搜档网
当前位置:搜档网 › 北师大新版八年级数学上册第二章实数计算题.docx

北师大新版八年级数学上册第二章实数计算题.docx

北师大新版八年级数学上册第二章实数计算题.docx
北师大新版八年级数学上册第二章实数计算题.docx

北师大新版八年级数学上册第二章实数计算题

一、算术平方根:

例 1

求下列各数的算术平方根:

( 1) 900; ( 2) 1;

( 3)

49

(4) 14.

64

答案 :解:( 1)因为 302=900, 所以 900的算术平方根是 30,即

900 30 ;

( 2)因为 12=1,所以 1的算术平方根是 1,即 1 1 ;

7 2

49

,所以

49

的算术平方根是 7

49

7 ; ( 3)因为

, 即

8

64

64 8

64 8

( 4) 14 的算术平方根是 14 .

反馈练习:

一、填空题:

1.若一个数的算术平方根是

7 ,那么这个数是

2. 9 的算术平方根是

3. ( 2

) 2 的算术平方根是

3

.若 m 2

2 ,则

(m 2) 2

=

. A

4

二、求下列各数的算术平方根:

36, 121 ,15,0.64, 10 4

, 225

, ( 5

)0 .

144

6

三、如图 ,从帐篷支撑竿 AB 的顶部 A 向地面拉一根绳子 AC 固定

帐篷.若绳子的长度为

5.5 米,地面固定点 C 到帐篷支撑竿底部

B

B

C

的距离是 4.5 米 ,则帐篷支撑竿的高是多少米?

答案 :一、 1.7;2.

3 ;3.

2

; .

;二、 ; 11 ; 15 ;

3

4

16 6 12

0.8; 10 2 ;

15 ; 1;

三、解:由题意得

AC=5.5 米 ,BC=4.5

米 ,∠ ABC=90 ° ,在 Rt △ ABC 中 ,由勾股定理得

AB

AC 2 BC 2

5.52 4.52

10 (米).所以帐篷支撑竿的高是 10 米.

识. 对学生的回答 , 教师要给予评价和点评。

二、平方根

例 2 求下列各数的平方根 :

(1)64; (2)

49

;(3) 0.0004; (4) 25

2

; (5) 11

121

(1)解:

2

64 , 64的平方根是 8

8

64

8

(2)解:

7 2 49 ,

49 的平方根为

7

11

121

121 11

4 9 7 1 2 1 1 1

2

(3)解:

0.02 0.0004, 0.0004的平方根是 0.02

0.0004 0.02

(4) 解:

25

2 25 2

,25

2

的平方根是 25

2

25

25

(5) 解:

11的平方根是

11

思考提升

5 2 的平方根是

,

2

64

52

,

64

a 2

当a 0时, a

2

,

三、立方根

例 3 求下列各数的立方根:

( 1) -27 ;(2)

8

; ( 3) 3

3

; ( 4) 0.216 ;

( 5) -5 .

125

8

3

,即 3 -27=- 3;

解:( 1)因为(- 3)=- 27 ,所以 -27 的立方根是 -3

2 3

8

8

的立方根是

2

8 = 2

( 2)因为

,所以

,即 3

5

125 125

5

125 5

3 3

27 3

的立方根是 3 ,即 3 3

3= 3

; ( 3)因为( )=

8=3 ,所以 3 3

2

8

8

2 8

2

3

的立方根是 0.6 ,即3

0.216=0.6;

( 4)因为(0.6)=0.216 ,所以 0.216

( 5) -5 的立方根是 3 - 5 .

例 4 求下列各式的值: =

2 / 6

( 1)

3

8; ( 2) 3

0.064; ( 3)

3

8

( 4) 3

9 3

; .

125

解:( 1) 3 8 = 3

3

2 ;

( 2) 3

0.064 = 3 3

0.4 ;

2

0.4

3

8 3

3

2

3

2

3

( 3)

125=

5

5; ( 4)

9 =9.

随堂练习

1.求下列各数的立方根:

0.125; 3

64; -3 64

3

3

;3 53; 3 16 .

2.通过上面的计算结果

,你发现了什么规律?

