搜档网
当前位置:搜档网 › 增强材料-碳纤维

增强材料-碳纤维

增强材料-碳纤维
增强材料-碳纤维

碳纤维

碳纤维(Carbon Fibre, CF或Cf)的开发历史可追溯到19世纪末期,美国科学家爱迪生发明的白炽灯灯丝,而真正作为有使用价值并规模生产的碳纤维,则出现在二十世纪50年代末期。

1959年美国联合碳化公司(Union Carbide Corporation,UCC)以粘胶纤维(Viscose firber)为原丝制成商品名为“Hyfil Thornel”的纤维素基碳纤维(Rayon-based carbon firber)。

1962年日本炭素公司实现低模量聚丙烯脂基碳纤维(Polyacry lontrile--based carbon firber,PANCF)的工业化生产;

1963年英国航空材料研究所(Royal Aircraft Establishment,RAE)开发出高模量聚丙烯脂基碳纤维;

1965年日本群马大学试制成功以沥青或木质素为原料的通用型碳纤维;

1970年日本昊羽化学公司实现沥青基碳纤维Pitch-based carbon fiber的工业规模生产;

1968年美国金刚砂公司研制出商品名为“Kynol”的酚醛纤维Phenolic fibers;

1980年以酚醛纤维为原丝的活性碳纤维(Fibrous activated carbon)投放市场。

1988年,世界碳纤维总生产能力为10054吨/年,其中聚丙烯腈基碳纤维为7840吨,占总量的78%。日本是最大的聚丙烯腈基碳纤维生产国,生产能力约3400吨/年,占总量的43%。

美国的碳纤维主要用于航空航天领域,欧洲在航空航天、体育用品和工业方面的需求比较均衡,而日本则以体育器材为主。

碳纤维是由有机纤维经固相反应转变而成的纤维状聚合物碳,是一种非金属材料。

碳纤维不属于有机纤维范畴,但从制备方法上看,它又不同于普通无机纤维。

碳纤维的分类

当前,国内外巳商品化的碳纤维种类很多,一般可以根据原丝的类型、碳纤维的性能和碳纤维的用途等三种方法进行分类。

◆按前驱体纤维原料的不同,可分为粘胶基碳纤维、聚丙烯腈碳纤维、沥青基碳纤维和气相生

长碳纤维;

◆按纤维力学性能分类,可分为通用级碳纤维(GP)和高性能碳纤维(HF),其中高性能碳纤维包

括中强型(MT)、高强型(HT)、超高强型(uHT)、中模型(1M)、高模型(HM)、超高模型(UHM);

◆按照制造方法分类,可分为碳纤维(800-1600℃)、石墨纤维(2000-3000℃)、氧化纤维(预氧丝

200-300℃)、活性碳纤维和气相生长碳纤维;

◆按照碳纤维应用领域分类,可分为商品级碳纤维和宇航级碳纤维。

碳纤维制法

碳纤维是一种以碳为主要成分的纤维状材料。它不同于有机纤维或无机纤维,不能用熔融法或溶液法直接纺丝,只能以有机物为原料,采用间接方法制造。

碳纤维制造方法可分为两种类型,即气相法和有机纤维碳化法。

气相法是在惰性气氛中,小分子有机物(如烃或芳烃等)在高温下沉积成纤维。

用这种方法只能制造晶须或短纤维,不能制造连续长丝。

有机纤维碳化法可以制造连续长纤维,它通常分为两步进行:

①将有机纤维经过稳定化处理变成耐焰纤维;

②在惰性气氛中,于高温下进行焙烧碳化,使有机纤维失去部分碳和其它非碳原子,形成以碳为主要成分的纤维状物。

天然纤维、再生纤维和合成纤维都可用来制备碳纤维。

制备碳纤维时,选择的条件是加热时不熔融,可牵伸,且碳纤维产率高。

制作碳纤维的主要原材料有三种:

①人造丝(粘胶纤维);

②聚丙烯腈(PNN) 纤维;

③沥青。

用人造丝、聚丙烯腈纤维、沥青为原料生产的碳纤维各有其不同特点。

其中,制造高强度、高模量碳纤维多选聚丙烯腈为原料。 无论用哪一种原丝纤维来制造碳纤维,都要经过五个阶段:

拉丝:可用湿法、干法或者熔融状态三种中的任意一种方法进行。

牵伸:在室温以上,通常是100--300 ℃范围内进行。 W.Watt 首先发现结晶定向纤维的拉伸效应,而且这种效应控制着最终纤维的模量

稳定:通过400 ℃加热氧化的方法。400 ℃的氧化阶段是A. Shindo…s 最近在工艺上做出的贡献。它显著地降低所有的热失重,并因此保证高度石墨化和取得更好的性能

碳化:在1000--2000 ℃范围内进行。

石墨化:在2000--3000 ℃范围内进行。

在制备碳纤维的过程中,无论采用什么原材料,都要经过上述五个阶段,即原丝预氧化(拉丝、牵伸、稳定)、碳化以及石墨化等,所产生的最终纤维,其基本成分为碳。

聚丙烯腈基碳纤维的制造

聚丙烯腈(PAN)是由丙烯腈(AN)聚合而成的链状高分子:

