R fd i fd

td j fd d t

(16)

Fig.2.Battery equivalent

circuit.

Fig.3.Control block of PMSG.

L.Ye et al./Renewable Energy 39(2012)96e 106

98

where j ds and j qs are total ?uxes of stator d-axis and stator q-axis,j fd is excitation winding ?ux,i ds and i qs are stator d-axis and stator q-axis currents,i fd is excitation winding current and u m is electrical angular frequency of generator,v ds and v qs are stator d-axis and stator q-axis voltages,R fd is the excitation resistance,R s is the stator resistance.

Active power,reactive power and electromagnetic torque are expressed by the following equations:

8

<:P s ?v ds i ds tv qs i qs Q s ?v qs i ds àv ds i qs T e ?j ds i qs àj qs i ds

(17)

where P s is the active power,Q s is the reactive power,T e is the electromagnetic torque.The mathematical model of synchronous generator is originally built on the d-q synchronous rotating coor-dinate system.Park transformation is used to change a e b e c coor-dinate system into d-q coordinate system [17,18].

2

4i d i q i 035?232

66666

4cos q cos q à120

cos

q t120

àsin q

àsin q à120

àsin q t120

1

212

1

2

3

77777524i a

i b i c 3

5

(18)

where in Park ’s matrix,q is electrical angle of the machine,zero-axis component i 0is proportional to the sum of the instantaneous values in three-phases currents.2.4.Modeling of battery

The battery bank has been represented as a voltage source connected in series with a resistance,neglecting the dynamic characteristics of charging and discharging [6].The simpli ?ed bank equivalent circuit is shown in Fig.2.

3.Control strategy of the hybrid power systems (HPS)

To comply with the HPS requirement,each micro-source controller must respond autonomously to HPS changes without communication between other micro-sources.Control strategies including converter control,MPPT control of PV,excitation control of hydro turbines have been developed in EMTP/ATP software package.

3.1.Control of wind turbines (WTs)

The Wind Energy Conversion System includes wind turbines,PMSG and the converter.The converter makes it possible to control the PMSG ?ux and consequently the speed of the generator,facil-itating the integration of WTs.The converter model together with the MPPT controller model is expressed in the following diagram (Fig.3

).

Fig.4.PV array control block

diagram.

Fig.5.Flowchart of MPPT (Maximum Power Point Tracking)of PV.

L.Ye et al./Renewable Energy 39(2012)96e 10699

In order to combine a fast response of the controlled variable to a change of the set-point with zero steady-state deviation,two PI-controllers were chosen.The reference values of stator current in d-q axis can be written in Equation (19),where P and Q are output active power and reactive power of the integral part of the controller,v d and v q are the stator voltages in synchronous refer-ence frame which are transformed from quantities measured in stationary reference frame.Then,we get the reference stator current in a e b e c representation by park transformation.The control signals for converter are generated by comparison between measured currents and the calculated ones.

8

>>><>>>:i d ?v d P tv q Q v 2d tv 2q i q ?

v q P àv d Q v 2d

tv 2q (19)

where i d and i q are stator d-axis and stator q-axis currents,v d

and v q are stator d-axis and stator q-axis voltages,P and Q are active power and reactive power.

Searching the optimal operation point of photovoltaic systems is called maximum point tracking (MPPT).Based on the characteristic of wind turbine rotor output power P against angular velocity u corresponding to wind speed v,there is one maximum for each curve,and the optimal rotor angular velocity u increases with the wind speed v .This relation is helpful in ?nding out the point of

maximum power without knowing any details about the trace P (u ).It can get the optimal output active power command easily if wind velocity and rotor angular speed are known.3.2.PV array control strategy

PV array delivers power to loads through a converter and control system (Fig.4).

As for control of PV arrays,the Droop control Algorithm was chosen to control the converter.Principally,the control strategy of PV arrays is developed for frequency and voltage based on instan-taneous current and voltage.Thus,the calculated active and reac-tive powers are used to adjust the output frequency and the output voltage via droops.

The method of implementing droop control is to use the active power P as a function of the angular frequency u and use the reactive power Q as a function of the voltage amplitude E .When regulating the output power,each source has a constant negative slope droop on the P ,u plane,P is the amount of power injected by each source when connected to the grid,at system frequency and u *is the system frequency (50Hz),reactive power regulation corresponding similarity,thus we can regulate P /Q separately as follow:

(

u ?u *àR f P

E ?E *àR v Q

(20)

Fig.6.Block diagram of the excitation

system.

Fig.7.Equivalent control diagram of excitation system.

L.Ye et al./Renewable Energy 39(2012)96e 106

100

where u *is the system frequency (50Hz)and E *is the voltage amplitude.

3.3.Maximum Power Point Tracking (MPPT)algorithm of PV arrays The characteristics at Standard Test Conditions (STC)provided by the manufacturers show that the power generated by the PV

array depends on the illumination intensity,cell temperature and cell voltage.Therefore it is necessary for MPPT device to extract the maximum power from the PV arrays.Several MPPT methods have been reported in to search MPPT [10].The extremum method of algorithm is developed in this case.The output power from the PV array in any conditions can be expressed

as:

Fig.8.Block diagram of transfer

function.

Fig.9.Con ?guration of the Hybrid Power System.

L.Ye et al./Renewable Energy 39(2012)96e 106101

P ?U ?I ?U ?I sc 2

641àC 10B @e ?U

C 2U oc ?

à11C A 37

5

(21)

The algorithm searches the voltage operating point where d P /d U ?0.To demonstrate the algorithm,the Equation (21)is differ-entiated to get Equation (22).

I sc 2

641àC 10B @e ?U C 2U oc ?à11C A 37

UI sc C 1e ?U 2oc

?C 2U oc ?0(22)

The maximum power voltage is derived by using Newton iter-ation method.

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

U k t1?U k àf 0eU k T00eU k TU k t1?U k àI tU k 0B @àI sc C 1C 2U oc

e U k 2oc 1C A

2tU k C 2U oc 0B @àI sc C 1C 2U oc e U k 2oc 1C A (23)

where j U k t1àU k j <ε,εis an error.U max ?U k t1,U k is the voltage of the ?rst K iterations,f 0(U k )is the ?rst derivative of U k and f 00(U k )is the second derivative of U k .The ?owchart algorithm is described by Fig.5.

3.4.Excitation control strategy of hydro turbines

The excitation control system supplies and automatically adjusts the ?eld current of the synchronous generator to maintain

the terminal voltage as the output varies within the capability of the generator.From the power system point of view,the excitation system should contribute effective control of voltage to enhance of system stability [19].The excitation control system of synchronous generator regulates the excitation voltage across the ?eld windings,thus affecting electromotive force of generator,ultimately aiming to stabilize the terminal voltage.