四、实数

例 5

计算:

( 1 ) 2 3

3 3 ; ( )

3

1 2

1 ; ( ) (

2 5) 2 .

2

3

2

3

2

解:( 1) 2 3 3

3 = (2 3) 3 =

3 ;

( 2) 3

1

2 2

1 = 1+ 2= 3;

3

2

( 3) (2 5) 2

2 2

( 5)

2

4 5

= .

20

例 6 化简

( 1) 12

3 5;

( 2)

6

2 3 ;

( 3) ( 5

1)2 ;

( 4) ( 2 1)( 2 1) ;

( 5) 3 2 ( 2 8) .

解:( 1) 12

3 5 = 12 3 5=

36 5 = 6- 5= 1; ( 2)

6

3 =

6 3 = 18 = 18 = 9 = 3;

2

2

2

2

( 3) ( 5 1) 2 = ( 5 ) 2

2 5 1 12 = 5

2 5 1 = 6

2 5 ;

( 4) ( 2 1)( 2 1) = ( 2) 2

12 =2- 1= 1;

( 5) 3 2 ( 2 8) = 3 ( 2) 2 8 = 6 16 = 6 4 =- 24.

练习:

化简:( 1)59;( 2)12 6 ;( 3)(3 2 )2;

2083( 4)(2 31) 2;( 5)(13)(23) .

解:( 1)59=59=9 = 3 ;

202042

( 2)

12

86 = 12 6 = 72 =72 =9 =3;

888

( 3)( 32

) 2= ( 3) 2 2 32(

2

) 2= 3 4

4

1

;33333

( 4)(2 31) 2= (2 3) 2 2 2 3 1 12=12 4 3 1= 13 4 3 ;

(5)(13)( 23) = 2 3 2 3 ( 3) 2= 2 3 2 3 3= 13练习:

﹡1.化简:( 1)80550 2 ;( 2)(15)(5 2) ;

(3)( 31) 2;( 4)4 10

5 40 ;( 5) 2 ( 28) .

310

解:( 1)805502=80550 2 =400100 =2010 =10;(2)(15)( 52) =5 2 ( 5 ) 2 2 5 = 5 2 5 2 5 = 3 5 ;

(3)( 31

) 2= ( 3) 2 2 31(

1

) 2= 32

1

4

;33333

(4) 4 10 5 40 = 4 10 5 40 =410540

= 4 5 4 =4 5 2=14;

1010101010

(5) 2 ( 28) = 22 2 8 = 2 2 2 8 = 416 =2 4=6.﹡2.一个直角三角形的两条直角边的长分别是5cm 和45cm ,求这个直角三角形的面积.

解: S=1

545 =1545 =1225 =

1

15 =7.5cm2.2222

化简:(1)45;( 2)27;( 3)54;(4)8

;( 5)125 .916

459 59535 3 5

( 2)279 39 3 3 3 3 3 ;( 3)549 69 6 3 6 3 6 ;

( 4)8842422222

;993333

( 5)1251252552555555.16164444

例 7化简:

( 1)50;( 2)483;(3)51

.5

解:( 1)502522525252 ;

( 2)48316 33163 3 4 3 3 4 3 3 3 3 ;

( 3)51555555 4

5 .

5252555

课堂练习1:

化简:( 1)18;( 2)3375 ;(3) 2 .

7

解:( 1)189292323 2 ;

( 2) 3 375

33253332533353335323 ;

( 3)22714

.7477

﹡例 8化简:( 1)1

;( 2)8;( 3) 1.2;( 4)2 6 .827

解:( 1)11222;

882164

(2)88 3 4 6 4 6 2 6 2

6;

27273818199

6303030(3) 1.2

2525;

55

(4)26 2 6 4 343 2 3 2 3 .