由于腈基是强极性基,分子间力大,耐热性好;同时PAN 在熔点317℃以前就开始热分解,因此不能采用熔融纺丝而只能通过溶剂进行湿法或干法纺丝;

可引入共聚组分如丙烯酸酯、丙烯衍生物,具有亲核基团,可促进氰基环化反应;共聚物熔点降低,使得纺丝工艺方便,并降低预氧化形成梯形结构的温度。

聚丙烯腈碳纤维的生产过程分为四步:预氧化;高温碳化处理;石墨化处理和表面处理,生产流程示意图如下

预氧化

预氧化过程主要发生环化反应和氧化脱氢反应,脱氢环化使PAN 纤维由线型转变为六元环的梯形结构。

作用:为了防止原丝在碳化时熔融,通过氧化反应使得纤维分子中含有经基、碳基,这样可在分子间和分子内形成氢链,并利用羟基、羰基的诱导作用,可使氰基在较低的温度下环化成带有六元共轭环的梯形结构,从而提高纤维的热稳定性,这样就能经受高温碳化处理而获得碳纤维。

拉丝 牵伸 稳定 碳化 石墨化

◆预氧化工艺条件:预氧化炉内停留2h,分4段控温进行,温度分别为200℃、230℃、250℃

和280℃,预氧化过程是连续进行的。

◆分两段施加张力,200-230℃阶段伸长10%左右,250-280℃保持定长或伸长3%左右。

◆预氧化需要通风,便于吹走副产物和温度均匀;

◆施加张力的目的:抑制纤维长轴方向上的收缩,有利于聚合链择优取向和氰基顺式立构排列,

促进氰基环化,提高梯形结构的取向度。

◆纤维截面出现皮芯结构,外皮硬实、稳定化程度高,强度与模量主要取决于外皮的体积,外

皮体积在86%以上才算预氧化完成。

◆引入共聚单体后,有利于纺丝及提高纤维的取向度,使预氧化温度低,时间缩短,改善碳纤

维性能,提高碳纤维的收率。

◆碳化处理

◆碳化是指预氧化纤维在张力、300-1500℃、高纯N2保护下进行的热解反应,除去结构中不

稳定的部分与非碳原子,同时进行分子间缩合(横向交联反应),最后得到碳含量达92%以上的碳纤维,结构向石墨晶体转化。

◆碳化时间40min,施加张力使石墨晶体沿纤维方向取向,抑制横向交联反应产生的收缩。

◆通氮气并使其流向与丝束相反:排出碳化过程中产生的氢、氮、氧及甲烷、CO2、氨、氢氰

酸等,这些物质必须迅速排出,否则冷凝后粘到纤维上,不但妨碍裂解产物的排出,且会使纤维粘在一起产生过热,导致纤维断裂、毛丝增多,强度下降。

◆石墨化处理

◆碳化处理后纤维属于乱层石墨结构,石墨层片沿纤维轴的取向较低,模量不高;再进行高温

处理可得到高模量碳纤维,即石墨化。

◆石墨化是在高纯氩气中进行,进一步排除非碳元素,碳-碳重新排列,层面内芳环数增加,层

片尺寸增大,结晶态碳比例增加。

◆石墨化结果:石墨晶体尺寸增加、结晶度增加、取向角减小、层间距降低,从而提高了碳纤

维的模量。

◆碳化时间几十秒或几分钟,施加张力使石墨层片向纤维方向取向。

◆表面处理

◆碳纤维表面活性低,必须进行表面处理(氧化、上浆)以提高表面活性,提高复合材料性能;

◆上浆是制备碳纤维的最后一道工序,其功能是保护碳纤维,防止损伤与起毛,作为碳纤维与

树脂的偶联剂。

沥青基碳纤维

沥青基碳纤维是三大碳纤维之一,具有聚丙烯腈基碳纤维和黏胶基碳纤维不可替代的优点,

沥青基碳纤维的模量最高可达到1000Gpa,接近石墨的理论模量,导电导热性能大大高于聚丙烯腈基碳纤维,因此在一些特殊领域具有其它碳纤维不可替代的作用。

沥青是多种芳环缩聚物的混合物。软化点在100-200℃之间,相对分子质量分布很宽,平均相对分子质量在200以上。含碳量大于70%。

◆沥青基碳纤维的制造

◆制备原料:天然沥青;煤炭焦化副产物煤焦油沥青;石油原油分馏后的渣油制得的石油沥青;

石油馏分热解制取乙烯时副产物热解沥青;用合成树脂(如PVC)或纯芳烃类(如萘、蒽)缩聚制得的纯净的、相对分子质量分布窄的合成沥青,但其成本较高。

◆类型:力学性能较低的通用级碳纤维,也可称为各向同性沥青碳纤维,另一种是力学性能较

高的中间相沥青(中间相沥青是沥青类物质在液相碳化过程中形成的具有向列液晶性质的中间体)基碳纤维;两者在结构和性能上的差别主要取决于沥青原料的组成。

◆各向同性沥青纤维的制造方法是:

◆调制沥青:调制方法包括溶剂萃取、蒸馏、加氢处理、添加适宜化合物等工序;通过调制使

沥青化学组成、相对分子质量大小及分布能够满足制备碳纤维的要求,并使沥青具有一定的流动性。

◆熔融纺丝:纺丝温度一般比沥青的软化点高50-150℃,使沥青由玻璃态转变为粘流态,在粘

流态下纺丝成形;

