搜档网
当前位置:搜档网 › 第二章第一节电磁感应现象的发现

第二章第一节电磁感应现象的发现

第二章第一节电磁感应现象的发现
第二章第一节电磁感应现象的发现

第二章电磁感应与电磁场

第一节电磁感应现象的发现

1.在闭合电路中不能产生感应电流的是()

A.磁通量不变

B.磁通量增加

C.磁通量减小

D.磁通量先增大,后减小

解析:根据产生感应电流的条件可知,要闭合电路,同时穿过闭合电路的磁通量要发生变化,二者缺一不可.

答案:A

2.下列物理量是标量的是()

A.电场强度B.电动势

C.磁感应强度D.安培力

分析:标量是只有大小、没有方向的物理量.矢量是既有大小又有方向的物理量.电动势是标量,而电场强度、磁感应强度和安培力都是矢量.

解析:电场强度是矢量,其方向与正电荷所受的电场力方向相同,故A错误;电动势有方向,但运算按代数法则,不是矢量,是标量,故B正确;磁感应强度是矢量,其方向就是该点的磁场方向,故C 错误;安培力是矢量,不是标量,故D错误.

答案:B

点评:电动势与电流相似,它的方向表示电流的流向,要注意它

的运算法则是代数法则.

3.下列现象属于电磁感应现象的是()

A.带电物体吸引小纸屑

B.同名磁极相互排斥

C.通电导线能使小磁针发生偏转

D.闭合电路中一部分导体切割磁感线,产生电流

分析:电磁感应是指闭合回路中磁通量发生变化时,回路中产生感应电流的现象.

解析:带电物体吸引小纸屑是静电的作用,故A错误;同名磁极相互排斥是磁场原理,故B错误;通电导线使小磁针发生偏转是导体在磁场中受力,故C错误;闭合回路中的一部分导体切割磁感线产生电流,属于电磁感应现象,故D正确.

答案:D

点评:本题考查电磁感应的现象及原理,要明确各种物理规律的意义.

4.(2015·广东学业水平考试)如图所示,与磁场方向垂直的线圈以OO′为轴旋转90°的过程中,穿过线圈的磁通量()

A.变大B.变小

C.先变大后变小D.先变小后变大

解析:初始位置B⊥S,穿过线圈的磁通量最大Φ=BS.当以OO′为轴转过90°的过程中线圈平面投影到与磁场垂直方向的面积减

小.故磁通量减小.

答案:B

5.(2014·广东学业水平考试)电磁脉冲炸弹又称为E炸弹,爆炸后能产生强大的电磁脉冲,可损坏数千米范围内的电子设备,这主要是因为电子设备受电磁脉冲影响产生了()

A.强大的感应电流B.洛伦兹力

C.核力D.万有引力

分析:电磁炸弹主要应用了电磁感应现象,使其产生很大的感应电流,使得电网设备、通信设施和计算机中的硬盘与软件均遭到破坏.解析:电磁炸弹主要应用了电磁感应现象,在地面上很大范围内的电磁场强度达到每米数千伏,使金属以及金属制品中产生很大的感应电流(或涡流),使得电网设备、通信设施和计算机中的硬盘与软件均遭到破坏.故选项A正确,选项B、C、D错误.

答案:A

点评:本题借助信息考查电磁感应在生活和生产中的应用,只要能正确理解题意,本题不难得出正确答案.

6.(2014·广东学业水平考试)如下图所示是话筒的原理图.在弹性膜片后面粘接金属线圈,线圈处于永久磁体的磁场中,声波使膜片振动,将声音信号变为电信号.下列说法正确的是()

A.话筒是利用电流的热效应工作的

B.话筒是利用电磁感应原理工作的

C.膜片振动时,穿过金属线圈的磁通量不变

D.膜片振动时,金属线圈中不会产生感应电流

分析:本题中传感器是根据电磁感应原理工作的.膜片振动时,穿过金属线圈的磁通量是周期性变化,金属线圈中产生感应电动势.解析:当声波使膜片前后振动时,线圈切割磁感线产生感应电流,将声音信号变成电信号,是根据电磁感应原理工作的.故A错误,B 正确.膜片随着声波而周期性振动,穿过金属线圈的磁通量是周期性变化的.故C错误.膜片振动时,金属线圈切割磁感线,会产生感应电流.故D错误.

答案:B

点评:本题动圈式话筒是利用电磁感应原理将声音信号变成电信号的,考查分析电子设备工作原理的能力.

7.如下图所示,将条形磁铁从相同的高度分别以速度v和2v 插入线圈,电流表指针偏转角度较大的是()

A.以速度v插入

B.以速度2v插入

C.一样大

D.不能确定

答案:B

8.关于感应电动势和感应电流,下列说法中正确的是()

A.只有当电路闭合,且穿过电路的磁通量发生变化时,电路中才有感应电动势

B.只有当电路闭合,且穿过电路的磁通量发生变化时,电路中才有感应电流

C.不管电路是否闭合,只要有磁通量穿过电路,电路中就会有感应电动势

D.不管电路是否闭合,只要穿过电路的磁通量发生变化,电路中就会有感应电流

解析:只要通过线圈的磁通量发生了变化,线圈中就一定会产生感应电动势;但要产生感应电流,线圈必须是闭合的.