注:( 1)中 , 分子与分母同乘 2 即可 , 若同乘8 会对后面的计算增加麻烦;( 2)中 , 分子8 中含有开得尽方的因数4, 应化简彻底;( 3)中, 要先把小数化成分数, 再考虑下一步的化简;

(4)中 , 2 6要观察出能进一步化简.﹡

课堂练习 2:

化简:( 1)128;(2)9000;( 3)2 1248;

( 4)2

5032 ;( 5)3 2045

1

;( 6)

32 952

3

解:( 1)128642642828 2 ;

(2)9000900109001030103010 ;

(3)21248

= 24316324316322343 43438 3 ;

(4)2

5032 9

=22521622252162252424 2 ;

9333

(5)32045

1 5

= 34595534595565 3 5514 5 ;

252555

(6)326666665

6 .

234949236

北师大版八年级数学上册第二章实数测试题

1 / 4 北师大版八年级数学上册第二章实数测试题 一、选择题 1.在实数?1.414,√2,π, 3.1.4. ,2+√3,3.212212221…,3.14中,无理数的个数是( )个. A. 1 B. 2 C. 3 D. 4 2.下列说法中 ①无限小数是无理数; ②无理数是无限小数; ③无理数的平方一定是无理数; 正确的个数是( ) A. 1 B. 2 C. 3 D. 0 3.(?3)2的平方根是( ) A. ?3 B. 3 C. 3或?3 D. 9 4.若a 2=4,b 2=9,且ab >0,则a ?b 的值为( ) A. ±5 B. ±1 C. 5 D. ?1 5.64的立方根是( ) A. 4 B. 8 C. ±4 D. ±8 6.√83的算术平方根是( ) A. 2 B. ±2 C. √2 D. ±√2 7.估算√19的值是在( ) A. 3和4之间 B. 4和5之间 C. 5和6之间 D. 6和7之间 8.下列四个数:?3,?√3,?π,?1,其中最小的数是( ) A. ?π B. ?3 C. ?1 D. ?√3 9.用计算器依次按键,得到的结果最接近的是( ) A. 1.5 B. 1.6 C. 1.7 D. 1.8 10.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )

A. a +b =0 B. b 0 D. |b|<|a| 11.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( ) A. a >?4 B. bd >0 C. |a|>|d| D. b +c >0 12.在根式√15、1a?b √a 2?b 2、3ab 、13√6、1a √2a 2b 中,最简二次根式有( ) A. 1个 B. 2个 C. 3个 D. 4个 13.把根号外的因式化到根号内:?a √?a =( ) A. √?a 2 B. √?a 3 C. ?√?a 3 D. √a 3 14.下列式子正确的是( ) A. √(?7)2=7 B. √(?7)2=?7 C. √49=±7 D. √?49=?7 15.下列二次根式中,与√6是同类二次根式的是( ) A. √12 B. √18 C. √2 3 D. √30 二、计算题 16.计算:(1)√8?2√1 2 (2)(3√2?2)2 (3)√20+√125 √5+5 (4)(√32+√1 3)×√3?2√16 3.

八年级数学《实数》单元测试题及答案

一、选一选(每小题3分,共30分) 1.下列实数2π,722 ,,39 ,21中,无理数的个数是( ) (A)2个 (B)3个(C)4个(D)5个 2.下列说法正确的是( ) (A )278的立方根是23± (B )-125没有立方根 (C )0的立方根是0 (D )-4)8(3=- 3.下列说法正确的是( ) (A )一个数的立方根一定比这个数小 (B )一个数的算术平方根一定是正数 (C )一个正数的立方根有两个 (D )一个负数的立方根只有一个,且为负数 4.一个数的算术平方根的相反数是312 -,则这个数是( ). (A)79 (B)349 (C)499 (D)949 5.下列运算中,错误的有 ( )(A)1个 (B)2个 (C)3个 (D)4个 ①1251144251 =;②4)4(2±=-;③22222-=-=-;④21414 1161+=+ 6.下列语句中正确的是( ) (A)带根号的数是无理数 (B)不带根号的数一定是有理数 (C)无理数一定是无限不循环的小数 (D)无限小数都是无理数 7.下列叙述正确的是( ) (A)有理数和数轴上点是一一对应的 (B)最大的实数和最小的实数都是存在的 (C)最小的实数是0 (D)任意一个实数都可以用数轴上的一个点来表示 8.2)25(-的平方根是 ( )(A)25 (B)5 (C)±5 (D)±25 的立方根与4的平方根的和是( )(A)-1 (B)-5 (C)-1或-5 (D)±5或±1 10.已知平面直角坐标系中,点A 的坐标是(2,-3),将点A 向右平移3个单位长度,然后向上平移33个单位长度后得到B 点,则点B 的坐标是( ) (A)(33,23) (B)(32,32+) (C)(34,32--) (D)(3,33). 二、 填一填(每小题3分,共30分) 11.9的平方根是________. 12.面积为13的正方形的边长为_______. 13.若实数a 、b 满足(a+b-2)2+032=+-a b 则2b-a+1的值等于______.

