搜档网
当前位置:搜档网 › 美国吉时利keithley2400系列数字源表最新技术指标资料说明书

美国吉时利keithley2400系列数字源表最新技术指标资料说明书

美国吉时利keithley2400系列数字源表最新技术指标资料说明书
美国吉时利keithley2400系列数字源表最新技术指标资料说明书

S M U I N S T R U M E N T S

by eliminating many of the complex synchronization and connection issues associated with using multiple instruments . And, their compact half-rack size conserves precious “real estate” in the test rack or bench .

Power of five Instruments in one (IV source, IVr Measure)

The tightly coupled nature of a SourceMeter SMU instrument provides many advantages over solu-tions configured from separate instruments, such as a precision power supply and a digital multime-five instruments in one (IV source, IVr Measure)seven models: 20–100W DC,1000W pulsed, 1100V to 1μV,10a to 10pa

source and sink (4-quadrant)T i g h t l y c o u p l e d p r e c i s i o n s o u r c i n g a n d m e a s u r e m e n t

S M U I N S T R U M E N T S

source I–Measure V, I, or W configuration

source V–Measure I, V, or W configuration

I-V Characteristics

All SourceMeter SMU instruments provide four-quadrant operation . In the first and third quadrants

they

o perate as a source, delivering power to a load . In the second and fourth quadrants they oper-ate as a sink,

d issipating power internally . Voltage, current, and resistanc

e can be measured during source or sink o peration .

T i g h t l y c o u p l e d p r e c i s i o n s o u r c i n g a n d m e a s u r e m e n t

S M U I N S T R U M E N T S

automation for speed

A SourceMeter SMU instrument streamlines production testing . It sources voltage or current while making measurements without needing to change connections . It is designed for reliable operation in non-stop production environments . To provide the throughput demanded by production applica-tions, the SourceMeter SMU instrument offers many built-in features that allow it to run complex test sequences without computer control or GPI

B communications slowing things down .

standard and Custom sweeps

Sweep solutions greatly accelerate testing with automation hooks . Three basic sweep waveforms are provided that can be programmed for single-event or continuous operation . They are ideal for I/V, I/R, V/I, and V/R characterization .

?Linear Staircase Sweep: Moves from the start level to the stop level in equal linear steps ?Logarithmic Staircase Sweep: Done on a log scale with a specified number of steps per decade

?Custom Sweep: Allows construction of special sweeps by specifying the number of measurement points and the source level at each point

?Up to 1700 readings/second at 4? digits to the GPIB bus

?5000 readings can be stored in the non-volatile buffer memory

built-In Test sequencer

(source Memory list)

The Source Memory list provides faster and

easier testing by allowing you to setup and

execute up to 100 different tests that run without PC intervention .

?Stores up to 100 instrument configurations, each containing source settings, measurement

s ettings, pass/fail criteria, etc .?Pass/fail limit test as fast as 500μs per point

?Onboard comparator eliminates the delay caused when sending data to the computer for analysis ?

Built-in, user definable math functions to calculate derived parameters

TYPICal aPPlICaTIoNs

Devices:

?Discrete semiconductor devices ?Passive devices

?Transient suppression devices ?ICs, rfICs, MMICs

?laser diodes, laser diode

modules, lEDs, photodetectors ?Circuit protection devices: TVs,MoV, fuses, etc.?airbags

?Connectors, switches, relays ?High brightness lEDs (DC and pulse)

Tests:

?leakage

?low voltage/resistances ?lIV ?IDDQ

?I-V characterization

?Isolation and trace resistance ?Temperature coefficient ?forward voltage, reverse breakdown, leakage current ?DC parametric test ?DC power source ?HIPoT

?Photovoltaic cell efficiency (source and sink)

?

Dielectric withstanding

T i g h t l y c o u p l e d p r e c i s i o n s o u r c i n g a n d m e a s u r e m e n t

S M U I N S T R U M E N T S

Digital I/o Interface

The digital I/O interface can link a SourceMeter SMU instrument to many popular component handlers, including Aetrium, Aeco, and Robotronics . Other capabilities of the interface include:

?Tight systems integration for applications such as binning and sorting ?Built-in component handler interface ?Start of test and end of test signals ?5V, 300mA power supply

? Optional expander accessory (Model 2499-DIGIO) adds 16 digital I/O lines

The digital I/O interface is available on all Series 2400 SoourceMeter instruments except the Model 2401 .