◆稳定化处理:为了保持沥青纤维纺丝后碳化时不融并,必须对沥青纤维进行不熔化处理(酸

性气体250-400℃);

◆碳化:稳定化后的沥青纤维于惰性气体的保护下在1000-1500℃下进行碳化处理,除去非碳

元素,使之转变成多晶石墨片层结构。

◆中间相沥青碳纤维的制备:

◆调制:首先将沥青溶解在80-120℃的喹啉(或吡啶)溶液中,过滤除去不利中间相小球成长的

喹啉不溶物;在惰性气氛、300-350℃下,经脱氢缩合调制出具有适当粘度和沿纤维轴方向高度定向的中间相沥青。

◆纺丝:熔融纺丝,严格控制纺丝温度、喷丝孔形状、气氛温度等。

◆中间相沥青纤维的不熔化处理:在空气中(或含NO2、02)于275-350℃下进行处理,或经液相

氧化(过氧化氢、硫酸、硝酸等)处理。

◆碳化:碳化时纤维中的芳烃大分子之间进行脱氢、脱水、缩合反应,排除非碳元素。

2.3.3碳纤维的结构

碳纤维具有较高的强度和模量,是与它的结构分不开的。碳纤维的结构与石墨晶体类似,为讨论碳纤维的结构,首先介绍一下纯碳组成的理想石墨晶体的结构。

1)理想的石墨晶体结构

石墨晶体是一种三维有序的六方晶体点阵结构。其特征:

(1)层面内碳原子sp2杂化,每个碳原子有3个σ键与其他3个C原子结合,每个C原子出一个p轨道形成一个大Π键;层与层之间靠范德华力联接,距离较大。

(2)相邻层面间的碳原子位置有固定的层间对应关系。

所以石墨是三维有序的各向异性材料,沿层平面方向有非常高的模量。

2)碳纤维的结构

原纤是由许多碳纤维的二级结构单元石墨微晶组成。石墨微晶是由数张到数十张石墨层片层与层平行叠合一起组成。

石墨微晶与理想石墨晶体的结构差别是:它不是三维有序的点阵结构,而是二维有序的乱层结构;层片间距离较理想晶体大。

3)碳纤维结构与性能关系:

(1)热处理温度对CF强度和模量的影响

热处理温度提高,碳纤维的模量提高,强度会出现峰值。

(2)润湿和粘结

(3)PAN原丝本身质量、缺陷影响碳纤维的性能

4)碳纤维的力学性能:

◆4)碳纤维的强度高、模量大,又因密度小,故具有较高的比强度和比模量。

◆碳纤维模量随碳化温度的提高而提高,提高温度,结晶区长大,碳六元环规整排

列区域扩大,结晶取向度提高。经2500℃处理后称为高模量CF或Ⅰ型碳纤维。CF 成本随热处理温度提高而提高。

◆碳纤维强度随碳化温度的提高而出现最大值,在1300-1700℃范围内增加,超过

1700℃强度开始下降,因纤维内部缺陷增多、增大造成的。1300-1700℃范围内处理的称为高强度CF或Ⅱ型碳纤维。

◆Ⅰ型CF模量最高、强度最低、密度最大、断裂伸长率最小;Ⅱ型CF模量介中、

强度最高、密度最小、断裂伸长率最大。

◆碳纤维的应力-应变曲线是一条直线,纤维在断裂前是弹性体,断裂是瞬间开始

和完成的。

物理性能

◆热性能:耐高低温性能好,在隔绝空气或惰性气体中,2000℃仍有强度,液氮下

也不脆断。

◆导热性好,导热系数有方向性,沿轴向导热系数远大于垂直方向。

◆线膨胀系数沿轴向有负的温度效应,即升温收缩,可制零膨胀CM。

◆与树脂黏结性能差,表面活性低,需要表面处理。

◆导电性好;