答案:B

9.下列图示中,正方形闭合线圈始终在匀强磁场中运动,线圈中能产生感应电流的是()

解析:A中穿过线圈的磁通量Φ=0;B、C中穿过线圈的磁通量不为零,但不变;D中穿过线圈的磁通量Φ发生了变化.答案:D

10.在探究电磁感应现象的实验中,用导线将螺线管与灵敏电流计相连,构成闭合电路,如下图所示.在下列情况中,灵敏电流计指针不发生偏转的是()

A.线圈不动,将磁体向线圈中插入

B.线圈不动,将磁体从线圈中抽出

C.磁体放在线圈里不动

D.磁体不动,将线圈上下移动

解析:产生感应电动势的条件是穿过闭合回路的磁通量发生变化,A、B、D中穿过螺线管的磁通量都发生了变化,有感应电流.答案:C

11.(多选)关于磁通量的下列说法中,正确的是()

A.穿过线圈的磁通量为零,表明此处的磁感应强度为零

B.穿过线圈的磁通量为零,此处的磁感应强度可以不为零

C.磁通量的变化可以不是磁场的变化引起的

D.对于一个面积不变的线圈,穿过线圈的磁通量越大,表明此处的磁感应强度越强

分析:磁通量Φ=BS cos θ,若线圈与磁场平行,磁通量为零,若垂直磁通量最大为BS.

解析:穿过线圈的磁通量为零,可能是线圈与磁场平行,磁感应强度不一定为零,故A错误,B正确;磁通量的变化可以由夹角或线圈面积的变化而引起,不一定是由磁场的变化引起的,故C正确;线圈面积不变,但线圈与磁场的夹角可以变化,当相互垂直时,磁通量最大,故D错误.

答案:BC

点评:本题考查磁通量的定义,要注意明确磁通量取决于磁感应强度、线圈面积及夹角三个因素.

12.(2015·广东学业水平考试)下图是观察电磁感应现象的实验装置.闭合开关,要使灵敏电流计指针发生偏转,可采取的措施有()

A.将线圈M快速插入线圈N中B.将线圈M快速从线圈N中抽出C.快速移动滑动变阻器的滑片D.将线圈M静置于线圈N中

答案:ABC

论电磁感应现象的发现发展历程

论电磁感应的发现历程 古之成大事者,不惟有超世之才,亦必有坚忍不拔之志。昔禹之治水,凿龙门,决大河,而放之海。方其功之未成也,盖亦有溃冒冲突可畏之患,惟能前知其当然,事至不惧而徐为之图,是以得至于成功。电磁感应的发现与发展,凝结了无数人的智慧。 伟大的哲学家康德曾经说过:“各种自然现象之间是相互联系和相互转化的。”在1820年,丹麦物理学家、化学家奥斯特在一次实验中发现了电流的磁效应,这一惊人发现使当时整个科学界受到很大的震动,从此拉开了电磁联系的序幕,“物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的各种其他现象的零散的罗列,我们将把整个宇宙纳在一个体系中。” 奥斯特发现电流的磁现象后不久,各国各地的科学家们展开了对称性的思考:电和磁是一对和谐对称的自然现象,既然存在磁化和静电感应现象,那么磁体或电流也应能在附近导体中感应出电流来。于是,当时许多著名的科学家如法国的安培、菲涅尔、阿拉果和英国的沃拉斯顿等都纷纷投身于探索磁与电的关系之中。 仅仅空有满腔热血是远远不够的,还需要有科学的方法以及持之以恒的毅力,勇于突破思维的局限。安培曾做了很多实验,以期能实现“磁生电”,但他把分子电流理论看的

过分重要,完全被自己的理论囚禁起来了,以致尽管在一次实验中展现出了磁生电的迹象,但却没有引发他的正确认识。 1823年,瑞士物理学家科拉顿曾企图用磁铁在线圈中运动获得电流。他把一个线圈与电流计连成一个闭合回路。为了使磁铁不至于影响电流计中的小磁针,特意将电流计用长导线连后放在隔壁的房间里,他用磁棒在线圈中插入或拔出,然后一次又一次地跑到另一房间里去观察电流计是否偏转。由于感应电流的产生与存在是瞬时的暂态效应,他当然观察不到指针的偏转,发现电磁感应的机会也失之交臂。 为了证明磁能生电,1820年至1831年期间,法拉第用实验的方法探索这一课题,最初也是像上述物理学家一样,利用通常的思想方法,做了大量的实验,但磁生电的迹象却始终未出现。失败并没有使他放弃实验,因为他坚信自然力是统一的、和谐的,电和磁是彼此有关联的。 1825年,斯特詹发明了电磁铁,这给法拉第的研究带来了新的希望。1831年,法拉第终于在一次实验中获得了突破性进展。而这次实验就是著名的法拉第圆环实验。 这一实验使法拉第豁然开朗:由磁感应电的现象是一种暂态效应。发现了这一秘密后,他设计了另外一些实验,并证实了自己的想法。就这样经过近10年的思考与探索,法拉第克服了思维定势采用了新的实验方法,终于发现了电磁

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

精选2019-2020年粤教版高中物理选修1-1第一节 电磁感应现象的发现课后练习三十七

精选2019-2020年粤教版高中物理选修1-1第一节电磁感应现象的发现课后练 习三十七 第1题【单选题】 以物理为基础的科学技术的高速发展,直接推动了人类社会的进步。下列哪一个发现更直接推动了人类进入电气化时代? A、库仑定律的发现 B、欧姆定律的发现 C、感应起电现象的发现 D、电磁感应现象的发现 【答案】: 【解析】: 第2题【单选题】 奥斯特发现电流的磁效应的这个实验中,小磁针应该放在( ) A、南北放置的通电直导线的上方 B、东西放置的通电直导线的上方 C、南北放置的通电直导线同一水平面内的左侧 D、东西放置的通电直导线同一水平面内的右侧 【答案】: 【解析】: 第3题【单选题】