Trigger link Interface

All SourceMeter SMU instruments include Keithley’s unique Trigger Link interface which provides high-speed, seamless communications with many of Keithley’s other instruments . For example, use the Trigger Link interface to connect a SourceMeter SMU instrument with a Series 7000 Switching System for a complete multi-point test solution . With Trigger Link, the Series 7000 Switching Systems can be controlled by a SourceMeter SMU instrument during a high-speed test sequence independent of a computer and GPIB .

optional Contact Check function

The Contact Check function makes it simple to verify good connections quickly and easily before an automated test sequence begins . This elimi-nates measurement errors and false product failures associated with con-tact fatigue, breakage, contamination, loose or broken connection, relay failures, etc . Some capabilities of this function are:?350μs verification and notification process time

?The output of the SourceMeter SMU instrument is automatically shut off after a fault and is not re-activated until good contact is verified,protecting the device under test from damage and the operator from

potential safety

h azards .?3 pass/fail threshold values: 2W , 15W , and 50W

?No energy passes through the device under test during the operation .?Enabled either from the front panel or remotely over the GPIB ?3 fault notification methods

unique 6-Wire ohms Technique

SourceMeter SMU instruments can make standard 4-wire, split Kelvin, and 6-wire, guarded ohms measurements and can be configured for either the constant current or constant voltage method . The 6-wire ohms technique:?Uses guard and guard sense leads in addition to the 4-wire sense and source leads .

?Locks out parallel current paths when measuring resistor networks or hybrid c ircuits to isolate the component under test .?Allows users to configure and plot data easily from Series 2400

SourceMeter SMU instruments, making characterization of two, three,and four terminal devices a snap .

Contact check option for 4-wire or 6-wire applications free labTracer 2.0 device characterization software (downloadable)

6-Wire ohms Circuit. all test current flows through r1 because the high current guard drives the voltage across r2 to 0V.

T i g h t l y c o u p l e d p r e c i s i o n s o u r c i n g a n d m e a s u r e m e n t

S M U I N S T R U M E N T S

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±(0 .15 × accuracy specification)/°C .

aDDITIoNal PulsE MoDE sourCE sPECIfICaTIoNs (2430 and 2430-C only)

MAXIMUM DUTy CyCLE: 8%, hardware limited, 10A range only . All other ranges 100% .MAXIMUM PULSE WIDTH: 5ms from 90% rising to 90% falling edge, 2 .5ms 10A range .MINIMUM PULSE WIDTH: 150μs .

MINIMUM PULSE RESOLUTION: 50μs typical, 70μs max ., limited by system j itter .SOURCE ACCURACy: Determined by settling time and source range specifications .OUTPUT SETTLING TIME 0.1%:

800μs typ ., source I = 10A into 10W , limited by voltage slew rate . 500μs typ ., source I = 10A into 1W , limited by voltage slew rate .OUTPUT SLEW RATE:

Voltage (10W load): 0 .25V/μs ±30% on 100V range . 0 .08V/μs ±30% on 20V range, 10A range . Current (0W load): 0 .25A/μs ±30% on 100V range . 0 .08A/μs ±30% on 20V range, 10A range .NoTEs

1 . 2400, 2401, 2410 Only: Specifications valid for continuous output currents below 105mA . For operation above 105mA continuous for >1 minute, derate accuracy 10%/35mA above 105mA .

2 . Speed = Normal (1 PLC) . For 0 .1 PLC, add 0 .005% of range to offset specifications, except 200mV, 1A, 10A

ranges, add 0 .05% . For 0 .01 PLC, add 0 .05% of range to offset specifications, except 200mV, 1A, 10A ranges, add 0 .5% .

3 . Accuracies apply to 2- or 4-wire mode when properly zeroed .

4 . In pulse mode, limited to 0 .1 PLC measurement .

S e r i e s 2400 c o n d e n s e d s p e c i f i c a t i o n s

S M U I N S T R U M E N T S

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±(0 .15 × accuracy specification)/°C .CURRENT REGULATION: Line: 0 .01% of range . Load: 0 .01% of range (except Model 2440 5A range 0 .05%) + 100pA .