北师大版新教材八年级上数学《实数》教案

八年级数学单元测试试卷---第二单元《实数》大全 第二章 实数 2.1认识无理数 一、问题引入: 1、 和 统称有理数,它们都是有限小数和无限 (填循环或不 循环)小数。 2、(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少? (2)设该正方形的边长为b ,则b 应满足什么条件? (3)b 是有理数吗? 3、请你举出一个无限不循环小数的例子___________,并说出它的整数部分是 ,小数部分是 ,请指出它的十分位、 百分位、千分位……..。 4、 称为无理数,请举两个例子 。 二、基础训练: 1、2 8x =,则x _____分数,______整数,______有理数.(填“是”或“不是”) 2、在0.351,- 3 2 ,4.969696…,0,-5.2333,5.411010010001…,6.751755175551…中,不是有理数的数有_____ 。 3、长、宽分别是3、2的长方形,它的对角线的长可能是整数吗?可能是分数吗? _______ 个. 下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段. 四、课堂检测: 1、在下列实数-12,π,4,13,5中,无理数有( ) A .1个 B .2个 C .3个 D .4个 2、下列说法正确的是( ) A .有理数只是有限小数 B .无理数是无限不循环小数 C .无限小数都是无理数 D .3 π 是分数

3、实数:3.14,π,0.315315315…, 7 22 ,0.3030030003…中,无理数有 _________ 个. 4、下列各数中,哪些是有理数?哪些是无理数? π 、0.351,-? ?69.4,3 2,3.14159,-5.2323332…,0、0.1234567891011112131…(小数部分由相继 的正整数组成)在下列每一个圈里,至少填入三个适当的数 . 5、(1)设面积为10的正方形的边长为x ,x 是有理数吗?说说你的理由。 (2)估计x 的值(结果精确到十分位),用计算器验证你的估计如果精确到百分位呢? 6、如图,是面积分别为1,2,3,4,5,6,7,8,9的正方形 边长是无理数的正方形有________个 7、如图,在△ABC 中,CD ⊥AB ,垂足为D ,AC =6,AD =5,问:CD 可能是整数吗?可能是分数吗?可能是有理数吗?

最新八年级上册数学第二章实数测试题

最新八年级上册数学第二章实数测试题 一、选择题 1.下列各数:2π , 0 0.23·, 227 ,27, 1010010001.6,1理数个数为( ) A .2 个 B .3 个 C .4 个 D .5 个 2.在实数03 2 -,|-2|中,最小的是( ). A .-错误! B . C .0 D .|-2| 3.下列各数中是无理数的是( ) A B C D 4.下列说法错误的是( ) A .±2 B 是无理数 C 是有理数 D 5.下列说法正确的是( ) A .0)2 (π是无理数 B .3 3是有理数 C .4是无理数 D .38-是有理数 6.下列说法正确的是( ) A .a 一定是正数 B .错误! 是有理数 C .2,2是有理数 D .平方根等于自身的数只有1 7.估计,20的大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 8. (-2)2的算术平方根是( ) A .2 B . ±2 C .-2 D .2 9.下列各式中,正确的是( ) A .3- B .3- C 3± D 3=± 10.下列说法正确的是( ) A .5是25的算术平方根 B .±4是16的算术平方根 C .-6是(-6)2的算术平方根 D .0.01是0.1的算术平方根 11.36的算术平方根是( ) A .±6 B .6 C .±,6 D . ,6 12.下列计算正确的是( ) 4=± B.1= 4= 2= 13.下列运算正确的是( )