如图所示,铜盘在磁极间匀速旋转.借助电刷在铜盘边缘和转轴间连接负载R,负载R上通过的是( ) A、交变电流 B、逐渐增大的电流 C、直流电流 D、逐渐减小的电流 【答案】: 【解析】: 第4题【单选题】 如图为探究产生电磁感应现象条件的实验装置,下列情况下不能引起电流计指针转动的是( ) A、闭合电键瞬间 B、断开电键瞬间 C、闭合电键后拔出铁芯瞬间 D、闭合电键后保持变阻器的滑动头位置不变 【答案】:

【解析】: 第5题【单选题】 下列现象中,能表明电和磁有联系的是( ) A、摩擦起电 B、两块磁铁相互吸引或排斥 C、带电体静止不动 D、磁铁插入闭合线圈过程中,线圈中产生感应电流 【答案】: 【解析】: 第6题【单选题】 如图所示,金属棒ab置于水平放置的金属导体框架cdef上,棒ab与框架接触良好.从某一时刻开始,给这个空间施加一个斜向上的匀强磁场,并且磁场均匀增加,ab棒仍静止,在磁场均匀增加的过程 中,关于ab棒受到的摩擦力,下列说法正确的是( ) A、摩擦力大小不变,方向向右 B、摩擦力变大,方向向右 C、摩擦力变大,方向向左

必修3高二物第三章理知识点之电磁感应

学年必修3高二物第三章理知识点之电磁感应电磁感应是一个能量转换过程,例如可以将重力势能,动能等转化为电能,热能等。小编准备了必修3高二物第三章理知识点,希望你喜欢。 1.电磁感应现象 利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb (2)求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,

穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律

电磁感应的发现

中学高二年级选修3-2 册物理学科导学案(学生版) 课题:电磁感应的发现 【学习目标】(清晰、具体、可检测性强) 1.了解电磁感应现象的发现过程,认识电磁感应现象的时代背景和思想历程。 2.知道电磁感应现象产生的电流叫感应电流。 3.知道科学探究的的一般方法,了解相关的实验。 【学习重点】 认识电磁感应现象,了解相关实验 【学习过程】(预热衔接、问题引领、自主学习、交流互助、学生展示、质疑探究、精彩点评) 一、复习:奥斯特-----电流的磁效应。 阅读教材并回忆有关奥斯特发现电流磁效应的内容。 (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特发现电流磁效应的过程是怎样的?回忆学过的知识如何解释? (3)电流磁效应的发现有何意义?谈谈自己的感受。 二、学习过程: 1.法拉第发现电磁感应现象。 (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点? (2)法拉第做了大量实验都是以失败告终,失败的原因是什么? (3)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么? (4)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。 2.电磁感应现象的分类。 阅读教材并回答: 法拉第发表的论文中,把电磁感应现象分为五类: ①、 ②、

③、 ④、 ⑤、 学生活动:自主完成。 3.感应电流:由产生的电流叫感应电流。 (1)讨论交流,设计实验,如何利用提供的器材产生感应电流?(画出设计草图) (2)观察演示实验,认识感应电流。 4.电磁感应现象发现的意义。 阅读教材并思考回答电磁感应发现的意义: (1)电磁感应的发现,使人们发明了,把能转化为能。 (2)电磁感应的发现,使人们发明了,解决了电能远距离传输中的能量大量损耗的问题。 (3)电磁感应的发现,使人们制造了,反过来把能转化为能,比如生活中的、、。 【课堂总结】 1、我们可以通过哪些实验与现象来说明(证实)磁现象与电现象有联系? 2、如何让磁生成电? 3、生活中电磁有关的现象? 【当堂训练】 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C) A.安培B.赫兹C.法拉第D.麦克斯韦 【例2】发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。 【例3】下列现象中属于电磁感应现象的是(B) A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流 C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场 【作业】思考:产生感应电流的条件?

物理电磁感应现象的两类情况的专项培优练习题

物理电磁感应现象的两类情况的专项培优练习题 一、电磁感应现象的两类情况 1.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求: (1)当线圈的对角线ac 刚到达gf 时的速度大小; (2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少? 【答案】(1)1224mgR v B L = (2)322 44 2512m g R Q mgL B L =- 【解析】 【详解】 (1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为: 112E B Lv =? 感应电流:11E I R = 由力的平衡得:12BI L mg ?= 解以上各式得:122 4mgR v B L = (2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势 2222E B Lv =? 感应电流:2 2E I R = 由力的平衡得:222BI L mg ?=

解以上各式得:222 16mgR v B L = 设感应电流在线圈中产生的热量为Q ,由能量守恒定律得: 22122 mg L Q mv ?-= 解以上各式得:322 44 2512m g R Q mgL B L =- 2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。 (2)线圈中的电流大小。 (3)AB 边产生的焦耳热。 【答案】(1)22 FR v B L =;(2)F I BL =;(3)4FL Q = 【解析】 【分析】 【详解】 (1)线圈向右匀速进入匀强磁场,则有 F F BIL ==安 又电路中的电动势为 E BLv = 所以线圈中电流大小为 = =E BLv I R R 联立解得 22 FR v B L = (2)根据有F F BIL ==安得线圈中的电流大小 F I BL = (3)AB 边产生的焦耳热 22( )4AB F R L Q I R t BL v ==??