VOLTAGE LIMIT: Bipolar voltage limit (compliance) set with single value . Min . 0 .1% of range .OVERSHOOT: <0 .1% typical (1mA step, RL = 10k W , 20V range for Model 2400, 2401, 2410, 2420, 2425, 2430), (10V range for Model 2440) .

CoNTaCT CHECK sPECIfICaTIoNs (requires -C version)

(Not available for Model 2401)

SPEED: 350μs for verification and notification .CONTACT CHECK: 2 W 15 W 50 W No contact check failure <1 .00 W <13 .5 W <47 .5 W Always contact check failure >3 .00 W >16 .5 W >52 .5 W

NoTEs

1 . 2400, 2401, 2410 Only: Specifications valid for continuous output currents below 105mA . For operation above 105mA continuous for >1 minute, derate accuracy 10%/35mA above 105mA .

2 . Full operation (1A) regardless of load to 30°C (50°C for Model 2420 and 2440) . Above 30°C (50°C for Model 2420 and 2440) ambient, derate 35mA/°C and prorate 35mA/W load . 4-wire mode . For current sink operation on 1A, 3A, or 5A ranges, maximum continuous power is limited to approximately 1/2 rated power or less, depending on current, up to 30°C ambient . See power equations in the User’s Manual to calculate allowable duty cycle for specific conditions .

3 . For sink mode, 1μA to 100mA range, accuracy is:

Model 2400, 2401: ±(0 .15% + offset*4) . Models 2410, 2420, 2425, 2430, 2440: ±(0 .5% + offset*3) .For 1A range, accuracy is:

Model 2400, 2401: ±(1 .5% + offset*8) . Models 2410, 2420, 2425, 2430, 2440: ±(1 .5% + offset*3) .4 . 10A range only in pulse mode . Limited to 2 .5ms pulse width maximum . 10% duty cycle maximum .

5 . Speed = Normal (1 PLC) . For 0 .1 PLC, add 0 .005% of range to offset specifications, except 200mV, 1A, 10A ranges, add 0 .05% . For 0 .01 PLC, add 0 .05% of range to offset specifications, except 200mV, 1A, 10A ranges, add 0 .5% .

6 . Accuracies apply to 2- or 4-wire mode when properly zeroed .

7 . In pulse mode, limited to 0 .1 PLC measurement .

8 . Model 2400 and 2400-C only .

S e r i e s 2400 c o n d e n s e d s p e c i f i c a t i o n s

S M U I N S T R U M E N T S

NoTEs

1 . Speed = Normal (1 PLC) . For 0 .1 PLC, add 0 .005% of range to offset specifications, except 200mV, 1A, 10A ranges, add 0 .05% . For 0 .01 PLC, add 0 .05% of range to offset specifications, except 200mV, 1A, 10A ranges, add 0 .5% .

2 . Accuracies apply to 2- or 4-wire mode when properly zeroed .

3 . Manual ohms only – except 2420, 2425, 2430, 2440 for 2W range and 2400, 2401, or 2410 for 200M W range .

4 . Source readback enabled, offset compensation ON . Also available on 2410, 2420, 2425, 2430, and 2440 with similar a ccuracy enhancement .

5 .

In pulse mode, limited to 0 .1 PLC measurement .6 . Except 2440; default test current is 5μA .7 . Except 2440; default test current is 0 .5μA .

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±(0 .15 × accuracy specification)/°C .

SOURCE I MODE, MANUAL OHMS: Total uncertainty = I source accuracy + V meas-ure accuracy (4-wire remote sense) .

SOURCE V MODE, MANUAL OHMS: Total uncertainty = V source a ccuracy + I meas-ure accuracy (4-wire remote sense) .