Fig.6shows the block diagram of an equivalent model based on transfer function system which can be used to simulate the input and output characteristics of the excitation system [20].

Fig.7shows the equivalent block diagram of excitation control system.Here,we adopt equivalent transfer function model instead

0.5

0.60.70.80.9 1.0 1.1 1.2 1.3 1.4 1.5

-400

-200

0200

400--2000200

400-400-2000200

400U _H a (V )

time (s)

U _W a (V )

U _P a (V )

Fig.10.Terminal voltages of each micro-source unit.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

-75-50

-2502550

75-75

-50-2502550

75-75

-50-2502550

75

I _H a (A )

time (s)

I _W a (A )

I _P a (A )

Fig.11.Currents of each micro-sources unit.

F a u l t c u r r e n t (A )

time (s)

Fig.12.Fault currents of main grid and microgrid.

L.Ye et al./Renewable Energy 39(2012)96e 106

102

of real system of excitation system,including four critical parts, such as detection-comparison,series-correction,parallel-correction and modulation-ampli?cation.Corresponding block diagram of transfer function is showed in Fig.8.

where K ma is ampli?cation factor of voltage increment between base voltage of BG1transistor and its collector voltage,K se is static ampli?cation factor of detection-comparison part,s sp is time constant of detection comparison.D U F is voltage variation of the

excitation system which is used as an input for the detection-comparison circuit.W jj is an output parameter of the control system.K stands for proportionality constant.

4.Case studies

4.1.EMTP/ATP modeling issues

The Alternative Transients Program(ATP)is considered to be one of the most widely used ElectroMagnetic Transient Program (EMTP)system for digital simulation of transient phenomena of electromagnetic as well as electromechanical nature in electric power systems.With this digital program,complex networks and control systems of arbitrary structure can be simulated.ATP has extensive modeling capabilities and additional important features besides the computation of transients.EMTP/ATP has many models including rotating machines,transformers,surge arresters,trans-mission lines and cables.Interfacing capability to the program modules TACS(Transient Analysis of Control Systems)and MODELS (a simulation language)enables modeling of control systems and components with nonlinear characteristics.Dynamic systems without any electrical network can also be simulated using TACS and MODELS control system modeling[21].

In this case,we chose EMTP/ATP to study the integration behavior of micro-sources into power networks in steady and faulty states.A dynamic model of hybrid power systems including photovoltaic cell,wind turbines and hydro turbines has been created in EMPT/ATP.Models of the equivalent power electronic interfaces,control strategies and batteries have been developed as well.System studies have been carried out to investigate the dynamic behavior of micro-sources in steady and faulty states. Feasibility of the proposed models has been veri?ed by simulation results.

4.2.System con?guration

In this paper,the hybrid power system consisted of wind turbines,PV arrays,hydro turbine,converter,a transformer,battery and load.Con?guration of the studied hybrid power system is rep-resented by Fig.9.The Permanent Magnet Synchronous Generator (PMSG)is recti?ed and controlled by an AC/DC/AC converter which regulates the voltage of the PMSG.The PV system constituted of several panels is connected to the AC bus via a DC/AC converter, which controls the operating point of the PV arrays and the output power.The hydro turbine is directly coupled to the AC bus system. The battery is used as energy storage unit,capable of meeting the real and reactive power demands under fault condition.

The most prevalent distribution voltage class in rural areas is 10kV in China.The bus is supplied by a step-down transformer (10kV/400V)from a10kV radial network.Feeders are composed of cables(overhead lines,connection cables)and circuit breaker between load and source.Cable can be modeled as an equivalent circuit with inductance and resistance per-unit length,we choose the typical value for a distributed level cable:L c?0.264mH/km, R c?0.28U/km.Loads are modeled as a lumped series R,L branch with a power factor of0.8(cos4?0.8).A fault simulation switch at

the main grid side is closed to create a three-phases short-circuit.Circuit breaker is modeled as an ideal time-controlled switch. Simulations are carried out with the fault occurred at t?0.8s (t?0s,the beginning of the simulation)cleared at t?1.2s and the total simulation time is2s.

r

e

a

c

t

i

v

e

p

o

w

e

r

o

f

W

T

s

(

v

a

r

)

time(s)

a

c

t

i

v

e

p

o

w

e

r

o

f

W

T

s

(

W

)

r

e

a

c

t

i

v

e

p

o

w

e

r

o

f

P

V

s

(

v

a

r

)

time(s)

a

c

t

i

v

e

p

o

w

e

r

o

f

P

V

s

(

W

)

time(s)

r

e

a

c

t

i

v

e

p

o

w

e

r

o

f

H

T

s

(

v

a

r

)

time(s)

a

c

t

i

v

e

p

o

w

e

r

o

f

H

T

s

(

W

)

Fig.13.Active power and reactive power curves for each micro-sources.

L.Ye et al./Renewable Energy39(2012)96e106103

5.Simulation results and analysis

Simulation has been performed to verify the performances of the proposed models and control strategies,both in the steady state and fault conditions.The simulations covered two scenarios of regimes,one is dedicated to the analysis of performances at steady state (from 0to 0.8s)and the other is reserved for the fault conditions (three-phases short-circuit,from 0.8s to 1.2s)and the

-400

-300-200-1000100200300400w i t h b a t t e r y (V )

time (s)

-400

-300-200-1000100200300400

w i t h o u t b a t t e r y (V )

time (s)

A

B

Fig.14.Terminal voltages of PV arrays with/without battery.

-1000

01000

20003000

4000

a c t i v e p o w e r o f

b a t t e

r y (W )

time (s)

-1000

01000

200030004000

r e a c t i v e p o w e r o f b a t t e r y (v a r )

time (s)

Fig.15.Active power/reactive power of battery.

L.Ye et al./Renewable Energy 39(2012)96e 106

104

control of the renewable energy sources interconnected to the main grid.

5.1.Case A.Simulation without battery and excitation system Fig.10presented the terminal voltages of each micro-source.It can be seen that the HPS worked in the steady state from initial to 0.8s.The Root Mean Square (RMS)of the terminal voltage is 220V at each micro-source.However,when a three-phase short-circuit fault occurs on the main distribution network at 0.8s,the terminal voltages droop heavily,especially the wind turbines,which droops down to 10%of rated value.The short-circuit fault lasts for 0.4s (from 0.8s to 1.2s)and is cut off at 1.2s,then the voltages starts to rise to normal value.The voltage level during the short circuit is determined by the location where fault occurs and the per-unit impedance of the distribution network.The nearer the fault loca-tion is,the more serious the voltage sags.