高中物理-电磁感应第一节电磁感应现象教案

高中物理-电磁感应第一节电磁感应现象教案 教学目标:知识与技能1、收集有关物理学史资料,了解电磁感应现象发现过程,体会人类探索自然规律的科学方法、科学态度和科学精神2、知道磁通量,会比较“穿过不同闭合电路磁通量”的大小3、通过实验,了解感应电流的产生条件 过程与方法通过试验的观察和分析,培养学生运用所学知识,分析问题、解决问题的能力。 情感态度与价值观使学生认识:“从个性中发现共性,再从共性中理解个性,从现象认识本质以及事物有普遍联系”的辩证唯物主义观点。 教学重点:感应电流的产生条件教学难点:磁通量的理解 教具:磁铁、螺线管、电流表、学生电源、电键、滑动变阻器、小螺线管A、大螺线管B教学过程:一、划时代的发现 说明:1820 年奥斯特发现了电流磁效应,说明电流能够产生磁场,人们很自然地思考,能不能根据磁来产生电呢,为此很多科学家做出了很多的尝试,其中最著名的科学家就是法拉第,他进行了长达10 年的艰苦探索。最初,法拉第认为.很强的磁铁或很强的电流可能会在邻近的闭合导线中感应出电流。他做了多次尝试,经历了一次次失败,都没有得到预想的结果。但是,法拉第坚信:电与磁有联系,电流能产生磁场,磁场也就一定能产生电流。在这些信念的支持下,1 831 年他终于发现了电磁感应现象:把两个线圈绕在一个铁环上,一个线圈接电源,另一个线圈接“电流表”,当给一个线圈通电或断电的瞬间,在另一个线圈上出现了电流。 二、电磁感应现象问:什么是电磁感应现象?(闭合电路的一部分在磁场中做切割磁感线运动时,导体中就产生电流) 三、电磁感应的产生条件 说明:在什么条件下能够产生电磁感应?要产生感应电流的前提条件线圈当然要是闭合线圈, 那还有什么条件呢?请看下面的实验 说明:为了说明产生电磁感应的条件.要用到一个物理盘--磁通量。什么是磁通量?我们用“穿过一个闭合电路的磁感线的多少”来形象地理解:“穿过这个闭合电路的磁通量” 思考与讨论:P47、思考与讨论磁通量发生变化

电磁感应现象及电磁在生活中的应用

电磁感应现象及电磁在生活中的应用 摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。 电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。是经过很多人的探索和努力一步一步走到现在的。 正文: 电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。由电磁感应现象产生的电流叫做感应电流。 电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。法拉第发现,铁环并不是必须的。拿走铁环,再做这个实验,上述现象仍然发生。只是线圈B中的电流弱些。为了透彻研究电磁感应现象,法拉第做了许多实验。1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。 电磁感应是指因磁通量变化产生感应电动势的现象。电磁感应现象的发现,乃是电磁学中伟大的成就之一。它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V。 磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。 (2)公式:Φ=BS 当平面与磁场方向不垂直时: Φ=BS⊥=BScosθ(θ为两个平面的二面角) (3)物理意义

教科版必修(32)《电磁感应现象的发现》word教案

2012-2013学年第一学期高二物理学案(008) 班级 高二( )班 学生姓名 ______ _ 完成时间: (学案A 等级要求:书写规范,全部完成,有用红笔订正,正确率80%以上) 课题:电磁感应现象的发现 课型:新授课 单元5课时:第1课时 【学习目标】 1、 法拉第和电磁感应现象,知道感应电流的产生是由于穿过闭合回路的磁通量发生改变 而引起的 2、 了解电源电动势的概念 目标1:法拉第和电磁感应现象 自主学习 1、丹麦物理学家 偶然发现,接通电流时导线附近的小磁针忽然 。 奥斯特实验发现了 ,说明电流能够产生磁场,它使人们第一次认识到电和磁之间确实存在着某种联系,为此后一系列电磁规律的发现奠定了基础。 2、电能产生磁,那磁能不能生电,开始思考并研究这个问题的物理学家是 3、电磁感应现象 如果螺线管中有电流,电流计的指针就会 实验发现当 磁铁时,电流计的指针会偏 转说明,此时螺线管内有 5、磁通量用Φ表示,Φ= ,其中B 表示 ,S 表示 。磁通量的单位是 ,简称 ,符号为 。 6、产生电流的原因:通过闭合回路的 发生改变。 我能做 1、首先发现电流磁效应和电磁感应现象的科学家分别是( )

A.安培和法拉第 B.奥斯特和法拉第 C.库仑和法拉第 D. 奥斯特和麦克斯韦 2、如图所示,矩形区域abcd内有匀强磁场,闭合线圈由位置1通过这个磁场运动到位置2.线圈在运动过程的哪几个阶段有感应电流,哪几个阶段没有感应电流?为什么? 目标2:了解电源电动势的概念 自主学习 1、在下面的电路图里,闭合开关的时候,灯泡会亮,是由的 原因,普通的1号干电池的电动势是。 2、电动势,描述, 称为电动势。电动势的符号是,它的单位与电压的单位同样是 ,符号是。 3、 在这个实验中,电流计会偏转,是在充当电 源的。 这个电源的电动势和一般的干电池电源不一样,是由于 通过螺线管的 的改变,感应产生的,我们称 为。 (简单的理解就是螺线管在这里充当电源) 我能做: 1、安培于1821年时用类似于图的通电线圈进行过探求感应电流的实验,但没有发现电磁感应现象,他失败的原因是() A.他的实验电路有问题 B.他的仪器连接有问题 C.他只关注到稳定时的情形 D.他没有留意磁铁插入或拔出的瞬间情形