6-WIRE OHMS MODE: Available using active ohms guard and guard sense . Max . Guard Output Current: 50mA (except 1A range) . Accuracy is load dependent . Refer to White Paper no . 2033 for calculation f ormula .GUARD OUTPUT IMPEDANCE: <0 .1W in ohms mode .

sErVICEs aVaIlablE

2400-3Y-EW 1-year factory warranty extended to 3 years from date of shipment 2400-C-3Y-EW 1-year factory warranty extended to 3 years from date of shipment

2401-3Y-EW

1-year factory warranty extended to 3 years from date of shipment 2410-3Y-EW 1-year factory warranty extended to 3 years from date of shipment 2410-C-3Y-EW 1-year factory warranty extended to 3 years from date of shipment

2420-3Y-EW

1-year factory warranty extended to 3 years from date of shipment 2420-C-3Y-EW 1-year factory warranty extended to 3 years from date of shipment 2425-3Y-EW 1-year factory warranty extended to 3 years from date of shipment 2425-C-3Y-EW 1-year factory warranty extended to 3 years from date of shipment 2430-3Y-EW 1-year factory warranty extended to 3 years from date of shipment 2430-C-3Y-EW 1-year factory warranty extended to 3 years from date of shipment

2440-3Y-EW

1-year factory warranty extended to 3 years from date of shipment 2440-C-3Y-EW 1-year factory warranty extended to 3 years from date of shipment

C/2400-3Y-ISO 3 (ISO-17025 accredited) calibrations within 3 years of purchase for Models 2400, 2400-C, 2400-LV*C/2401-3Y-ISO 3 (ISO-17025 accredited) calibrations within 3 years of purchase for Model 2401*

C/2410-3Y-ISO 3 (ISO-17025 accredited) calibrations within 3 years of purchase for Models 2410, 2410-C*C/2420-3Y-ISO 3 (ISO-17025 accredited) calibrations within 3 years of purchase for Models 2420, 2420-C*C/2425-3Y-ISO 3 (ISO-17025 accredited) calibrations within 3 years of purchase for Models 2425, 2425-C*C/2430-3Y-ISO 3 (ISO-17025 accredited) calibrations within 3 years of purchase for Models 2430, 2430-C*C/2440-3Y-ISO 3 (ISO-17025 accredited) calibrations within 3 years of purchase for Models 2440, 2440-C*TRN-2400-1-C Course: Unleashing the Power of Your SourceMeter SMU Instrument *Not available in all countries

S e r i e s 2400 c o n d e n s e d s p e c i f i c a t i o n s

S M U I N S T R U M E N T S

system speeds

MEasurEMENT 1

MAXIMUM RANGE CHANGE RATE: 75/second .

MAXIMUM MEASURE AUTORANGE TIME: 40ms (fixed source) .2

sweep operation 3 reading rates (rdg./second) for 60Hz (50Hz):

Measure

source-Measure

source-Measure 5

Pass/fail Test 4, 5source-Memory 4

speed NPlC/Trigger origin

To Mem.To GPIb To Mem.To GPIb To Mem.To GPIb To Mem.To GPIb Fast

0 .01 / internal 2081(2030)17541551(1515)1369902(900)981165(162)165single reading operation reading rates (rdg./second) for 60Hz (50Hz):

speed

NPlC/Trigger origin

Measure To GPIb source-Measure 5

To GPIb source-Measure Pass/fail Test 4,5

To GPIb Component for 60Hz (50Hz):4, 6

speed NPlC/Trigger origin

Measure To GPIb source Pass/fail Test

source-Measure Pass/fail Test 5, 7

To GPIb Fast 0 .01 / external 1 .04 ms (1 .08 ms)0 .5 ms (0 .5 ms) 4 .82 ms (5 .3 ms)Medium 0 .10 / external 2 .55 ms (2 .9 ms)0 .5 ms (0 .5 ms) 6 .27 ms (7 .1 ms)Normal 1 .00 / external 17 .53 ms (20 .9 ms)0 .5 ms (0 .5 ms)

21 .31 ms (25 .0 ms)

1

Reading rates applicable for voltage or current measurements . Auto zero off, autorange off, filter off, display off, trigger delay = 0, and binary reading format .

2 Purely resistive lead . 1μA and 10μA ranges <65ms .

3 1000 point sweep was characterized with the source on a fixed range .

4 Pass/Fail test performed using one high limit and one low math limit .5

Includes time to re-program source to a new level before making m easurement .