◆摩擦系数小,具有自润滑性。

化学性能

◆氧化性:在空气中,耐热性比GF差;CF表面碳原子可被强氧化剂(浓硫酸、浓硝

酸等)氧化成含氧基团,可提高界面黏结性能。

◆耐腐蚀性:除了强氧化剂外,一般酸碱对它作用很小。耐水、耐油、抗腐射以及

减速中子运动等。

2.4.碳纤维发展

◆产品性能不断提高

◆中模高强型CF的开发

◆高模高强CF

◆高模量沥青基碳纤维:要达到同样的模量,PAN基要比沥青基的处理温度高数百度。

美国联碳公司制备的CF,其模量已接近理论模量。

碳碳复合材料概述

碳/碳复合材料概述 摘要本文介绍了碳碳复合材料的发展、工艺、特性以及应用。 关键词碳碳复合材料制备工艺性能应用 1前言 C/C复合材料是指以碳纤维或各种碳织物增强,或石墨化的树脂碳以及化学气相沉积(CVD)所形成的复合材料。碳/碳复合材料在高温热处理之后碳元素含量高于99%, 故该材料具有密度低,耐高温, 抗腐蚀, 热冲击性能好, 耐酸、碱、盐,耐摩擦磨损等一系列优异性能。此外, 碳/碳复合材料的室温强度可以保持到2500℃, 对热应力不敏感, 抗烧蚀性能好。故该复合材料具有出色的机械特性, 既可作为结构材料承载重荷, 又可作为功能材料发挥作用, 适于各种高温用途使用[1]。因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。 2碳碳复合材料的发展 碳碳复合材料是高技术新材料,自1958年碳碳复合材料问世以来,经历了四个阶段: 60年代——碳碳工艺基础研究阶段,以化学气相沉积工艺和液相浸渍工艺的出现为代表; 70年代——烧蚀碳碳应用开发阶段,以碳碳飞机刹车片和碳碳导弹端头帽的应用为代表; 80年代——碳碳热结构应用开发阶段,以航天飞机抗氧化碳碳鼻锥帽和机翼前缘的应用为代表; 90年代——碳碳新工艺开发和民用应用阶段,致力于降低成本,在高性能燃气涡轮发动机航天器和高温炉发热体等领域的应用。 由于碳碳具有高比强度、高比刚度、高温下保持高强度,良好的烧蚀性能、摩擦性能和良好抗热震性能以及复合材料的可设计性,得到了越来越广泛的应用。当今,碳碳复合材料在四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于金属基复合材料和陶瓷基复合材料,已走向工程应用阶段。从技术发展看,碳碳复合材料已经从最初阶段的两向碳碳复合材料发展为三向、四向等多维碳碳复合材料;从单纯抗烧蚀碳碳复合材料发展为抗烧蚀—抗侵蚀和抗烧蚀—抗侵蚀—稳定外形碳碳复合材料;从但功能材料发展为多功能材料。目前碳碳复合材料面对的最主要问题是抗氧化问题[2]。 3碳碳复合材料的制备加工工 艺[3] C/ C 复合材料的制备工艺: 碳 纤维的选择→胚体的预制成型→胚体 的致密化处理→碳碳复合材料的高温 热处理(如图[4]) 3.1碳纤维的选择 CF 的选择可以改变碳碳复合材 料的力学和热力学性能。纤维的选择 主要依赖于成本、织物结构、性能及 纤维的工艺稳定性。 常用CF 有三种, 即人造丝CF, 聚丙烯腈( PAN ) CF 和沥青CF。 3.2坯体的预制成型 坯体的成型是指按产品的形状和性能要求先把CF 预先成型为所需结构形状的毛坯, 以便进一步进行C/ C 复合材料的致密化处理工艺。

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

碳纤维复合材料结构设计要点

强度与刚度 既然是结构部件,那么设计者首先要考虑的是强度和刚度。部件在外力载荷的作用下,有抵 抗变形与破坏的能力,但是这个能力又是有限度的。 如何4定部件的使用载荷,不会超出部件的能力极限,是通过材料力学计算得出。而部件的 这个能力极限,就是碳纤维复合材料结构设计者需要考虑的问题。 通过合理的搭配纤维和树脂,优化纤维排布,用最少的材料,满足设计需求,体现了复合材 料设计者精湛的技巧。不过决定复合材料强度与刚度的因素,不但与纤维和树脂的种类有关,还与碳纤维的铺层方向以及层与层之间结合搭配有关。 所以,设计者在设计碳纤维复合材料结构部件时,需要考虑三个层级结构的力学性能。 由基体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何(各 相材料的形状、分布、含量)和界面区的性能。 由单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何(各单层的 厚度、铺设方向、铺层序列) 。 最顶层结构是指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结 构几何。 稳定性 除了强度与刚度要求,设计者还需考虑复合材料部件的失稳,尤其是对一些细长杆结构,在 受压时,应该能够保证其原有的直线平衡状态。对于一些框架结构部件,如果铺层不均匀, 也会产生翘曲失稳,所以在制造过程中尤其注意。最好采用对称铺层,以防变形不均匀。 一般情况下,在部件没有达到极限载荷之下,不允许产生失稳现象。但是如果对于一些特殊 要求,可以产生失稳现象,那么设计过程中,要考虑失稳过程不会因此影响极限载荷。 铺层结构 铺层结构是碳纤维复合材料结构设计的关键,如何把单层结构的优异性能传递到复合材料结 构部件上,铺层结构起到承上启下的作用。关于复合材料铺层应注意以下几点: 1. 树脂是碳纤维复合材料力学性能的短板,所以尽量避免将载荷直接加到层间或者树脂之间。也就是说,0°、±45°、90°的纤维都要有,否则载荷会将部件从没有纤维排布的方向撕裂。 2. 为了防止层合板边缘开裂,尽量避免重复单一方向的铺层,设计时最多不超过5层。 3. 为了防止最外层铺层的剥离,在部件的主载荷方向,应铺放±45°纤维,而不能铺放0°和90°纤维。另外,避免最外层铺层间断或不完整。 4. 若使用非对称铺层,每层因同方向上热膨胀系数不同会出现翘曲,因此,一般要采用对称 铺层。 5. 当增加补强铺层时,每层阶梯最少要3.8- 6.4mm,附加铺层也应尽量采用对称铺层。