From Fig.11we can see a short transient course at the beginning of simulation,which corresponds to the beginning time of micro-source.Then,a steady state achieved at 0.1s.When short-circuit occurs,the fault current is nearly ?ve times greater than previous values of steady state operation.A small direct current appears at the beginning of fault leading to an increasing fault current.Currents go back to normal values after fault is cut off at 1.2s.

When a fault occurs in the network,the fault currents are shown in Fig.12.

It can be seen that most fault currents are supplied by the main distribution network while the micro-sources provide only a small fraction of the total fault current.

Fig.13shows active power and reactive power of each micro-sources in steady state and fault condition.For wind turbines,the active power and reactive power could reach 8.412kW and 1.903kVar in steady state,meanwhile decreasing to 1.668kW and à0.131kVar respectively when fault condition occurred.The active power and reactive power of hydro turbine rise from 2.342kW to 0.16kVar in steady state to 2.927kW and 1.712kVar under fault condition.For PVs,active power decreased from 2.004kW to 0.967kW in fault condition,however,reactive power increased from 0.503kVar to 1.274kVar when fault condition occurred.Overall,the active effort of micro-source reduces,whereas the reactive effort increases.That means micro-sources will reallocate the active and reactive powers during fault condition to maintain the voltage and frequency stability of the microgrid.5.2.Case B.Simulation with battery and automatic excitation system

Simulation has been carried out in the conditions with battery at PV node and automatic excitation control system at Hydro turbine node.During fault condition,the battery injects active power and reactive power to the microgrid immediately,which can maintain voltage and frequency stable of the microgrid.While the automatic excitation control system of hydro turbine is activated to improve the terminal voltage of hydro turbine.Simulation results are shown in Figs.14e 16.

It is noted that a three-phase short-circuit fault occurs at 0.8s and the terminal voltage of PVs decreases dramatically to 8%of its nominal value.However,the battery is active after 5cycles,providing active power 2.948kW and reactive power 0.128kvar to increase the terminal https://www.sodocs.net/doc/4d17001068.html,pared with the situation without battery,the voltage improves nearly 40%.

During fault condition,the automatic excitation control system of hydro turbines is also in action.Simulations have been done in two scenarios of regimes.Firstly,automatic excitation control system is not activated,a constant module of excitation voltage is connected instead of the automatic excitation control system.Secondly,the automatic excitation control system is connected.

Voltage decreases greatly under fault condition and recovers after 1.2s when the fault is cleared (Fig.16).

Fig.17shows compared excitation currents in two scenarios of regimes.In normal operation,excitation current is kept a constant value of 3A as depicted in Fig.17.During fault condition,excitation control system is activated automatically at 0.1s to adjust the ?eld current to maintain the terminal voltage of the generator.Terminal voltage increases gradually with the activation of the automatic excitation control system.It can be seen that the automatic excitation control system contributes effective improvement of terminalvoltage.6.Conclusions

A dynamic model of a hybrid power system including wind turbines,photovoltaic system,hydropower unit has been created in

U _H a (V )time (s)

U _H a (V )

time (s)

https://www.sodocs.net/doc/4d17001068.html,pared output voltage of hydro turbine with/without automatic excitation control system.

a u t o m a t i c e x c i t a t i o n (A )

time (s)

c o n s t a n t e x c i t a t i o n (A )

A

B https://www.sodocs.net/doc/4d17001068.html,pared excitation currents of hydro turbine with/without automatic exci-tation control system.

L.Ye et al./Renewable Energy 39(2012)96e 106

105

EMTP/ATP software plateform.The equivalent power electronic interfaces,control strategies and batteries have been developed as well.Case studies have been carried out to investigate the dynamic behavior of micro-sources in steady and faulty states.Feasibility of the proposed models has been veri ?ed by simulation results.Acknowledgments

This work is in part supported by the Scienti ?c and Technical Supporting Programs of China During the 11th Five-year Plan Period (Grant No.2006BAJ04B03),Program for New Century Excellent Talents in China University (Grant No.NCET-08-0543),the Key Project of Chinese Ministry of Education (Grant No.109017),the National Natural Science Foundation of China (Grant No.51077126)as well as Beijing Natural Science Founda-tion (Grant No.3113029).

Appendix

References

[1]Kariniotakis GN,Soultanis NL,Tsouchnikas AI,Papathanasiou SA.Dynamic

modeling of mircrogrid.In:Future Power Systems,2005International Conference on 18-18Nov 2005,pp.1e 7.

[2]Kanellos FD,Tsouchnikas AI,Hatziargyriou ND.Micro-Grid Simulation during

Grid-Connected and Island Modes of Operation.In:Presented at the Inter-national Conference on Power Systems Transients (IPST ’05)in Montreal,Canada on June 19e 23,2005,Paper No:IPST05-113.

[3]Saldana Claudio,Calzolari Graciela,Cerecetto Gerardo.ATP modelling and

?eld tests of the ac voltage regulator in the Palmar hydroelectric power plant.Electric Power Systems Research 2006;76:681e 7.

[4]Vechiu I,Camblong H,Papia G,Dakyo B,Nichita C.Dynamic simulation model

of a hybrid power system:performance analysis.International Journal of Automotive Technology 2006;7(7):1e 9.

[5]Skretas Sotirios B,Papadopoulos Demetrios P.Ef ?cient design and simu-lation of an expandable hybrid (wind-photovoltaic)power system with MPPT and inverter input voltage regulation features in compliance with electric grid requirements.Electric Power Systems Research 2009;79:1271e 85.

[6]Mehdi Dali,Jamel Belhadj,Xavier Roboam.Design of a stand-alone hybrid

photovoltaic-wind generating system with battery storage,https://www.sodocs.net/doc/4d17001068.html,/jes/papers/4_3_7.pdf .

[7]Joanne Hui,Alireza Bakhshai,Praveen K.Jain.A hybrid wind-solar energy

system:a new recti ?er stage topology.In:Applied Power Electronics Conference and Exposition (APEC),2010Twenty-Fifth Annual IEEE,21e 25Feb 2010,pp.155e 61.

[8]Arutchelvi Meenakshisundaram,Daniel Samuel Arul.GRID connected hybrid

dispersed power generators based on pv array and wind-driven induction generator.Journal of Electrical Engineering 2009;60(6):313e 20.