6 Time from falling edge of START OF TEST signal to falling edge of END OF TEST signal .

7 Command processing time of :SOURce:VOLTage|CURRent:TRIGgered command not included .

NoTEs

S e r i e s 2400 c o n d e n s e d s p e c i f i c a t i o n s

数字源表项目实施方案

第一章概论 一、项目概况 (一)项目名称 数字源表项目 (二)项目选址 xxx工业示范区 项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。 (三)项目用地规模 项目总用地面积36391.52平方米(折合约54.56亩)。 (四)项目用地控制指标 该工程规划建筑系数51.37%,建筑容积率1.22,建设区域绿化覆盖率7.45%,固定资产投资强度186.99万元/亩。 (五)土建工程指标 项目净用地面积36391.52平方米,建筑物基底占地面积18694.32平方米,总建筑面积44397.65平方米,其中:规划建设主体工程34085.72平方米,项目规划绿化面积3306.58平方米。

(六)设备选型方案 项目计划购置设备共计85台(套),设备购置费3133.96万元。 (七)节能分析 1、项目年用电量438481.37千瓦时,折合53.89吨标准煤。 2、项目年总用水量28597.68立方米,折合2.44吨标准煤。 3、“数字源表项目投资建设项目”,年用电量438481.37千瓦时,年 总用水量28597.68立方米,项目年综合总耗能量(当量值)56.33吨标准 煤/年。达产年综合节能量19.79吨标准煤/年,项目总节能率20.37%,能 源利用效果良好。 (八)环境保护 项目符合xxx工业示范区发展规划,符合xxx工业示范区产业结构调 整规划和国家的产业发展政策;对产生的各类污染物都采取了切实可行的 治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态 环境产生明显的影响。 (九)项目总投资及资金构成 项目预计总投资13997.03万元,其中:固定资产投资10202.17万元,占项目总投资的72.89%;流动资金3794.86万元,占项目总投资的27.11%。 (十)资金筹措 该项目现阶段投资均由企业自筹。 (十一)项目预期经济效益规划目标

数字信号源实验报告

实验一数字信号源实验 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握集中插入帧同步码时分复用信号的帧结构特点。 3、掌握数字信号源电路组成原理。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、帧同步信号(FS)、位同步时钟(BS)。 2、用示波器观察NRZ、FS、BS三信号的对应关系。 3、学习电路原理图。 三、基本原理 本模块是实验系统中数字信号源,即发送端,其原理方框图如图1-1所示。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号。发光二极管亮状态表示‘1’码,熄状态表示‘0’码。 本模块有以下测试点及输入输出点: ? CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz ? BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz ? FS 信源帧同步信号输出点/测试点,频率为7.1KHz ? NRZ-OUT NRZ信号输出点/测试点 图1-3为数字信源模块的电原理图。图1-1中各单元与图1-3中的元器件对应关系如下: ?晶振CRY:晶体;U1:反相器7404 ?分频器US2:计数器74161;US3:计数器74193; US4:计数器40160 ?并行码产生器KS1、KS2、KS3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应 ?八选一US5、US6、US7:8位数据选择器4512 ?三选一US8:8位数据选择器4512 ?倒相器US10:非门74HC04 ?抽样US9:D触发器74HC74