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

碳纤维增强复合材料概述(精编文档).doc

【最新整理,下载后即可编辑】 碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之

间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、氧等元素得以排出,成为一种接近纯碳的材料,含碳量一般都在90%以上,而本身质量却大为减轻;由于碳化过程中对纤维进行了沿轴向的预拉伸处理,使得分子沿轴向进行取向排列,因而碳纤维轴向拉伸强度大大提高,成为一种轻质、高强度、高模量、化学性能稳定的高性能纤维材料。用碳纤维和高性能的树脂基体复合而成的先进树脂基复合材料是目前用得最多,也是最重要的一种结构复合材料。此外,用天然纤维、玻璃纤维和玄武岩纤维作增强体的树脂基复合材料也在快速发展。 碳纤维增强复合材料( CFRP) 是目前最先进的复合材料之一。它可以兼顾碳纤维和基体的性能而成为综合性能更为优异的工程结构材料和具有特殊性能的功能材料。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

增强材料-碳纤维

碳纤维 碳纤维(Carbon Fibre, CF或Cf)的开发历史可追溯到19世纪末期,美国科学家爱迪生发明的白炽灯灯丝,而真正作为有使用价值并规模生产的碳纤维,则出现在二十世纪50年代末期。 1959年美国联合碳化公司(Union Carbide Corporation,UCC)以粘胶纤维(Viscose firber)为原丝制成商品名为“Hyfil Thornel”的纤维素基碳纤维(Rayon-based carbon firber)。 1962年日本炭素公司实现低模量聚丙烯脂基碳纤维(Polyacry lontrile--based carbon firber,PANCF)的工业化生产; 1963年英国航空材料研究所(Royal Aircraft Establishment,RAE)开发出高模量聚丙烯脂基碳纤维; 1965年日本群马大学试制成功以沥青或木质素为原料的通用型碳纤维; 1970年日本昊羽化学公司实现沥青基碳纤维Pitch-based carbon fiber的工业规模生产; 1968年美国金刚砂公司研制出商品名为“Kynol”的酚醛纤维Phenolic fibers; 1980年以酚醛纤维为原丝的活性碳纤维(Fibrous activated carbon)投放市场。 1988年,世界碳纤维总生产能力为10054吨/年,其中聚丙烯腈基碳纤维为7840吨,占总量的78%。日本是最大的聚丙烯腈基碳纤维生产国,生产能力约3400吨/年,占总量的43%。 美国的碳纤维主要用于航空航天领域,欧洲在航空航天、体育用品和工业方面的需求比较均衡,而日本则以体育器材为主。 碳纤维是由有机纤维经固相反应转变而成的纤维状聚合物碳,是一种非金属材料。 碳纤维不属于有机纤维范畴,但从制备方法上看,它又不同于普通无机纤维。 碳纤维的分类 当前,国内外巳商品化的碳纤维种类很多,一般可以根据原丝的类型、碳纤维的性能和碳纤维的用途等三种方法进行分类。 ◆按前驱体纤维原料的不同,可分为粘胶基碳纤维、聚丙烯腈碳纤维、沥青基碳纤维和气相生 长碳纤维; ◆按纤维力学性能分类,可分为通用级碳纤维(GP)和高性能碳纤维(HF),其中高性能碳纤维包 括中强型(MT)、高强型(HT)、超高强型(uHT)、中模型(1M)、高模型(HM)、超高模型(UHM); ◆按照制造方法分类,可分为碳纤维(800-1600℃)、石墨纤维(2000-3000℃)、氧化纤维(预氧丝 200-300℃)、活性碳纤维和气相生长碳纤维; ◆按照碳纤维应用领域分类,可分为商品级碳纤维和宇航级碳纤维。 碳纤维制法 碳纤维是一种以碳为主要成分的纤维状材料。它不同于有机纤维或无机纤维,不能用熔融法或溶液法直接纺丝,只能以有机物为原料,采用间接方法制造。 碳纤维制造方法可分为两种类型,即气相法和有机纤维碳化法。 气相法是在惰性气氛中,小分子有机物(如烃或芳烃等)在高温下沉积成纤维。 用这种方法只能制造晶须或短纤维,不能制造连续长丝。 有机纤维碳化法可以制造连续长纤维,它通常分为两步进行: ①将有机纤维经过稳定化处理变成耐焰纤维; ②在惰性气氛中,于高温下进行焙烧碳化,使有机纤维失去部分碳和其它非碳原子,形成以碳为主要成分的纤维状物。 天然纤维、再生纤维和合成纤维都可用来制备碳纤维。 制备碳纤维时,选择的条件是加热时不熔融,可牵伸,且碳纤维产率高。 制作碳纤维的主要原材料有三种: ①人造丝(粘胶纤维); ②聚丙烯腈(PNN) 纤维; ③沥青。

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

碳纤维复合材料

碳纤维复合材料 编辑本段概况 在复合材料大家族中,纤维增强材料一直是人们关注的焦点。自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使其复合材料领域呈现出一派勃勃生机。下面让我们来了解一下别具特色的碳纤维复合材料。 编辑本段结构 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。 碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。 碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。 编辑本段用途 碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。 碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。