电磁感应现象的应用

重点难点突破 一、电磁感应现象中的力学问题 1.通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本步骤是: (1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流强度.(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向).(4)列动力学方程或平衡方程求解. 2.对电磁感应现象中的力学问题,要抓好受力情况和运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,要抓住a=0时,速度v达最大值的特点. 二、电磁感应中的能量转化问题 导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式的能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本步骤是: 1.用法拉第电磁感应定律和楞次定律确定电动势的大小和方向. 2.画出等效电路,求出回路中电阻消耗电功率的表达式. 3.分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程. 三、电能求解的思路主要有三种 1.利用安培力的功求解:电磁感应中产生的电能等于克服安培力所做的功; 2.利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能; 3.利用电路特征求解:根据电路结构直接计算电路中所产生的电能. 四、线圈穿越磁场的四种基本形式 1.恒速度穿越; 2.恒力作用穿越; 3.无外力作用穿越; 4.特殊磁场穿越. 典例精析 1.恒速度穿越 【例1】如图所示,在高度差为h的平行虚线区域内有磁感应强度为B,方向水平向里的匀强磁场.正方形线框abcd的质量为m,边长为L(L>h),电阻为R,线框平面与竖直平面平行,静止于位置“Ⅰ”时,cd边与磁场下边缘有一段距离H.现用一竖直向上的恒力F提线框,线框由位置“Ⅰ”无初速度向上运动,穿过磁场区域最后到达位置“Ⅱ”(ab边恰好出磁场),线框平面在运动中保持在竖直平面内,且ab边保持水平.当cd边刚进入磁场时,线框恰好开始匀速运动.空气阻力不计,g=10 m/s2.求: (1)线框进入磁场前距磁场下边界的距离H; (2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F做的功为多少?线框产生的热量为多少? 【解析】(1)线框进入磁场做匀速运动,设速度为v1,有: E=BLv1,I=ER,F安=BIL 根据线框在磁场中的受力,有F=mg+F安

第三章电磁感应-第一节现象

第一节、电磁感应现象 教学目标: 1、收集有关物理学史资料,了解电磁感应现象发现过程,体会人类探索自然规律的科学方法、科学态度和科学精神 2、知道磁通量,会比较“穿过不同闭合电路磁通量”的大小 3、通过实验,了解感应电流的产生条件 教学过程: 一、划时代的发现 说明:1820 年奥斯特发现了电流磁效应,说明电流能够产生磁场,人们很自然地思考,能不能根据磁来产生电呢,为此很多科学家做出了很多的尝试,其中最著名的科学家就是法拉第,他进行了长达10 年的艰苦探索。最初,法拉第认为.很强的磁铁或很强的电流可能会在邻近的闭合导线中感应出电流。他做了多次尝试,经历了一次次失败,都没有得到预想的结果。但是,法拉第坚信:电与磁有联系,电流能产生磁场,磁场也就一定能产生电流。在这些信念的支持下,1 831 年他终于发现了电磁感应现象:把两个线圈绕在一个铁环上,一个线圈接电源,另一个线圈接“电流表”,当给一个线圈通电或断电的瞬间,在另一个线圈上出现了电流。 二、电磁感应现象 问:什么是电磁感应现象?(闭合电路的一部分在磁场中做切割磁感线运动时,导体中就产生电流) 三、电磁感应的产生条件 说明:在什么条件下能够产生电磁感应?要产生感应电流的前提条件线圈当然要是闭合线圈, 那还有什么条件呢?请看下面的实验 说明:为了说明产生电磁感应的条件.要用到一个物理盘--磁通量。什么是磁通量?我们可以 用“穿过一个闭合电路的磁感线的多少”来形象地理解:“穿过这个闭合电路的磁通量” 思考与讨论:P55、思考与讨论磁通量发生变化 演示实脸 实验仪器:磁铁、螺线管、电流表 实验过程:①将螺线管和电流表连接 ②N极插入线圈的过程中,观察指针有没有偏转?如何偏转? N极停在线圈中,观察指针有没有偏转?如何偏转? N极从线圈中抽出的过程中,观察指针有没有偏转?如何偏转? S极插入线圈的过程中,观察指针有没有偏转?如何偏转?

2019高中物理第三章电磁感应现象3.6自感现象涡流练习含解析新人教版选修1_1

自感现象涡流 课后训练案巩固提升 A组(20分钟) 1.关于自感电流,下列说法正确的是() A.自感电流一定与线圈中电流方向相反 B.自感电流一定与线圈中的电流方向相同 C.自感电流可能与线圈中的电流方向相反,也可能相同 D.线圈中只要有电流通过,就一定会产生自感电流 解析:线圈中电流发生变化时,会产生自感电动势,阻碍电流的变化,可能与线圈中的电流方向相反,也可能相同。 答案:C 2.下列说法中正确的是() A.电路中电流越大,自感电动势越大 B.电路中电流变化越大,自感电动势越大 C.线圈中电流均匀增大,线圈的自感系数也均匀增大 D.线圈中的电流为零时,自感电动势不一定为零 解析:在自感一定的情况下,电流变化越快,自感电动势越大,与电流的大小、电流变化的大小没有必然的关系,A、B项错;线圈的自感系数是由线圈本身的性质决定的,与线圈的大小、形状、匝数、有无铁芯等有关,而与线圈的电流的变化率无关,C项错。 答案:D 3.下列哪些做法是为了减少涡流的产生() A.在电动机、变压器中的线圈中加入铁芯 B.电动机、变压器内部铁芯都是由相互绝缘的硅钢片组成 C.在电磁冶金中,把交变电流改成直流 D.一些大型用电器采用特制的安全开关