A .25=±5 B .43-27=1 C .18÷2=9 D .24·错误!=6 14.下列计算正确的是( ) A .= B .错误!=错误!-错误!=1 C .(21-= D =15.如图:在数轴上表示实数,15的点可能是( ) A .点P B .点Q C .点M D .点N 16.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是 A .2.5 B .2,2 C .,3 D .,5 17.下列计算正确的是( ). A .2234-=4-3=1 B .)25()4(-?-=4-2)×(-5)=10 C .22511+=11+5=16 D . 32=3 6 18.已知n -12是正整数,则实数n 的最大值为( ) A .12 B .11 C .8 D .3 19.2)9(-的平方根是x , 64的立方根是y ,则x +y 的值为( ) A .3 B .7 C .3或7 D .1或7 20.若||4x =9,且||x y x y -=-,则x y +的值为( ) A .5或13 B .-5或13 C .-5或-13 D .5或-13 二、填空题 1.实数27的立方根是 2.若一个正数的两个平方根分别是2a -2和a -4,则a 的值是 . 3.-,6的绝对值是___________. 4.估计,7的整数部分是 5.比较下列实数的大小(在 填上>、<或=)

北师大版八年级数学上册实数练习题

2.6 实数 一、选择题 1.下列说法中正确的是( ) A.和数轴上一一对应的数是有理数 B.数轴上的点可以表示所有的实数 C.带根号的数都是无理数 D.不带根号的数都是无理数 2.在实数中,有( ) A.最大的数 B.最小的数 C.绝对值最大的数 D.绝对值最小的数 3.下列各式中,计算正确的是( ) A.2+3=5 B.2+2=22 C.a x -b x =(a -b )x D.2 188+=4+9=2+3=5 4.实数a 在数轴上的位置如图所示,则a ,-a ,a 1,a 2的大小关系是( ) A.a <-a < a 1

8.等腰三角形的两条边长分别为23和52,那么这个三角形的周长等于______. 9.若2)1(+-a 是一个实数,则a =______. 10.已知m 是3的算术平方根,则3x -m <3的解集为______. 三、解答题 11.计算:(1)(1-2+3)(1-2-3) (2)320-45-5 1 12.当x =2-3时,求(7+43)x 2+(2+3)x +3的值. 13.已知三角形的三边a 、b 、c 的长分别为45cm 、80cm 、125cm ,求这个三角形的周长和面积. 14.利用勾股定理在如图所示的数轴上找出点-5和2+1. 15.想一想:将等式23=3和27=7反过来的等式3=23和7=27还成立吗? 式子:9271=2792=3和48 1=842=2成立吗? 仿照上面的方法,化简下列各式: (1)221 (2)1111 2 (3)6121 2.6 实数 一、填空题 1.在实数中绝对值最小的数是________,在负整数中绝对值最小的数是________. 2.已知一个数的相反数小于它本身,那么这个数是________. 3.设实数a ≠0,则a 与它的倒数、相反数三个数的和等于____________,三个数的积等于_____________. 4.任何一个实数在数轴上都有一个__________与它对应,数轴上任何一个点都对应着一个___________. 5.绝对值等于它本身的数是________,平方后等于它本身的数是________. 6.实数a ,b 在数轴上所对应的点的位置如图所示,则2a ___________0,a +b__________0,-|b -a |________0,化简|2a |-|a +b |=________.

八年级数学_实数习题精选(含答案)