碳纤维复合材料

碳纤维的研究现状与发展 摘要:碳纤维主要是由碳元素组成的一种特种纤维,分子结构界于石墨和金刚石之间,含碳体积分数随品种而异,一般在0.9以上。 关键词:碳纤维复合材料性能与应用 正文 一、碳纤维的性能 1.1分类 根据原丝类型分类可分为聚丙烯腈(PAN)基、沥青基和粘胶基3种碳纤维,将原丝纤维加热至高温后除杂获得。目前,PAN碳纤维市场用量最大;按力学性能可分为高模量、超高模量、高强度和超高强度4种碳纤维;按用途可分为宇航级小丝束碳纤维和工业级大丝束碳纤维,其中小丝束初期以1K、3K、6K(1K为1000根长丝)为主,逐渐发展为12K和24K,大丝束为48K以上,包括60K、120K、360K和480K等。 1.2性能 碳纤维的主要性能:(1)密度小、质量轻,密度为1.5~2克/立方厘米,相当于钢密度的l/4、铝合金密度的1/2;(2)强度、弹性模量高,其强度比钢大 4-5倍,弹性回复l00%;(3)具有各向异性,热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂;(4)导电性好,25。C时高模量纤维为775μΩ/cm,高强度纤维为1500μΩ/cm;(5)耐高温和低温性好,在3000。C非氧化气氛下不融化、不软化,在液氮温度下依旧很柔软,也不脆化;(6)耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀。此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。

通常,碳纤维不单独使用,而与塑料、橡胶、金属、水泥、陶瓷等制成高性能的复合材料,该复合材料也具有轻质、高强、耐高温、耐疲劳、抗腐蚀、导热、导电等优良性质,已在现代工业领域得到了广泛应用。 1.3应用领域 由于碳纤维具有高强、高模、耐高温、耐疲劳、导电、导热等特性,因此被广泛应用于土木建筑、航空航天、汽车、体育休闲用品、能源以及医疗卫生等领域。此外,碳纤维在电子通信、石油开采、基础设施等领域也有着广泛的应用,主要用于放电屏蔽材料、防静电材料、分离铀的离心机材料、电池的电极,在生化防护、除臭氧、食品等领域种也有出色的表现。碳纤维复合材料片。碳纤维复合材料片是采用常温固化的热固性树脂(通常是环氧树脂)将定向排列的碳纤维束粘结起来制成的薄片。把这种薄片按照设计要求,贴在结构物被加固的部位,充分发挥碳纤维的高拉伸模量和高拉伸强度的作用,来修补加固钢筋混凝土结构物。日本、美国、英国将该材料用于加固震后受损的钢筋混凝土桥板,增强石油平台壁及耐冲击性能的许多工程上,获得了突破性进展。碳纤维复合材料片具有轻质(比重是铁的1/4~1/5),拉伸模量比钢高10倍以上,耐腐蚀性能优异,可以手糊,工艺性好等优点。因此,碳纤维复合材料片在修补加固已劣化的钢筋混凝土结构物(约束裂纹发展、防止混凝土削落)和提高结构物耐力以及对用旧标准设计建成的钢筋混凝土结构物的补强、加固应用将越来越多。 二、生产工艺 通常用有机物的炭化来制取碳纤维,即聚合预氧化、炭化原料单体—原丝—预氧化丝—碳纤维。碳纤维的品质取决于原丝,其生产工艺决定了碳纤维的优劣。以聚丙烯腈(PAN)纤维为原料,干喷湿纺和射频法新工艺正逐步取代传统的碳纤维制备方法。 2.1干喷湿纺法 干喷湿纺法即干湿法,是指纺丝液经喷丝孔喷出后,先经过空气层(亦叫干段),再进入凝固浴进行双扩散、相分离和形成丝条的方法。经过空气层发生的物理变化有利于形成细特化、致密化和均质化的丝条,纺出的纤维体密度较高,

碳纤维增强复合材料在汽车上的应用终结版综述

碳纤维增强复合材料在汽车中的应用 摘要 随着汽车工业的飞速发展,减少燃料消耗和降低对环境的污染已成为汽车工业发展和社会可持续发展急需解决的关键问题。汽车的燃料消耗和二氧化碳废气的排放量与汽车重量存在密切的关系,寻找较轻且性能良好的材料代替钢制汽车零件成为一个重要的研究方向。碳纤维增强复合材料具有强度高、重量轻、耐高温、耐腐蚀、热力学性能优良等特点,碳纤维增强复合材料用于制造汽车车身、发动机零件等,可有效降低汽车自重并提高汽车性能,是当前汽车材料轻量化的重要研究发展方向之一。本文介绍了碳纤维增强复合材料的特点、成型工艺及在汽车行业的应用情况,以及碳纤维增强复合材料在汽车应用中存在的问题。 关键词:碳纤维增强汽车应用