[9]Cheng-xi Wang,Yuan Zhang.Wind power generation[M].Beijing:China

Electric Power Press[CEPP];2003.

[10]Schiemenz I,Stiebler M.Control of a permanent magnet synchronous

generator used in a variable speed wind energy system.In:Electric Machines and Drives Conference,2001,IEMDC.IEEE International;2001.p.872e 7.

[11]Hang Ren,Lin Ye.Output characteristics of photovoltaic cell based on EMTP/

ATP model.Electric Power Automation Equipment Oct 2009;29(10):112e 5.[12]Felix Farret A,Godoy Sim?es M.Integration of alternative sources of energy.

Hoboken,New Jersey:John Wiley &Sons,Inc.;2006.pp.57e 82.

[13]Launay-QuerréA,Gabano J,Champenois G.Parameter estimation of

a synchronous generator,Electrimacs,MontrTal,Canada.

[14]Bruck F,Himmelstoss F.Modelling and simulation of synchronous machine.

In:IEEE Computers in Power Electronics,6th Workshop on 19e 22July,1998,pp.81e 6.

[15]Pillay P,Krishnan R.Modeling,simulation,and analysis of permanent-magnet

motor drives.Part 1:the permanent-magnet synchronous motor drive.IEEE Transactions on Industry Application March e April 1989;25(2):265e 73.

[16]Sebastien T,Slemon GR,Rahman M.Modelling of permanent synchronous

motors.IEEE Transactions on Magnetics 1986;Mag 22(5):1069e 71.

[17]Srivasta K,Berggren B.Simulation of synchronous machine in phase coordi-nates including magnetic saturation,vol.56.Elsevier Science Electric Power Systems Research;2000.pp.177e 283.

[18]Slootweg Johannes Gerlof.Wind power modeling and impact on power

system dynamics.PhD thesis;2003.

[19]Guangqi LI.Power system transient analysis.Beijing:China Electric Power

Press;September 2007.pp.30e 40.

[20]Kundur P.Power system stability and control.Mc Graw Hill;1994.[21]ATP-EMTP rule book.Canadian e American EMTP User Group;1997.

The parameters of the hybrid microgrid depicted in Fig.9are given as follows:Wind turbine

R ?13.26m,u r ?19rpm,P r ?15kW PMSG

Pole pairs:48R s ?3.8U ,L d ?13.32mH,L q ?13.32mH Power:15kW Voltage:220V Connection:star Photovoltaic

N s ?200,N p ?180

S ref ?1000W/m 2,T ref ?25 C

I sc ?4.9A,V oc ?43.2V,I m ?4.51A,V m ?34.4V Hydro turbine

Water ?ow speed,v 5m/s Gravity acceleration,g 9.8m/s 2Hight of the water,h 90m Cross section of dam,A 765m 2Induction generator Stator resistance,R s 2.875U Stator inductance,L s 8.5mH Pole pairs,n 2Automatic excitation control system

K j ?2.16,s j ?0.21s,K z ?0.895,K se ?0.495,Km ?70.2,

K sp ?0.124,D U 1?0.28V,s sp ?0.0011s,s 1?1.72?10à3s,s 2?3.47?10à3s,a 1?2.82?10à3,a 2?4.82?10à3,b 1?1.63?10à3,K ma ?à30.7692Transformer

10/0.4kV,50Hz,1MVA

R k ?0.0004U ,L k ?0.006mH,U k ?4%,Dyn11Converter control system/droop parameters Frequency controller F ?50Hz,R f ?1?10à6Voltage controller V ?220V,R v ?3?10à5Phase controller P p ?6?10à6

L.Ye et al./Renewable Energy 39(2012)96e 106

106

h3c端口镜像配置及实例

1 配置本地端口镜像 2 1.2.1 配置任务简介 本地端口镜像的配置需要在同一台设备上进行。 首先创建一个本地镜像组,然后为该镜像组配置源端口和目的端口。 表1-1 本地端口镜像配置任务简介 ●一个端口只能加入到一个镜像组。 ●源端口不能再被用作本镜像组或其它镜像组的出端口或目的端口。 3 1.2.2 创建本地镜像组 表1-2 创建本地镜像组 配置源端口目的端口后,本地镜像组才能生效。 4 1.2.3 配置源端口 可以在系统视图下为指定镜像组配置一个或多个源端口,也可以在端口视图下将当前端口配置为指定镜像组的源端口,二者的配置效果相同。 1. 在系统视图下配置源端口 表1-3 在系统视图下配置源端口

2. 在端口视图下配置源端口 表1-4 在端口视图下配置源端口 一个镜像组内可以配置多个源端口。 5 1.2.4 配置源CPU 表1-5 配置源CPU 一个镜像组内可以配置多个源CPU。 6 1.2.5 配置目的端口 可以在系统视图下为指定镜像组配置目的端口,也可以在端口视图下将当前端口配置为指定镜像组的目的端口,二者的配置效果相同。

1. 在系统视图下配置目的端口 表1-6 在系统视图下配置目的端口 2. 在端口视图下配置目的端口 表1-7 在端口视图下配置目的端口 ●一个镜像组内只能配置一个目的端口。 ●请不要在目的端口上使能STP、MSTP和RSTP,否则会影响镜像功能的正常使 用。 ●目的端口收到的报文包括复制自源端口的报文和来自其它端口的正常转发报文。 为了保证数据监测设备只对源端口的报文进行分析,请将目的端口只用于端口镜 像,不作其它用途。 ●镜像组的目的端口不能配置为已经接入RRPP环的端口。 7 1.3 配置二层远程端口镜像 8 1.3.1 配置任务简介 二层远程端口镜像的配置需要分别在源设备和目的设备上进行。 ●一个端口只能加入到一个镜像组。 ●源端口不能再被用作本镜像组或其它镜像组的出端口或目的端口。 ●如果用户在设备上启用了GVRP(GARP VLAN Registration Protocol,GARP VLAN注册协议)功能,GVRP可能将远程镜像VLAN注册到不希望的端口上, 此时在目的端口就会收到很多不必要的报文。有关GVRP的详细介绍,请参见“配 置指导/03-接入/GVRP配置”。