经济型B2900A 系列精密型源表配置指南

Keysight B2900A 系列 精密型源表 配置指南 经济高效的电源和测量一体化解决 方案,提供卓越的性能和一流的图 形用户界面

配置您的 Keysight B2900A 系列精密型源表 Keysight B2900A 系列精密型源表(SMU)包含下列四个型号。 –B2901A 精密型源表,1 通道,100fA 分辨率,210V,3A 直流/10.5A 脉冲 –B2902A 精密型源表,2 通道,100fA 分辨率,210V,3A 直流/10.5A 脉冲 –B2911A 精密型源表,1 通道,10 fA 分辨率,210V,3A 直流/10.5A 脉冲 –B2912A 精密型源表,2 通道,10 fA 分辨率,210V,3A 直流/10.5A 脉冲 本配置指南提供逐步的指导,旨在帮助您配置 SMU 及其相关附件,满足您的特殊测试要求。详细技术指标请参见 B2900A SMU 系列技术资料(5990-7009EN)。 第1步:选择 B2900A 系列型号 您选择的时候首先需要考虑两个重要因素:测量通道数(一个或两个)和源表的性能。B2900A 系列分为标配型(B2901A/B2902A)和高性能型(B2911A/B2912A)两个档次。需要注意的是,标配的型号在购买后,无法通过升级来获得更多个通道或高性能的型号。 B2901A1210 V 3.03 A 200 V 10.5 A 1 pA 1 V 100 fA 100 nV 20 ?s单一视图、图形视图 B2902A2210 V 3.03 A 200 V 10.5 A 1 pA 1 V 100 fA 100 nV 20 ?s单一视图、双视图、 图形视图 B2911A1210 V 3.03 A 200 V 10.5 A 10 fA 100 nV 10 fA 100 nV 10 ?s单一视图、图形视 图、滚动视图 B2912A2210 V 3.03 A 200 V 10.5 A 10 fA 100 nV 10 fA 100 nV 10 ?s单一视图、双视图、 图形视图、滚动视图 描述数量更多信息 1.产品资料光盘 1 个包括用户手册电子文件、驱动程序和软件 2.Keysight I/O 程序库光盘 1 个包括 Keysight I/O 程序库的驱动程序和安装软件 3.快速参考 1 个印刷版快速入门指南(英文版) 4.校准证书(无测试数据) 1 个校准证书(无实际测试数据)。如果您需要测试数据,请指定选件 UK6。 https://www.sodocs.net/doc/4517670293.html,B 电缆 1 个USB 电缆(1.8 米)。可订购部件编号 8121-1696。 下面附件作为每款 B2900A 系列 SMU 的标准配置提供:

8路电压数字表C源程序

8路数字电压表测量由A/D转换、数据处理及显示控制等组成,测量0~5V范围内的8路输入电压值,由4位共阳LED数码管轮流显示,最大分辨率0.01V,误差±0.02V。使用AT89C52单片机,ADC0809A/D转换集成蕊片,单片机P1口、P3.0~P3.3口作4位LED数码显示控制。P3.5端口按钮作单路/循环显示转换,P3.6为单路显示时作通道选择。ADC0809具有8路模拟信号输入端口,地址线23~25脚为模拟信号输入选择端口,22脚为地址锁存控制,当输入高电平时对地址信号进行锁存,6脚为开始A/D模数转换,7脚为A/D转换结束标志,结束时输出高电平,A/D转换后的数据由9脚输出到单片机P2.5脚。 C源程序: /***********************************************************************************/ // 8路电压表C源程序 // Keil c51 v7.08 /***********************************************************************************/ /*使用AT89C52单片机,11.0592MHz晶振,P0口读入A/D值,P2口作A/D控制,用共阳LED数码管,P1口输出段码,P3口扫描,最高位指示通道(0~7)*/ #include //51系列单片机定义文件 #include //调_nop_(),延时函数用 #define ad_con P2 //A/D控制口 #define addata P0 //A/D数据计入读入口 #define Disdata P1 //显示数据段码输出口 #define uchar unsigned char //无符号字符(8位) #define uint unsigned int //无符号整数(16位) sbit ALE=P2^3; //锁存地址控制位 sbit STARA=P2^4; //启动一次转换位 sbit OE=P2^5; //0890输出数据控制位 sbit EOC=P3^7; //转换结束标志位 sbit DISX=Disdata^7; //LED 小数点位 // // unsigned char code dis_7[11]={0xc0,0xf9,0xa4,0x99,0x92,0x82,0xf8,0x80,0x90,0xff}; /*共阳7段LED段码表"0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "不亮"*/ unsigned char code scan_con[4]={0xfe,0xfd,0xfb,0xf7};//4位列扫控制字 unsigned char data ad_data[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};//定义8个数据内存单元unsigned int data dis[5]={0x00,0x00,0x00,0x00,0x00};//定义4个显示数据单元和一个数据存储单元 // // /********1ms延时子函数*********/ delay1ms(unsigned int t) { uint i,j; for(i=0;i

keithley2400数字源表说明书

S M U I N S T R U M E N T S by eliminating many of the complex synchronization and connection issues associated with using multiple instruments . And, their compact half-rack size conserves precious “real estate” in the test rack or bench . Power of five Instruments in one (IV source, IVr Measure) The tightly coupled nature of a SourceMeter SMU instrument provides many advantages over solu-tions configured from separate instruments, such as a precision power supply and a digital multime-five instruments in one (IV source, IVr Measure)seven models: 20–100W DC,1000W pulsed, 1100V to 1μV,10a to 10pa source and sink (4-quadrant)T i g h t l y c o u p l e d p r e c i s i o n s o u r c i n g a n d m e a s u r e m e n t