1 前言 现在社会汽车已成为人民出行必不可少的交通工具,在汽车给人类带来方便的同时也给环境带来了污染,汽车的燃料消耗和二氧化碳废气的排放量与汽车重量存在密切的关系,美国能源部相关研究表明,美国现有的汽车,如减重25%,每天可节省750,000桶燃油,每年二氧化碳的排放量可减少1.01亿吨,因此汽车轻量化已成为汽车工业技术发展的重要方向。除了对汽车各种零部件结构进行优化设计和改进外,采用高性能轻质材料是实现汽车轻量化的一条重要途径。如选用铝、镁、钛、高强度钢、工程塑料和复合材料等,用以制造汽车车身、底盘、发动机等零部件,可以有效的减轻汽车自重,提高发动机效率。 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料,是目前最先进的复合材料之一。它以其质量轻、强度高、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗腐蚀材料,是其它纤维增强复合材料所无法比拟的。纤维增强复合材料具有高强度、高模量,已在航天航空等领域广泛使用,是制造卫星、导弹、飞机的重要结构零部件的关键结构材料,同时也受到汽车工业广泛重视,碳纤维增强复合材料在汽车方面主要是汽车骨架、缓冲器、弹簧片、引擎零件等,早在1979年,福特汽车公司就在实验车上作了试验,将其车身、框架等160个部件用碳纤维复合材料制造,结果整车减重33%,汽油的利用率提高了44%,同时大大降低了振动和噪音。 碳纤维具有比重小、强度高、模量高、耐腐蚀等特点,可用于制造碳纤维增强聚合物、金属、陶瓷基复合材料,是先进复合材料最重要的增强体。碳纤维增强复合材料用于制造汽车车身、发动机零件等,可有效降低汽车自重并提高汽车性能。本文将简述碳纤维增强复合材料的性能特点,及其在汽车工业应用的前景和存在的问题。由于碳纤维增强复合材料的价格昂贵,严重影响其在汽车工业中的应用。因此,发展廉价的碳纤维和高效率碳纤维增强复合材料的生产方法和工艺已成为汽车轻量化材料研究中的关键课题,美国、日本等已将其列为汽车轻量化材料的研究计划。

碳碳复合材料概述

碳碳复合材料概述 1概述 碳/碳复合材料是由碳纤维(或石墨纤维)为增强体,以碳(或石墨)为基体的复合材料,是具有特殊性能的新型工程材料,也称为“碳纤维增强碳复合材料”。碳/碳复合材料完全是由碳元素组成,能够承受极高的温度和极大的加热速率。它具有高的烧蚀热和低的烧蚀率,抗热冲击和在超热环境下具有高强度,被认为是超热环境中高性能的烧蚀材料。在机械加载时,碳/碳复合材料的变形与延伸都呈现出假塑件性质,最后以非脆性方式断裂。 它的主要优点是:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。 碳/碳复合材料的缺点是非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差.制造加工周期长,设计方法复杂,缺乏破坏准则。1958年,科学工作者在偶然的实验中发现了碳/碳复合材料,立刻引起了材料科学与工程研究人员的普遍重视。尽管碳/碳复合材料具有许多别的复合材料

不具备的优异性能,但作为工程材料在最初的10年间的发展却比较缓慢,这主要是由于碳/碳的性能在很大程度上取决于碳纤维的性能和谈集体的致密化程度。当时各种类型的高性能碳纤维正处于研究与开发阶段,碳/碳制备工艺也处于实验研究阶段,同时其高温氧化防护技术也未得到很好的解决。 在20世纪60年代中期到70年代末期,由于现代空间技术的发展,对空间运载火箭发动机喷管及喉衬材料的高温强度提出了更高要求,以及载人宇宙飞船开发等都对碳/碳复合材料技术的发展起到了有力的推功作用。那时,高强和高模量碳纤维已开始应用于碳/碳复合材料,克服碳/碳各向异性的编织技术也得到了发展,更为主要的是碳/碳的制备工艺也由浸渍树脂、沥青碳化工艺发展到多种CVD沉积碳基体工艺技术。这是碳/碳复合材料研究开发迅速发展的阶段,并且开始了工程应用。由于20世纪70年代碳/碳复合材料研究开发工作的迅速发展,从而带动了80年代中期碳/碳复合材料在制备工艺、复合材料的结构设计,以及力学性能、热性能和抗氧化性能等方面基础理论及方法的研究,进一步促进和扩大了碳/碳复合材料在航空航天、军事以及民用领域的推广应用。尤其是预成型体的结构设计和多向编织加工技术日趋发

碳纤维复合材料修订稿

碳纤维复合材料 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在 2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高35倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从 300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长