以太网端口聚合+RSTP配置案例

以太网端口聚合+RSTP配置 拓扑图 功能要求: 通过在网络中配置RSTP功能,实现消除网络环路的目的, 当RSTP的根桥DOWN掉后,可以通过非根桥正常通信,达到根桥和备用根桥的切换,某个链路DOWN后,可以通过将某个阻塞端口恢复为根端口或转发端口,以实现正常的数据通信, 当聚合链路中的某个链路DOWN掉后,不会影响正常的通信 配置过程: S5700-LSW1 [Huawei]DIS CU # sysname Huawei # vlan batch 10 20 # stp mode rstp # cluster enable ntdp enable ndp enable # drop illegal-mac alarm #

diffserv domain default # drop-profile default # aaa authentication-scheme default authorization-scheme default accounting-scheme default domain default domain default_admin local-user admin password simple admin local-user admin service-type http # interface Vlanif1 # interface MEth0/0/1 # interface GigabitEthernet0/0/1 port link-type trunk port trunk allow-pass vlan 10 20 # interface GigabitEthernet0/0/2 port link-type trunk port trunk allow-pass vlan 10 20 # interface GigabitEthernet0/0/3 port link-type access port default vlan 10 stp disable # interface GigabitEthernet0/0/4 port link-type access port default vlan 20 stp disable # interface GigabitEthernet0/0/5 # interface GigabitEthernet0/0/6 # interface GigabitEthernet0/0/7 # interface GigabitEthernet0/0/8 # interface GigabitEthernet0/0/9

以太网端口

目录 第1章以太网端口配置 ............................................................................................................ 1-1 1.1 以太网端口简介.................................................................................................................. 1-1 1.2以太网端口配置步骤.......................................................................................................... 1-1 1.2.1 配置以太网端口描述................................................................................................ 1-1 1.2.2 配置以太网接口状态变化上报抑制时间................................................................... 1-1 1.2.3 以太网端口专有参数配置......................................................................................... 1-2 1.3 以太网端口显示和调试....................................................................................................... 1-4 1.4 以太网端口配置示例 .......................................................................................................... 1-6 1.5 以太网端口排错.................................................................................................................. 1-7第2章以太网端口聚合配置..................................................................................................... 2-1 2.1 以太网端口聚合简介 .......................................................................................................... 2-1 2.2以太网端口聚合配置步骤 .................................................................................................. 2-1 2.3 以太网端口聚合显示和调试................................................................................................ 2-2 2.4 以太网端口聚合配置示例 ................................................................................................... 2-2 2.5 以太网端口聚合排错 .......................................................................................................... 2-3第3章以太网端口镜像配置..................................................................................................... 3-1 3.1 以太网端口镜像简介 .......................................................................................................... 3-1 3.2 以太网端口镜像配置步骤 ................................................................................................... 3-1 3.3 以太网端口镜像显示和调试................................................................................................ 3-2 3.4 以太网端口镜像配置示例 ................................................................................................... 3-2 3.5以太网端口镜像排错.......................................................................................................... 3-4

华为交换机端口镜像配置举例

华为交换机端口镜像配置举例 配置实例 文章出处:https://www.sodocs.net/doc/4d17001068.html, 端口镜像是将指定端口的报文复制到镜像目的端口,镜像目的端口会接入数据监测设备,用户利用这些设备分析目的端口接收到的报文,进行网络监控和故障排除。本文介绍一个在华为交换机上通过配置端口镜像实现对数据监测的应用案例,详细的组网结构及配置步骤请查看以下内容。 某公司内部通过交换机实现各部门之间的互连,网络环境描述如下: 1)研发部通过端口Ethernet 1/0/1接入Switch C;λ 2)市场部通过端口Ethernet 1/0/2接入Switch C;λ 3)数据监测设备连接在Switch C的Ethernet 1/0/3端口上。λ 网络管理员希望通过数据监测设备对研发部和市场部收发的报文进行监控。 使用本地端口镜像功能实现该需求,在Switch C上进行如下配置: 1)端口Ethernet 1/0/1和Ethernet 1/0/2为镜像源端口;λ 2)连接数据监测设备的端口Ethernet 1/0/3为镜像目的端口。λ 配置步骤 配置Switch C: # 创建本地镜像组。

system-view [SwitchC] mirroring-group 1 local # 为本地镜像组配置源端口和目的端口。 [SwitchC] mirroring-group 1 mirroring-port Ethernet 1/0/1 Ethernet 1/0/2 both [SwitchC] mirroring-group 1 monitor-port Ethernet 1/0/3 # 显示所有镜像组的配置信息。 [SwitchC] display mirroring-group all mirroring-group 1: type: local status: active mirroring port: Ethernet1/0/1 both Ethernet1/0/2 both monitor port: Ethernet1/0/3 配置完成后,用户就可以在Server上监控部门1和部门2收发的所有报文。 相关文章:端口镜像技术简介远程端口镜像配置举例

配置以太网单板的内部端口

配置以太网单板的内部端口 当网元通过以太网板内部端口(即VCTRUNK)将以太网业务传输到SDH侧时,需配置VCTRUNK端口的各种属性,以便配合对端网元的以太网单板,实现以太网业务在SDH网络中的传输。 前提条件 用户具有“网元操作员”及以上的网管用户权限。 已创建以太网单板。 注意事项 注意:错误的配置绑定通道,可能会导致业务中断。 操作步骤 1.在网元管理器中选择以太网单板,在功能树中选择“配置 > 以太网接口管理 > 以太 网接口”。 2.选择“内部端口”。 3.配置内部端口的TAG属性。 a.选择“TAG属性”选项卡。 b.配置内部端口的TAG属性。 c.单击“应用”。 4.配置内部端口的网络属性。 a.选择“网络属性”选项卡。 b.配置内部端口的网络属性。

图1支持QinQ功能的以太网单板的内部端口属性 图2支持MPLS功能的以太网单板的内部端口属性 c.单击“应用”。 5.配置内部端口使用的封装映射协议。 a.选择“封装/映射”选项卡。 b.配置内部端口使用的封装协议及各参数。 说明:传输线路两端的以太网单板的VCTURNK的“映射协议”和协议参数应保 持一致。 c.单击“应用”。 6.配置内部端口的LCAS功能。 a.选择“LCAS”选项卡。

b.设置“LCAS使能”以及LCAS其他参数。 说明:传输线路两端的以太网单板的VCTURNK的“LCAS使能”和LCAS协议参 数应保持一致。 c.单击“应用”。 7.设置端口的绑定通道。 a.选择“绑定通道”选项卡,单击“配置”,出现“绑定通道配置”对话框。 b.在“可配置端口”中选择VCTRUNK端口作为配置端口,在“可选绑定通道”中 选择承载层时隙。单击。 c.单击“确定”,单击“是”。出现“操作结果”对话框,提示操作成功。