阿拉伯数字的来源

阿拉伯数字的来源 阿拉伯数字1、2、3、4、5、6、7、8、9、0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。阿拉伯数字最初出自印度人之手,也是他们的祖先在生产实践中逐步创造出来的。 公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。

国家基础多源数字正射影像数据库的设计与建立_廖安平

0引言 数字正射影像直观而详细地记录了地 表的自然现象,同时具有地图的几何特征和影像特征,从而成为现代地理信息应用越来越重要的数据源。与传统的符号化矢量图相比,数字正射影像的生产周期较短、精度更 高、现势性更好,所表达的信息更为丰富真实、直观易读,具备良好的判读性能与量测性能,因此具有更大的开发应用价值,既可直接应用于国民经济、社会发展、国防建设、科学研究等领域,提供极为重要的基础地理数据资源,还可以从中提取和派生出新的自然地理和社会经济信息,实现地图的修测更新,并可以作为背景控制信息,评价其他地 理信息资源的数据精度、现势性和完整性。随着传感器技术的发展和数据处理自动化程度的提高,数字正射影像以其廉价、快捷等优点必将成为空间信息的主要载体。近年来国家基础数字正射影像的数据类型、存储规模和数据版本的逐渐积累,导致传统常规手段很难适应对海量数字正射影像数据的管理,从而限制了数字正射影像的调度、分发、共享和应用;建立国家级基础数字正射影像数据库,实现对海量、多源数字正射影像数据的安全存储和集成管理,提供有效的数据分发与对外交换服务,成为基础测绘成果管理部门所面临的重要使命。 国家基础多源数字正射影像数据库的设计与建立 文章编号:1672-1586(2006)04-0010-05 摘要:数字正射影像直观而详细地记录了地表的自然现象,具有良好的可判读性和可测量性,从而成为现代GIS应用越来越重要的数据源。本文针对国家基础数字正射影像数据库安全存储、集成管理、分发服务和提供应用的技术要求,通过对海量数字正射影像数据建库的数据源分析与探讨,提出了适合多源数字正射影像建库的数据组织方式和数据存储模式,最后设计建立了国家基础多源数字正射影像数据库系统,实现了国家级海量多源数字正射影像数据的存储管理和数据服务。关键词:数字正射影像;空间数据库;影像数据库;空间数据引擎;分级存储管理中图分类号:P208 文献标识码:A Design&EstablishmentofNationalFundamentalMulti- sourceDOMDatabase LIAOAn-ping,YANRong-hua,TANGHai (NationalGeomaticsCenterofChina,Beijing100044,China) Abstract:AsDigitalOrthographicMap(DOM)representsthenaturalphenomenaoftheearth’ssurface,ithasthecharacteristicsofrelativelyeasy-interpretationandeasy-measurementtobecometheimportantdatasourcesofGISApplication.Withrespecttothetechnicalrequirementsofsafetystorage,integratedmanagementanddistributionservice,thepaperanalyzedthedatasourcesofhuge-volumeDOMdatabase,thenputforwardthemodelsofdataorganizationanddatastoragesuitableformulti-sourceDOMdatabaseestablishment,finallydesignedthenationalfundamentalmulti-sourceDOMdatabase,realizedthestoragemanagementanddistributionserviceofnationallevelmassiveandmulti-sourceDOM. Keywords:DigitalOrthographicMap;spatialdatabase;imagerydatabase;spatialdataengine;hierarchi-calstoragemanagement 廖安平,严荣华,汤 海 (国家基础地理信息中心,北京100044) 廖安平(1971-),男,湖 南人,高级工程师,国家基础地理信息中心遥感部副主任,主要从事航空摄影、遥感技术应用、国家基础地理信息数据库建设、国家1:50000比例尺数据库更新等方面的工作。E-mail:lap@nsdi.gov.cn 收稿日期:2006-07-14