1 实数单元测试题 填空题:(本题共10小题,每小题2分,共20分) 1、()26-的算术平方根是__________。 2、 π π-+-43= _____________。 3、2的平方根是__________。 4、实数a ,b ,c 在数轴上的对应点如图所示 化简c b c b a a ---++ 2=________________。 5、若m 、n 互为相反数,则 n m +-5=_________。 6、若 2)2(1-+-n m =0,则m =________,n =_________。 7、若 a a -=2,则a______0。 8、 12-的相反数是_________。 9、 3 8-=________,3 8-=_________。 10、绝对值小于π的整数有__________________________。 一、 选择题:(本题共10小题,每小题3分,共30分) 11、代数式12 +x ,x ,y ,2)1(-m ,33 x 中一定是正数的有( )。 A 、1个 B 、2个 C 、3个 D 、4个 12、若7 3-x 有意义,则x 的取值范围是( )。 A 、x >37- B 、x ≥ 3 7- C 、x >37 D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。 A 、0 B 、 2 1 C 、2 D 、不能确定 14、下列说法中,错误的是( )。 A 、4的算术平方根是2 B 、 81的平方根是±3 C 、8的立方根是±2 D、立方根等于-1的实数是-1 15、64的立方根是( )。 A 、±4 B 、4 C 、-4 D 、16 16、已知04)3(2 =-+-b a ,则 b a 3 的值是( )。 A 、 41 B 、- 41 C 、433 D 、4 3 17、计算 33 841627-+-+的值是( )。 A 、1 B 、±1 C 、2 D 、7 18、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。 A 、-1 B 、1 C 、0 D 、±1 19、下列命题中,正确的是( )。 A 、无理数包括正无理数、0和负无理数 B 、无理数不是实数 C 、无理数是带根号的数 D 、无理数是无限不循环小数 20、下列命题中,正确的是( )。 A 、两个无理数的和是无理数 B 、两个无理数的积是实数 C 、无理数是开方开不尽的数 D 、两个有理数的商有可能是无理数 三、解答题:(本题共6小题,每小题5分,共30分) 21、求9 7 2的平方根和算术平方根。 22、计算252826-+的值。 0c b a

八年级数学上册第二章实数知识点总结+练习

八年级数学上册第二章实数知识点总结+练习

叫做三次方根)记为3a ,读作,3次根号a 。如23=8,则2是8的立方根,0的立方根是0。 2.性质:正数的立方根的正数;0的立方根是0;负数的立方根是负数。立方根是它本身的数有0,1,-1. 例:(1)64的立方根是 (2)若 9.28,89.233==ab a ,则b 等 于 (3)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。 其中正确的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个 比较两个数的大小: 方法一:估算法。如3<10<4 方法二:作差法。如a >b 则a-b >0. 方法三:乘方法.如比较3362与的大小。 例:比较下列两数的大小 (1) 2 123-10与 (2)5325与 【实数】 定义:(1)有理数与无理数统称为实数。在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数是0,最大的负整数是-1。 (2)实数也可以分为正实数、0负实数。 实数的性质:实数a 的相反数是-a ;实数a 的倒数是a 1(a ≠0);实数a 的绝对值|a|=? ??<-≥)0()0(a a a a ,它的几何意义是:在数轴上的点到原点的距离。 实数的大小比较法则:实数的大小比较的法则跟有理数的大小比较法则相同:即正数大于0,0大 于负数;正数大于负数;两个正数,绝对值大的就大,两个负数,绝对值大的反而小。(在数轴上,右边的数总是大于左边的数)。对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。 实数的运算:在实数范围内,可以进行加、减、乘、除、乘方、开方六种运算。运算法则和运算 顺序与有理数的一 实数与数轴的关系:每个实数与数轴上的点是一一对应的 (1)每个实数可以以用数轴上的一个点来表示。 (2)数轴上的每个点都表示已个实数。

(完整版)北师大版八年级数学上册实数测试题及答案.doc

八年级上学期第二章《实数》单元测试及答案 . 一、选择(每小题 3 分,共 30 分.在每题所给出的四个选项中,只有一项是符合题意的把 所选项前的字母代号填在题后的括号内 . 相信你一定会选对!) 1.下列说法中正确的是(). ( A)4 是 8 的算术平方根(B)16的平方根是4 ( C)是6的平方根(D)没有平方根 2.下列各式中错误的是(). ( A)( B) ( C)( D) 3.若,则(). ( A)- 0.7 (B)± 0.7 ( C)0.7 ( D) 0.49 4.的立方根是(). (A)- 4 (B)± 4 (C)±2 (D)- 2 5.,则的值是(). (A)(B)(C)(D) 6.下列四种说法中: ( 1)负数没有立方根;(2) 1 的立方根与平方根都是1; ( 3)的平方根是;( 4). 共有()个是错误的. (A)1 (B)2 (C)3 ( D)4 7.x是 9 的平方根,y 是64的立方根,则x y 的值为() A . 3 B. 7 C.3, 7 D.1,7 8. 等式x 2 1x 1 x 1 成立的条件是()