以太网端口配置命令

一以太网端口配置命令 1.1.1 display interface 【命令】 display interface[ interface_type | interface_type interface_num | interface_name ] 【视图】 所有视图 【参数】 interface_type:端口类型。 interface_num:端口号。 interface_name:端口名,表示方法为interface_name=interface_type interface_num。 参数的具体说明请参见interface命令中的参数说明。 【描述】 display interface命令用来显示端口的配置信息。 在显示端口信息时,如果不指定端口类型和端口号,则显示交换机上所 有的端口信息;如果仅指定端口类型,则显示该类型端口的所有端口信 息;如果同时指定端口类型和端口号,则显示指定的端口信息。 【举例】 # 显示以太网端口Ethernet0/1的配置信息。 display interface ethernet0/1 Ethernet0/1 current state : UP IP Sending Frames' Format is PKTFMT_ETHNT_2, Hardware address is 00e0-fc00-0010 Description : aaa The Maximum Transmit Unit is 1500 Media type is twisted pair, loopback not set Port hardware type is 100_BASE_TX 100Mbps-speed mode, full-duplex mode Link speed type is autonegotiation, link duplex type is autonegotiation Flow-control is not supported The Maximum Frame Length is 1536 Broadcast MAX-ratio: 100% PVID: 1 Mdi type: auto Port link-type: access Tagged VLAN ID : none Untagged VLAN ID : 1 Last 5 minutes input: 0 packets/sec 0 bytes/sec Last 5 minutes output: 0 packets/sec 0 bytes/sec input(total): 0 packets, 0 bytes 0 broadcasts, 0 multicasts input(normal): - packets, - bytes

端口镜像典型配置举例

端口镜像典型配置举例 1.5.1 本地端口镜像配置举例 1. 组网需求 某公司内部通过交换机实现各部门之间的互连,网络环境描述如下: ●研发部通过端口GigabitEthernet 1/0/1接入Switch C; ●市场部通过端口GigabitEthernet 1/0/2接入Switch C; ●数据监测设备连接在Switch C的GigabitEthernet 1/0/3端口上。 网络管理员希望通过数据监测设备对研发部和市场部收发的报文进行监控。 使用本地端口镜像功能实现该需求,在Switch C上进行如下配置: ●端口GigabitEthernet 1/0/1和GigabitEthernet 1/0/2为镜像源端口; ●连接数据监测设备的端口GigabitEthernet 1/0/3为镜像目的端口。 2. 组网图 图1-3 配置本地端口镜像组网图 3. 配置步骤 配置Switch C: # 创建本地镜像组。

system-view [SwitchC] mirroring-group 1 local # 为本地镜像组配置源端口和目的端口。 [SwitchC] mirroring-group 1 mirroring-port GigabitEthernet 1/0/1 GigabitEthernet 1/0/2 both [SwitchC] mirroring-group 1 monitor-port GigabitEthernet 1/0/3 # 显示所有镜像组的配置信息。 [SwitchC] display mirroring-group all mirroring-group 1: type: local status: active mirroring port: GigabitEthernet1/0/1 both GigabitEthernet1/0/2 both monitor port: GigabitEthernet1/0/3 配置完成后,用户就可以在数据监测设备上监控研发部和市场部收发的所有报文。

配置基于端口的vlan及实例

1 配置基于Access端口的VLAN 配置基于Access端口的VLAN有两种方法:一种是在VLAN视图下进行配置,另一种是在接口视图/端口组视图/二层聚合接口视图或二层虚拟以太网接口视图下进行配置。 表1-4 配置基于Access端口的VLAN(在VLAN视图下) 表1-5 配置基于Access端口的VLAN(在接口视图/端口组视图下/二层聚合接口视图/二层虚拟以太网接口视图)

●在将Access端口加入到指定VLAN之前,要加入的VLAN必须已经存在。 ●在VLAN视图下向VLAN中添加端口时,只能添加二层以太网端口。● 2 1.4. 3 配置基于Trunk端口的VLAN Trunk端口可以允许多个VLAN通过,只能在接口视图/端口组视图/二层聚合接口视图或二层虚拟以太网接口视图下进行配置。 表1-6 配置基于Trunk端口的VLAN

●Trunk端口和Hybrid端口之间不能直接切换,只能先设为Access端口,再设 置为其它类型端口。例如:Trunk端口不能直接被设置为Hybrid端口,只能先 设为Access端口,再设置为Hybrid端口。 ●配置缺省VLAN后,必须使用port trunk permit vlan命令配置允许缺省VLAN 的报文通过,出接口才能转发缺省VLAN的报文。 3 1.4. 4 配置基于Hybrid端口的VLAN Hybrid端口可以允许多个VLAN通过,只能在接口视图/端口组视图/二层聚合接口视图或二层虚拟以太网接口视图下进行配置。 表1-7 配置基于Hybrid端口的VLAN

●Trunk端口和Hybrid端口之间不能直接切换,只能先设为Access端口,再设 置为其它类型端口。例如:Trunk端口不能直接被设置为Hybrid端口,只能先 设为Access端口,再设置为Hybrid端口。 ●在设置允许指定的VLAN通过Hybrid端口之前,允许通过的VLAN必须已经存 在。 ●配置缺省VLAN后,必须使用port hybrid vlan命令配置允许缺省VLAN的报 文通过,出接口才能转发缺省VLAN的报文。 4 1.4. 5 基于端口的VLAN典型配置举例 1. 组网需求 ●Host A和Host C属于部门A,但是通过不同的设备接入公司网络;Host B和 Host D属于部门B,也通过不同的设备接入公司网络。 ●为了通信的安全性,也为了避免广播报文泛滥,公司网络中使用VLAN技术来 隔离部门间的二层流量。其中部门A使用VLAN 100,部门B使用VLAN 200。 ●现要求不管是否使用相同的设备接入公司网络,同一VLAN内的主机能够互 通。即Host A和Host C能够互通,Host B和Host D能够互通。 2. 组网图 图1-6 基于端口的VLAN组网图 3. 配置步骤 (1)配置Device A # 创建VLAN 100,并将Ethernet1/1加入VLAN 100。 system-view [DeviceA] vlan 100 [DeviceA-vlan100] port ethernet 1/1 [DeviceA-vlan100] quit # 创建VLAN 200,并将Ethernet1/2加入VLAN 200。 [DeviceA] vlan 200 [DeviceA-vlan200] port ethernet 1/2