碳纤维增强复合材料用环氧树脂研究进展

碳纤维增强复合材料用环氧树脂研究进展 摘要:综述了环氧树脂的合成方法、固化方法以及改性的研究现状以及理论知 识,介绍了碳纤维增强环氧树脂复合材料的生产和性能,重点讲述了环氧树脂的改性方法。 关键词:环氧树脂;碳纤维;复合材料;改性 碳纤维(carbon fiber,简称CF),是一种含碳量在90%以上的高强度、高模量、综合性能优异的新型纤维材料,其中含碳量高于99%的称石墨纤维。碳纤维作为一种高性能纤维,具有高强度、高模量、耐高温、抗化学腐蚀、抗蠕变、耐辐射、耐疲劳、导电、传热和热膨胀系数小等诸多优异性能。此外,还具有纤维的柔曲性和可编性[1]。碳纤维既可用作结构材料来承载负荷,又可用作功能材料。因此在国内外碳纤维及其复合材料近几年的发展都十分迅速。碳纤维的制备是有机纤维进行碳化的过程,在惰性气体中将含碳的有机物加热到3000℃左右,非碳元素脱离,碳元素含量逐步增大并最终形成碳纤维。其典型的宏观结构如图1所示。 图1 碳纤维的宏观结构 a 整体效果 b 局部效果 1891年德国的Lindmann用对苯二酚和环氧氯丙烷合成了树脂状产物,1909年俄国化 学家Prileschajew发现用过氧化苯甲醚和烯烃反应可生成环氧化合物,在19世纪末20世纪初的这两个重大发现揭开了环氧树脂走向世界的帷幕。环氧树脂是一类重要的热固性树脂,是聚合物复合材料中应用最广泛的基体树脂。环氧树脂具有优异的粘接性能、耐磨性能、机械性能、电绝缘性能、化学稳定性能、耐高低温性能,以及收缩率低、易加工成型和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、电子电气绝缘材料及先进复合材料等领域得到广泛应用[2]。我国环氧树脂的研制开始于1956年,在上海、 沈阳两地首获成功,并在1958年于上海首先开始了工业化生产。到了60年代中期国内开始研究新型的环氧树脂,如脂环族环氧树脂、酚醛环氧树脂、缩水甘油酯环氧树脂、聚丁二烯环氧树脂等种类,70年代末着手开发了元素改性环氧树脂、特种环氧树脂等诸多新品种。 经过五十余年的发展,环氧树脂的生产和应用取得了长足的进步,然而和金属等传统材料相比,我国的环氧树脂产业在生产规模、品种数量、产品质量等方面和发达国家仍有较大差距。

碳纤维增强陶瓷基复合材料

题目:碳纤维增强陶瓷基复合材料 抗氧化研究 学生: 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2013 年 05月22日

碳纤维增强陶瓷基复合材料抗氧化研究 (陝西科技大学 710021) 摘要:碳纤维增强陶瓷基复合材料( CFRCMCs) 具有良好的高温力学性能和热性能,是航空航天领域非常理想的热结构材料.但CFRCMCs 中的碳纤维极易发生氧化,因此CFRCMCs 的氧化防护问题一直是CFRCMCs 研究的热点。文章对碳纤维改性、基体抗氧化技术、界面层抗氧化技术和表面涂层技术这四种CFRCMCs 的抗氧化技术及其原理进行了评述,分析了各类抗氧化技术的特点并对其发展趋势进行了展望. 关键词:碳纤维; 陶瓷基复合材料;抗氧化涂层,氧化保护 1 前言 碳纤维增强陶瓷基复合材料(CFRCMCs)由于具有高比强度、高比模量、耐腐蚀、耐高温、低密度等优良特性,特别是拥有良好的高温力学性能和热性能,在惰性环境中超过2 000e仍能保持强度、模量等力学性能不降低,拥有良好的断裂韧性和耐磨性能、低线膨胀系数、高热导率、高气化温度和良好的抗热震性能【1】,成为航空航天领域非常理想的热结构材料。但是,在氧化气氛下,碳纤维增强陶瓷基复合材料中碳质材料在400℃左右发生氧化,使其优异性能难以在高温下长时间保持。而碳纤维增强陶瓷基复合材料的许多应用环境都是具有氧化气氛的。因此,它们在氧化气氛中的表现(包括氧化失重、机械性能的持久性等)及氧化气氛中的氧化保护一直是科研工作者非常关注的问题【2】。 碳纤维增强陶瓷基复合材料的抗氧化性研究主要集中在两个方面:(1)通过对基体材料的处理来增强材料的抗氧化性能,如殷小玮等通过在基体孔隙中渗入融熔Si和Cr反应生成Cr3Si来增强抗氧化性能;https://www.sodocs.net/doc/4417423750.html,bruqu re等通过在碳纤维表层形成B化合物膜层来增强材料抗氧化性能;(2)通过整体抗氧化涂层增强材料的抗氧化性能。在两种处理方式中,整体抗氧化涂层更为有效。本文仅对整体抗氧化涂层的发展进行综述和展望。【3】 2 抗氧化涂层的要求 抗氧化涂层的基本功能是将基体材料与外部的氧化性气氛隔离。要有效地实现其隔离功能,抗氧化涂层体系必须满足一些基本要求:(1)涂层材料在所保护温度围稳定,涂层体系和基体材料有良好的粘接作用,涂层与基体及涂层与涂层之间

碳纤维复合材料

碳纤维复合材料 摘要:主要介绍了碳纤维复合材料的基本概述,并对它的一些结构性能、应用(主要在航空领域的应用)、发展,并分析了目前我国碳纤维复合材料的研究进展和应用前景。 关键字:碳纤维复合材料、碳纤维树脂基复合材料、碳/碳复合材料、结构性能、发展、航空领域。 1、引言 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的“比强度”。碳纤维属于聚合物碳,是有机纤维经固相反应转变为纤维状的无机碳化合物。碳纤维是一种新型非金属材料,它和它的复合材料具有高强度、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、比重小和热胀胀系数小等优异性能,碳纤维单独使用时主要是利用其耐热性、耐蚀性、导电性和其它性质。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP(即碳纤维复合材料)的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。目前,碳纤维不仅广泛应用军事工业,而且在汽车构件、风力发电叶片、核电、油田钻探、体育用品、碳纤维复合芯电缆以及建筑补强材料领域也存在巨大应用空间,而其在航空领域的光辉业绩尤为引人注目。 2、碳纤维的发展 碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重

碳纤维制备工艺简介资料

碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。 一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。 虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

相关主题