A. x ≥ 1 B. x ≥ -1 C.-1 ≤ x ≤ 1 D. x ≥1 或 x ≤ -1 9. 计算 45 1 20 5 1 所得的和结果是( ) 2 5 A . 0 B .5 C . 5 D .3 5 10. 3 2 x (x ≤2) 的最大值是 ( ) A . 6 B . 5 C . 4 D . 3 二、填空 (每小题 3 分,共 30 分.请把结果直接填在题中的横线上.只要你理解概念,仔 细运算,积极思考,相信你一定会填对的) 1.若 ,则 是 的 __________, 是 的 ___________. 2. 9 的算术平方根是 __________ , 的平方根是 ___________. 3 .下列各数: ① 3.141、 ② 0.33333 、 ③ 5 7 、 ④π 、 ⑤ 2.25 、 ⑥ 2 、 3 ⑦0.3030003000003 (相邻两个 3 之间 0 的个数逐次增加 2)、⑧ ( 7 2)( 7 2)中.其 中是有理数的有_______;是无理数的有_______. (填序号) 4. 的立方根是 __________ , 125 的立方根是 ___________ . 5.若某数的立方等于- 0.027 ,则这个数的倒数是 ____________. 6.已知 ,则 . 7.和数轴上的点一一对应的数集是 ______. 8. 估计 200 =__________(误差小于 1); 30 =___________ (误差小于 0.1) . 9.一个正方体的体积变为原来的 27 倍,则它的棱长变为原来的 倍. 10.如果一个正数的一个平方根是- a ,那么这个数的另一个平方根是 ______,这个数的算 术平方根是 ______ . 三、计算 (只要你认真思考 , 仔细运算 , 一定会解答正确的 ! 每小题 10 分,共 60 分) 1.化简下列各式: (1) 10 2 98 ; ( 2) (3 35)(3 3 5) ; 2

八年级数学实数单元测试题

八年级数学实数单元测试题 一、认认真真选(每小题3分,共30分) 1. 下列各式中正确的是 ( ) A. 25 =±5 B. (-2)2 = -2 C. ±36=±6 D. 100-=10 2. 已知正方形的边长为a ,面积为S ,则( ) A. S=a B. a 是S 的算术平方根 C. S 的平方根是a D. a=± S 3. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π-4)2的算术平方根是π-4;⑤算术平方根不可能是负数。其中,不正确的有( ) A. 2个 B. 3个 C. 4个 D. 5个 4. 5=,则x 为( ) A. 5 B. -5 C. ±5 D. 以上都不对 5. 当0x ≤的值为( ) A. 0 B. x - C. x D. x ± 6.下列说法中正确的是( ) 没有立方根 的立方根是±1 C.361的立方根是61 的立方根是3 5- 7.若m<0,则m 的立方根是( ) A.3m B.- 3m C.±3m D. 3m - 8.已知858.46.23=,536.136.2=,则00236.0的值等于( ) A . B .15360 C . D . 9.若 81 - x 3 x 的值是( ) B. 21 C. 81 D. 161 10.若9,422==b a ,且0

A. 2- B. 5± C. 5 D.5- 二、仔仔细细填(每小题3分,共30分) 11. 下列各数:① ②… ③π ④-32 ⑤…(相邻两个3之间0的个数逐次增加2) ⑥?4? 1. 其中是有理数的有_________;是无理数的有__________.(填序号) 12. 的平方根是 ,81的算术平方根是 。 13. 如果一个正数的平方根是a+3与2a-15,则这个正数是______. 14. 已知032=++-b a ,则 ______)(2 =-b a . 15.-81 的立方根是 ,125的立方根是 。 165=______= 17.3 6- 的绝对值是______。 2的相反数是______。|-π|=___________。 18.大于5-且小于3的所有整数是_______________。 19.化简:18=________ 348-=___________ 20.计算:_________,1125 61 3 =- 三.解答题:(共40分) 21. (本题15分)计算: (1)1683 +- 2232-+))(( (3) |23- | + |23-|- |12- | 22. (本题15分)求下列各式中的x. (1)125x 3=8 (2)9x 2-16=0 (3)(-2+x)3=-216