解析:在电动机、变压器中,为增强磁场,把绕组都绕在铁芯上,以增强磁场,但铁芯中会产生很强的涡流,为了减少涡流,铁芯都用电阻率很大的硅钢片叠成,将硅钢片表面进行处理,生成不导电的氧化层,相互绝缘,可进一步减少涡流,所以A项不符合题意,B项符合题意;电磁冶金利用产生的涡流,而只有当空间中磁通量变化的时候,才会有涡流产生,直流电流稳定,产生的磁场也稳定,是不会引起涡流的,C项不符合题意;D项与涡流无关,是为了防止自感。 答案:B 4.关于线圈的自感系数大小的下列说法中,正确的是() A.通过线圈的电流越大,自感系数也越大 B.线圈中的电流变化越快,自感系数也越大 C.插有铁芯时线圈的自感系数会变大 D.线圈的自感系数与电流的大小、电流变化的快慢、是否有铁芯等都无关 解析:自感系数是由电感线圈本身的因素决定的,包括线圈的大小、单位长度上的匝数,而且有铁芯时比无铁芯时自感系数要大,与通过线圈的大小及变化趋势无关。 答案:C 5.某同学为了验证断电自感现象,自己找来带铁芯的线圈L、小灯泡A、开关S和电池组E,用导线将它们连接成如图所示的电路。检查电路后,闭合开关S,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象。虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因。你认为最有可能造成小灯泡未闪亮的原因是() A.电源的内阻较大 B.小灯泡电阻偏大 C.线圈电阻偏大 D.线圈的自感系数较大 解析:闭合开关S,电路稳定灯泡正常发光时,如果电感线圈L中的电阻比灯泡的电阻大,则电感线圈L中的电流I L比灯泡A中的电流I A小,当开关S断开,则由于自感现象,L和A构成回路使L和A中的电流从I L开始减小,因此不可能看到小灯泡闪亮的现象,C项正确。 答案:C 6.

高中物理11电磁感应现象的发现教案教科版

1.1 电磁感应现象的发现 [要点导学] 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。 2、机遇总是青睐那些有准备的头脑,奥斯特的发现是必然中的偶然。发现中子的历史过程(在选修3-5中学习)也说明了这一点。小居里夫妇首先发现这种不带电的未知射线,他们误认为这是能量很高的射线,一项划时代的伟大发现就与小居里夫妇擦肩而过了。当查德威克遇到这种未知射线时,查德威克很快就想到这种不带电的射线可能是高速运动的中子流,因为查德威克的老师卢瑟神福早已预言中子的存在,所以查德威克的头脑是一个有准备的头脑,查德威克就首先发现了中子,并因此获得诺贝尔物理学奖。所以学会用联系的眼光看待世界,比记住奥斯特实验重要得多。 3、法拉第就是用联系的眼光看待世界的人,他坚信既然电流能够产生磁场,那么利用磁场应该可以产生电流。信念是一种力量,但信念不能代替事实。探索“磁生电”的道路非常艰苦,法拉第为此寻找了10年之久,我们要学习的就是这种百折不挠的探索精神。 4、法拉第为什么走了10年弯路,这个问题值得我们研究。原来自然界的联系不是简单的联系,自然界的对称不是简单的对称,“磁生电”不象“电生磁”那样简单,“磁生电”必须在变化、运动的过程中才能出现。法拉第的弯路应该使我们对自然界的联系和对称的认识更加深刻、更加全面。 [范例精析] 例1奥斯特的实验证实了电流的周围存在磁场,法拉第经过10年的努力终于发现了利用磁场产生电流的途径,法拉第认识到必须在变化、运动的过程中才能利用磁场产生电流。法拉第当时归纳出五种情形,请说出这五种情形各是什么。 解析法拉第把能引起感应电流的实验现象归纳为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。它们都与变化和运动有关。 拓展法国物理学家安培也曾将恒定电流或磁铁放在导体线圈的附近,希望在线圈中看到被“感应”出来的电流,可是这种努力均无收获。因为“磁生电”是在变化或运动中产生的物理现象。 例2 自然界的确存在对称美,质点间的万有引力F=Gm1m2/r2和电荷间的库仑力F=kq1q2/r2就是一个对称美的例子。电荷间的相互作用是通过电场传递的,质点间的相互作用则是通过引力场传递的。点电荷q的在相距为r处的电场强度是E=kq/r2,那么质点m在相距为r 处的引力场强度是多少呢?如果两质点间距离变小,引力一定做正功,两质点的引力势能一定减少。如果两电荷间距离变小,库仑力一定做正功吗?两电荷的电势能一定减少吗?请简述理由。