端口镜像配置

的需要,也迫切需要

例如,模块1中端口1和端口2同属VLAN1,端口3在VLAN2,端口4和5在VLAN2,端口2监听端口1和3、4、5, set span 1/1,1/3-5 1/2 2950/3550/3750 格式如下: #monitor session number source interface mod_number/port_number both #monitor session number destination interface mod_mnumber/port_number //rx-->指明是进端口得流量,tx-->出端口得流量 both 进出得流量 for example: 第一条镜像,将第一模块中的源端口为1-10的镜像到端口12上面; #monitor session 1 source interface 1/1-10 both #monitor session 1 destination interface 1/12 第二条镜像,将第二模块中的源端口为13-20的镜像到端口24上面; #monitor session 2 source interface 2/13-20 both #monitor session 2 destination interface 2/24 当有多条镜像、多个模块时改变其中的参数即可。 Catalyst 2950 3550不支持port monitor C2950#configure terminal C2950(config)# C2950(config)#monitor session 1 source interface fastEthernet 0/2 !--- Interface fa 0/2 is configured as source port. C2950(config)#monitor session 1 destination interface fastEthernet 0/3 !--- Interface fa0/3 is configured as destination port. 4配置命令 1. 指定分析口 feature rovingAnalysis add,或缩写 f r a, 例如: Select menu option: feature rovingAn alysis add Select analysis slot: 1?& nbsp; Select analysis port: 2 2. 指定监听口并启动端口监听 feature rovingAnalysis start,或缩写 f r sta, 例如: Select menu option: feature rovingAn alysis start Select slot to monitor ?(1-12): 1 Select port to monitor&nb sp;?(1-8): 3

以太网链路聚合典型配置举例

1.8 以太网链路聚合典型配置举例 在聚合组中,只有端口属性类配置(请参见“1.1 4. 配置分类”)和第二类配置(请参见“1.1 4. 配置分类”)都与参考端口(请参见“1.1 5. 参考端口”)相同的成员端口才可以成为选中端口。因此,用户需通过配置使各成员端口的上述配置与参考端口保持一致,而除此以外的其它配置则只需在聚合接口上进行,不必再在成员端口上重复配置。 1.8.1 二层静态聚合配置举例 1. 组网需求 Device A与Device B通过各自的二层以太网端口 ?????????????? GigabitEthernet 1/0/1~GigabitEthernet 1/0/3相互连接。 在Device A和Device B上分别配置二层静态链路聚合组,并使?????????????? 两端的VLAN 10和VLAN 20之间分别互通。 通过按照报文的源MAC地址和目的MAC地址进行聚合负载分担的?????????????? 方式,来实现数据流量在各成员端口间的负载分担。 2. 组网图 图1-5 二层静态聚合配置组网图 3. 配置步骤

(1) 配置Device A # 创建VLAN 10,并将端口GigabitEthernet 1/0/4加入到该VLAN中。 system-view [DeviceA] vlan 10 [DeviceA-vlan10] port gigabitethernet 1/0/4 [DeviceA-vlan10] quit # 创建VLAN 20,并将端口GigabitEthernet 1/0/5加入到该VLAN中。 [DeviceA] vlan 20 [DeviceA-vlan20] port gigabitethernet 1/0/5 [DeviceA-vlan20] quit # 创建二层聚合接口1。 [DeviceA] interface bridge-aggregation 1 [DeviceA-Bridge-Aggregation1] quit # 分别将端口GigabitEthernet 1/0/1至GigabitEthernet 1/0/3加入到聚合组1中。 [DeviceA] interface gigabitethernet 1/0/1 [DeviceA-GigabitEthernet 1/0/1] port link-aggregation group 1 [DeviceA-GigabitEthernet 1/0/1] quit [DeviceA] interface gigabitethernet 1/0/2 [DeviceA-GigabitEthernet 1/0/2] port link-aggregation group 1 [DeviceA-GigabitEthernet 1/0/2] quit [DeviceA] interface gigabitethernet 1/0/3 [DeviceA-GigabitEthernet 1/0/3] port link-aggregation group 1 [DeviceA-GigabitEthernet 1/0/3] quit

H3C交换机端口镜像配置命令

端口镜像配置命令 1.1 端口镜像配置命令 1.1.1 display mirroring-group 【命令】 display mirroring-group { group-id| all | local | remote-destination | remote-source } 【视图】 任意视图 【参数】 group-id:端口镜像组的组号,取值范围为1~2。 all:所有镜像组。 local:本地镜像组。 remote-destination:远程目的镜像组。 remote-source:远程源镜像组。 【描述】 display mirroring-group命令用来显示端口镜像组的信息。 不同的镜像组类型,其显示内容不同。设备将按照镜像组号的顺序进行显示。【举例】 # 显示所有镜像组的信息。 display mirroring-group all mirroring-group 1: type: local status: active mirroring port: Ethernet1/0/1 both Ethernet1/0/2 both

monitor port: Ethernet1/0/3 mirroring-group 2: type: remote-source status: inactive mirroring port: Ethernet1/0/4 inbound reflector port: remote-probe vlan: 1900 表1-1 display mirroring-group命令显示信息描述表 1.1.2 mirroring-group 【命令】 mirroring-group group-id{ local | remote-source | remote-destination } undo mirroring-group{ group-id|local | remote-source|remote-destination | all } 【视图】 系统视图 【参数】 group-id:端口镜像组的组号,取值范围为1~2。

H3C交换机端口镜像配置

1.1.1 display mirroring-group 【命令】 display mirroring-group { group-id| all | local | remote-destination | remote-source } 【视图】 任意视图 【参数】 group-id:端口镜像组的组号,取值范围为1~2。 all:所有镜像组。 local:本地镜像组。 remote-destination:远程目的镜像组。 remote-source:远程源镜像组。 【描述】 display mirroring-group命令用来显示端口镜像组的信息。 不同的镜像组类型,其显示内容不同。设备将按照镜像组号的顺序进行显示。【举例】 # 显示所有镜像组的信息。 display mirroring-group all mirroring-group 1: type: local status: active mirroring port: Ethernet1/0/1 both Ethernet1/0/2 both monitor port: Ethernet1/0/3 mirroring-group 2:

type: remote-source status: inactive mirroring port: Ethernet1/0/4 inbound reflector port: remote-probe vlan: 1900 表1-1 display mirroring-group命令显示信息描述表 1.1.2 mirroring-group 【命令】 mirroring-group group-id{ local | remote-source | remote-destination } undo mirroring-group{ group-id|local | remote-source|remote-destination | all } 【视图】 系统视图 【参数】 group-id:端口镜像组的组号,取值范围为1~2。 local:本地镜像组。 remote-source:远程源镜像组。