数字信号源实验报告

数字信号源实验报告 一、实验目的 1、熟悉时钟信号的特点及波形。 2、熟悉各种数字信号的特点及波形。 二、实验器材 1、信号源模块一块 2、连接线若干 3、双踪示波器一台 4、数字终端模块一块 三、实验原理 CPLD可编程模块用来产生实验系统所需要的各种时钟信号和各种数字信号。它由CPLD 可编程器件ALTERA公司的EPM240T100C5、下载接口电路和一块晶振组成。晶振JZ1用来产生系统内的32.768MHz主时钟。 1.CPLD数字信号发生器 包含以下五部分: 1)时钟信号产生电路 将晶振产生的32.768MHZ时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。通过人机界面来改变时钟频率。时钟输出点为“CLK”,主控模块的 1.png控制“CLK”输出时钟的频率。 2)伪随机序列产生电路 通常产生伪随机序列的电路为一反馈移存器。它又可分为线性反馈移存器和非线性反馈移存器两类。由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。 以15位m序列为例,说明m序列产生原理。 在图中示出一个4级反馈移存器。若其初始状态为(a3,a2,a1,a0)=(1,1,1,1),则在移位一次时 a1和a0 模2相加产生新的输入a4= 1⊕1=0,新的状态变为(a4,a3,a2,a1)=(0,1,1,1),这样移位15次后又回到初始状态(1,1,1,1)。不难看出,若初始状态为全“0”,即“0,0,0,0”,则移位后得到的仍然为全“0”状态。这就意味着在这种反馈寄存器中应避免出现全“0”状态,不然移位寄存器的状态将不会改变。因为4级移存器共有24=16种可能的不同状态。除全“0”状态外,剩下15种状态可用,即由任何4级反馈移存器产生的序列的周期最长为15。

2600系列数字源表,用于半导体测试

2600系列主要特点: ?一个紧凑的单元中综合了如下功能:精密电压源、高精度电流源、数字多用表、任意波形发生器、电压或电流脉冲发生器、电子负载以及触发控制器?接触检测功能确保了高速及准确的测量 ?每秒10,000个读数和5,500个源-测量点记录到存储器,提供了更快速的测试 ?内置的测试脚本处理器(TSP?)提供非并行系统的自动化测试,将I-V 测试的速度提高到同类产品的二到四倍 ? 2600系列提供宽动态范围:1pA到10A,1μV到200V ? TSP-Link?主/从控制架构将多台2600数字源表无缝地整合成一个系统,将其作为一台独立的仪器进行编程和控制 ?免费的测试脚本编辑软件--Test Script Builder,可以轻松地创建功能强大的测试脚本,实现用户特定的测试功能 ?免费的LabTracerTM2.0 软件,无需编程直接得到半导体I-V 特性曲线,易学易用 ?每个40W,3A的通道都是独立的,从而保证了高度的测量完整性和配置的灵活性 ?业界最高的SMU机架密度特别适合自动化测试的应用 2600系列数字源表系列给电子元器件和半导体制造商提供了一个 灵活的、高效的、极具性价比的方案,适合于精确DC、脉冲和低 频AC的源-测量测试。基于最初2400系列数字源表的紧凑集成源 -测量技术,2600系列仪器在I-V测试应用中能够提供相当于同 类产品的二到四倍的测试速度。它们还具备更高的源测量通道密 度并且比同类产品显著地降低了使用成本。专利的模数转换器在 小于100μs的时间内可同时提供I和V测量值 (10,000 读数/s),源-测量扫描速度为200μs每点 (5,500 点/s)。这种高速的源-测量能力加上先进的自动化特性及软件工具使得2600系列数字源表系列成为广泛用于多种器件I-V测试的理想方案。 无需主机的灵活系统 2600系列结合了创新的技术从而可以经济的建立多通道I-V测试系统而无需牺牲产能。TSP-Link是高速的系统扩展连接,可让您以主/从配置连接多台2600系列仪器。TSP-Link使您可以方便的改变系统的通道数来满足应用。

相关主题