电磁感应的应用论文

电磁感应现象在生活中的应用 摘要:自法拉利历经十年发现电磁感应现象后,电磁感应便开始运用于生活中。电话筒、录音机、汽车车速表、熔炼金属等,无一不与生活息息相关,极大的方便了我们的生活,推动了社会的进步,和发展。同时,它的利用也是理论向实践的不断进步的过程,理论唯有利用于实践才更能发挥它的作用。 动圈式话筒 在剧场里,为了使观众能听清演员的声音,常常需要把声音放大,放大声音的装置主要包括话筒,扩音器和扬声器三部分。话筒是把声音转变为电信号的装置。动圈式话筒是利用电磁感应现象制成的,当声波使金属膜片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动,音圈在永久磁铁的磁场里振动,其中就产生感应电流(电信号),感应电流的大小和方向都变化,变化的振幅和频率由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。 磁带录音机 磁带录音机主要由机内话筒、磁带、录放磁头、放大电路、扬声器、传动机构等部分组成,是录音机的录、放原理示意图。录音时,声音使话筒中产生随声音而变化的感应电流——音频电流,音频电流经放大电路放大后,进入录音磁头的线圈中,在磁头的缝隙处产生随

音频电流变化的磁场。磁带紧贴着磁头缝隙移动,磁带上的磁粉层被磁化,在磁带上就记录下声音的磁信号。放音是录音的逆过程,放音时,磁带紧贴着放音磁头的缝隙通过,磁带上变化的磁场使放音磁头线圈中产生感应电流,感应电流的变化跟记录下的磁信号相同,所以线圈中产生的是音频电流,这个电流经放大电路放大后,送到扬声器,扬声器把音频电流还原成声音。在录音机里,录、放两种功能是合用一个磁头完成的,录音时磁头与话筒相连;放音时磁头与扬声器相连。 ③汽车车速表 汽车驾驶室内的车速表是指示汽车行驶速度的仪表。它是利用电磁感应原理,使表盘上指针的摆角与汽车的行驶速度成正比。车速表主要由驱动轴、磁铁、速度盘,弹簧游丝、指针轴、指针组成。其中永久磁铁与驱动轴相连。在表壳上装有刻度为公里/小时的表盘。 永久磁铁一部分磁感线将通过速度盘,磁感线在速度盘上的分布是不均匀的,越接近磁极的地方磁感线数目越多。当驱动轴带动永久磁铁转动时,则通过速度盘上各部分的磁感线将依次变化,顺着磁铁转动的前方,磁感线的数目逐渐增加,而后方则逐渐减少。由法拉第电磁感应原理知道,通过导体的磁感线数目发生变化时,在导体内部会产生感应电流。又由楞次定律知道,感应电流也要产生磁场,其磁感线的方向是阻碍(非阻止)原来磁场的变化。用楞次定律判断出,顺着磁铁转动的前方,感应电流产生的磁感线与磁铁产生的磁感线方向相反,因此它们之间互相排斥;反之后方感应电流产生的磁感线方

电磁感应现象的两类情况练习题

课后巩固作业 限时:45分钟总分:100分 一、选择题(包括8小题,每小题8分,共64分) 1.下列说法中正确的是( ) A.感生电场由变化的磁场产生 B.恒定的磁场也能在周围空间产生感生电场 C.感生电场的方向也同样可以用楞次定律和右手定则来判定 D.感生电场的电场线是闭合曲线,其方向一定是沿逆时针方向解析:磁场变化时在空间激发感生电场,其方向与所产生的感应电流方向相同,可由楞次定律和右手定则判断,故A、C项正确,B、D项错. 答案:AC 2.如图所示,导体AB在做切割磁感线运动时,将产生一个感应电动势,因而在电路中有电流通过,下列说法中正确的是( ) A.因导体运动而产生的感应电动势称为动生电动势

B.动生电动势的产生与洛伦兹力有关 C.动生电动势的产生与静电力有关 D.动生电动势和感生电动势产生的原因是一样的 解析:根据动生电动势的定义可知A项正确.动生电动势中的非静电力与洛伦兹力有关,感生电动势中的非静电力与感生电场有关,B项正确,C、D项错误. 答案:AB 3.如图所示,一个带正电的粒子在垂直于匀强磁场的平面做圆周运动,当磁感应强度均匀增大时,此粒子的动能将( ) A.不变B.增加 C.减少D.以上情况都可能 解析:当磁感应强度均匀增大时,产生感生电场,根据楞次定律判断出感生电场的方向沿逆时针方向.粒子带正电,所受电场力与感生电场的方向相同,因而运动方向也相同,从而做加速运动,动能增大,B选项正确. 答案:B 4.如图所示,一金属半圆环置于匀强磁场中,当磁场突然减弱

时,则( ) A.N端电势高 B.M端电势高 C.若磁场不变,将半圆环绕MN轴旋转180°的过程中,N端电势高 D.若磁场不变,将半圆环绕MN轴旋转180°的过程中,M端电势高 解析:将半圆环补充为圆形回路,由楞次定律可判断圆环中产生的感应电动势方向在半圆环中由N指向M,即M端电势高,B正确;若磁场不变,半圆环绕MN轴旋转180°的过程中,由楞次定律可判断,半圆环中产生的感应电动势在半圆环中由N指向M,即M端电势高,D正确. 答案:BD 5.在闭合铁芯上绕有一组线圈,线圈与滑动变阻器、电池构成电路,假定线圈产生的磁感线全部集中在铁芯.a、b、c为三个闭合金属圆环,位置如图所示.当滑动变阻器滑片左右滑动时,能产生感应电流的圆环是( )