以太网接口配置

目录 1 以太网接口配置.................................................................................................................................1-1 1.1 以太网接口通用配置..........................................................................................................................1-1 1.1.1 以太网接口基本配置...............................................................................................................1-1 1.1.2 配置以太网接口的流量控制功能.............................................................................................1-1 1.1.3 配置以太网接口环回测试功能.................................................................................................1-2 1.2 二层以太网接口配置..........................................................................................................................1-2 1.2.1 二层以太网接口配置任务简介.................................................................................................1-2 1.2.2 配置以太网接口的风暴抑制比.................................................................................................1-3 1.2.3 配置以太网接口统计信息的时间间隔......................................................................................1-3 1.2.4 配置以太网接口进行环回监测.................................................................................................1-4 1.2.5 配置以太网接口的MDI模式.....................................................................................................1-4 1.3 以太网接口显示和维护......................................................................................................................1-5

交换机端口镜像配置

交换机端口镜像配置 https://www.sodocs.net/doc/4d17001068.html,日期:2009-6-8 浏览次数:857 出处:互联网 ! interface FastEthernet0/1 port monitor FastEthernet0/2 port monitor FastEthernet0/5 & nbsp; port monitor VLAN1 ! interface FastEthernet0/2 ! Cisco ? Configuring the Catalyst Switched Port Analyzer (SPAN)interface FastEthernet0/3 switchport access vlan 2 ! interface FastEthernet0/4 port monitor FastEthernet0/3 port monitor FastEthernet0/6 switchport access vlan 2 ! interface FastEthernet0/5 ! interface FastEthernet0/6 switchport access vlan 2 ! ! interface VLAN1 ip address 10.200.8.136 255.255.252.0 no ip directed?broadcast

no ip route?cache ! Configuration Steps Explained To configure port Fa0/1 as a destination port on th 华为交换机端口镜像配置 S2008/S2016/S2026/S2403H/S3026等交换机支持的都是基于端口的镜像,有两种方法: 方法一 1. 配置镜像(观测)端口 [SwitchA]monitor-port e0/8 2. 配置被镜像端口 [SwitchA]port mirror Ethernet 0/1 to Ethernet 0/2 方法二 1. 可以一次性定义镜像和被镜像端口 [SwitchA]port mirror Ethernet 0/1 to Ethernet 0/2 observing-port Ethernet 0/8 【8016交换机端口镜像配置】 1. 假设8016交换机镜像端口为E1/0/15,被镜像端口为E1/0/0,设置端口1/0/15为端口镜像的观测端口。 [SwitchA] port monitor ethernet 1/0/15 2. 设置端口1/0/0为被镜像端口,对其输入输出数据都进行镜像。 [SwitchA] port mirroring ethernet 1/0/0 both ethernet 1/0/15 也可以通过两个不同的端口,对输入和输出的数据分别镜像 1. 设置E1/0/15和E2/0/0为镜像(观测)端口 [SwitchA] port monitor ethernet 1/0/15

以太网配置(7700为例)

1.高级属性配置 1.1.端口隔离 把两个端口划分到同一个隔离组中,即可实现同一个VLAN下不通的要求;隔离端口与非隔离端口之间能够正常通信。 # 配置Ethernet0/0/1的端口隔离功能。 system-view [Quidway] vlan 10 [Quidway-vlan10] quit [Quidway] interface ethernet 0/0/1 [Quidway-Ethernet0/0/1] port link-type access [Quidway-Ethernet0/0/1] port default vlan 10 [Quidway-Ethernet0/0/1] port-isolate enable [Quidway-Ethernet0/0/1] quit # 配置Ethernet0/0/2的端口隔离功能。 system-view [Quidway] interface ethernet 0/0/2 [Quidway-Ethernet0/0/2] port link-type access [Quidway-Ethernet0/0/2] port default vlan 10 [Quidway-Ethernet0/0/2] port-isolate enable [Quidway-Ethernet0/0/2] quit 通过这个配置后, E0/0/1和E0/0/2下的PC不能通信。 1.2 link-flap功能 interface e0/0/1 port link-flap protection enable port link-flap interval 5 //默认为10s port link-flap threshold 7 //默认为5次

端口镜像详解及配置

端口镜像详解及配置.txt爱空空情空空,自己流浪在街中;人空空钱空空,单身苦命在打工;事空空业空空,想来想去就发疯;碗空空盆空空,生活所迫不轻松。总之,四大皆空!什么是端口镜像? 把交换机一个或多个端口(VLAN)的数据镜像到一个或多个端口的方法。 为什么需要端口镜像 ? 通常为了部署 IDS 产品需要监听网络流量(网络分析仪同样也需要),但是在目前广泛采用的交换网络中监听所有流量有相当大的困难,因此需要通过配置交换机来把一个或多个端口(VLAN)的数据转发到某一个端口来实现对网络的监听。 端口镜像的别名 端口镜像通常有以下几种别名: ●Port Mirroring 通常指允许把一个端口的流量复制到另外一个端口,同时这个端口不能再传输数据。 ●Monitoring Port 监控端口 ●Spanning Port 通常指允许把所有端口的流量复制到另外一个端口,同时这个端口不能再传输数据。 ●SPAN port 在 Cisco 产品中,SPAN 通常指 Switch Port ANalyzer。某些交换机的 SPAN 端口不支持传输数据。 ●Link Mode port 支持端口镜像的交换机和路由 大多数中档以上的交换机都支持端口镜像功能,部分路由支持端口镜像但支持程度不同。 端口镜像配置方法 下面是几种交换机和海蜘蛛路由端口镜像配置方法,主要来自于 Talisker Security Wizardry (https://www.sodocs.net/doc/4d17001068.html,/) 的Switch Port Mirroring (https://www.sodocs.net/doc/4d17001068.html,/switch.htm) Cisco 交换机 特点:●Cisco 2900 和 Cisco 3500XL 系列交换机 Cisco 2950、Cisco 3550 和 Cisco 3750 系列交换机 Cisco catylist 2550 Cisco catylist 3550 支持2组monitor session en password config term Switch(config)#monitor session 1 destination interface fast0/4(1为session id,id范围为1-2) Switch(config)#monitor session 1 source interface fast0/1 , fast0/2 , fast0/3 (空格,逗号,空格) Switch(config)#exit Switch#copy running-conf startup-conf Switch#show port-monitor monitor session 1 destination interface fast0/4 monitor session 1 source interface fast 0/1 , fast0/2 , fast0/3 exit copy running-conf startup-conf

相关主题