电磁感应 案例

《电磁感应》案例 教材分析:教材从奥斯特的发现得到的启发出,发提出问题:既然电流能产生磁场那么反过来磁场能不能获得电流?仿照前人探索的路子和方法,通过探索性的实验引出电磁感应和感应电流的概念,概括总结产生感应电流的条件。再通过实验事实的出感应电流的方向与磁感线方向和导体运动方向有关的结论。教材充分体现了寓方法指导于知识探索之中的思想。 教学目标: 1、认知目标: 知道什么是电磁感应现象以及其中的能量转化; 知道感应电流产生的条件; 知道感应电流方向与什么因素有关; 2、能力目标:进一步了解探究性实验的过程,加深对控制变量法的理解 3、情意目标:培养学生的探索精神实是求实的科学态度 重点难点:电磁感应现象以及感应电流产生的条件 教具准备:灵敏电流计蹄形磁铁(较大)一个导线开关一只 教学过程: 一、电磁感应现象的教学 提出问题: 请同学们回忆,奥斯特实验所证明的结论是什么?(学生回答) 从这一实验可以看出电是可以产生磁的。我们知道自然界的事物是互相联系相互作用的,既然电可以产生磁,那么我们马上可以联想到磁能否产生电呢?学生猜想:会 猜想实验的设计: 1、师生进一步了解实验目的 2、实验器材的选取讨论: 教师可以给予以下提示:要创造出磁场环境所以要提供什么器材?要看是否产生了电流所以要提供电流的载体或者说是电流流动的路径所以要有什么器材?电流即使产生了也是看不见摸不着的最理想的是在试验中能看出电流产生的现象,可以选什么仪表来展示一下? [师生讨论结果] 实验需要的器材为:磁铁导线检验是否有电流的电流表,控制电路的开关 3、探究步骤设计讨论: 教师及时给予以下启发:奥斯特实验证明导体通电后即可产生磁场,那么是不是把导体放到磁场里就会产生电流?导体动起来会不会产生电流?磁场中导体运动的方向不同是不是都产生电流?产生的电流一样大吗? [探究实验一] 学生分组实验 如课本12-1图组装试验仪器并进行下表探究性操作

必修3高二物第三章理知识点之电磁感应

2019 学年必修3 高二物第三章理知识点之电磁感应电磁感应是一个能量转换过程,例如可以将重力势能,动能等转化为电能,热能等。小编准备了必修3 高二物第三章理知识点,希望你喜欢。 1. 电磁感应现象利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1) 产生感应电流的条件:穿过闭合电路的磁通量发生变化, 即0。 (2) 产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3) 电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2. 磁通量 (1) 定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS, 国际单位:Wb (2) 求磁通量时应该是穿过某一面积的磁感线的净条数。任 何一个面都有正、反两个面; 磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3. 楞次定律

(1) 楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2) 对楞次定律的理解 ①谁阻碍谁--- 感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么--- 阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍--- 原磁通量增加时,感应电流的磁场方向与原磁场方向相反; 当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果--- 阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3) 楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感) 。 4. 法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式:E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsin 。当B、L、v 三者两两垂直时,感应电动势E=BLv。

电磁感应现象及其应用生活实践中

西北农林科技大学 电磁感应现象及其应用 学院:风景园林艺术学院 班级:园林134 姓名:崔苗苗 学号:2913911465 134

电磁感应现象及其在生活中的应用 西北农林科技大学风景园林艺术学院 姓名崔苗苗班级园林134班学号 2013011465 摘要自法拉第历经十年发现电磁感应现象后,电磁感便开始应用生活中。话筒, 电磁炉,电视机,手机等生活用品,无不与人类生活息息相关,极大地方便了我们的生活,推动了社会历史的进步和发展。同时,它的应用也是理论向实践不断探索和改进的过程,理论唯有应用于实践,才更能发挥它的价值。 关键词电磁感应现象生活应用 电磁感应现象的发现不仅揭示了电与磁之间的内在联系,而且为电与磁之间的转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在生活中具有重大的意义。它的发现,标志着一场重大的工业和技术革命的到来。在电工技术,电子技术以及电磁测量等方面都有广泛的应用,人类社会从此迈入电气化时代,对推动生产力和科学技术发展发挥了重要作用。物理发现的重要性由此可见。本文主要介绍了电磁感应现象及其在人类生活中的相关应用。 一.电磁感应现象定义 闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。而闭合电路中由电磁感应现象产生的电流叫做感应电流。 二.电磁感应发现历程 电磁学是物理学的一个重要分支,初中时代的奥斯特实验为我们打开电磁学的大门,此后高中三年这一部分内容也一直是学习的重中之重。继1820奥斯特实验之后,电与磁就不再是互不联系的两种物质,电流磁效应的发现引起许多物理学家的思考。当时,很多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,而迈克尔·法拉第即为其中一位。他在1821年发现了通电导线绕磁铁转动的现象,然后经历10年坚持不懈的努力,最终于1831年取得突破性进展。 法拉第将两个线圈绕在一个铁环上,其中一个线圈接直流电源,另一个线圈接电流表。他发现,当接直流电源的线圈电路接通或断开的瞬间,接电流表的线圈中会产生瞬时电流。而在这个过程中,铁环并不是必须的。无论是否拿走铁环,再做这个实验的时候,上述现象仍然发生,只是线圈中的电流弱些。 为了透彻研究电磁感应现象,法拉第又继续做了许多的实验。终于,在1831年11月24日,他在向皇家学会提交的一个报告中,将这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、

相关主题