八年级数学上册 第二章 实数

第二章实数 目录 第二章实数 (1) 第一课时:实数的认识 (1) 知识要点一:认识无理数 (1) 知识要点二:平方根 (1) 知识要点四:算术平方根 (2) 拓展:随机的n (3) 知识要点五:立方根 (3) 知识要点五:估算无理数的大小 (4) 知识要点六:实数的概念 (5) 知识要点七:实数的性质 (5) 知识要点八:实数与数轴 (6) 知识要点九:实数的比较大小 (8) 知识要点10:实数的运算 (9) 总练习题 (9) C 基础巩固 (9) B 能力提升 (10) A 拔尖训练 (11) 第二课时:二次根式的性质、化简与运算 (12) 知识要点一:二次根式的概念 (12) 知识要点二:二次根式有意义的条件 (12) 知识要点三:二次根式的性质与化简 (13) 知识要点四:最简二次根式 (13) 知识要点五:分母有理化 (14) 知识要点六:二次根式的乘除法 (15) 知识要点七:同类二次根式 (16) 知识要点八:二次根式的加减法 (16) 知识要点九:二次根式的混合运算 (17) 知识要点十:二次根式的化简求值 (17) 知识要点十一:二次根式的应用 (18) 总练习题 (19) C 基础巩固 (19) B 能力提升 (19) A 拔尖训练 (20)

第一课时:实数的认识 知识要点一:认识无理数 伟大的数学家——毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了.可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m 等于多少?是整数呢,还是分数?这个问题引起了学派成员希帕斯的兴趣,他花费了很多的时间去钻研,最终希帕斯断言:m 既不是整数也不是分数,是当时人们还没有认识的新数. 希帕斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为 此引起了他们的恐慌.为了维护学派的威信,他们残忍地将希帕斯扔进地中海.这样,无理数的发现人被谋杀了! 定义1 无限不循环小数叫做无理数。 常见的无理数的类型: (1)有规律但不循环的小数; (2)有特定意义的符号,如π; (3)方开不尽的数(见知识要点二之开方的概念)。 练习: (1)下列说法正确的是( ) A.无限小数是无理数 B.无理数是无限小数 C.两个无理数的和一定是无理数 D.两个无理数之和一定是有理数 (2)在0、1010010001.0/27-7 2241.331601.04-3、、、、、、 π (相邻两个1之 间0的个数逐次加1个)中,属于无理数的是 。 (3)在2017321 ,,,中共有 个无理数。 知识要点二:平方根 定义2 一般的,如果一个数x 的平方等于a.即a x =2,那么这 个数x 叫做a 的平方根;求一个数a 的平方根的运算叫做开平方,a 叫做被开方数。 记作:a x ±=。

八年级数学上册实数单元测试题

八年级数学上-----3 实数 一、选择题 1. 9 1 的平方根是( ) A. 31 B. 31- C. 31± D. 81 1± 2.2 )3(-的算术平方根是( ) A.3± B.3- C.3 D.3 3.下列说法正确是( ) A.25的平方根是5 B. 2 2-的算术平方根是2 C. 8.0的立方根是2.0 D. 65是36 25 的一个平方根 4.64的算术平方根和64-的立方根的和是( ) A.0 B.6 C.4 D.4- 5.能与数轴上的点一一对应的是( ) A 整数 B 有理数 C 无理数 D 实数 6.213-=-a ,则a 的值是( ) A.1 B.2 C.3 D.4. 7.设面积为3的正方形的边长为x ,那么关于x 的说法正确的是( ) A. x 是有理数 B.x =3± C. x 不存在 D. x 是1和2之间的实数 8.32-的绝对值是 ( ) 323223- D.32- 9.若x ,y 为实数,且022=-+ +y x ,则2010)(y x 的值为( ) A.2 B.2- C.1 D.1-

10.若b a x -=,b a y +=,则xy 的值为( ). A.a 2 B. b 2 C.b a + D.b a - 二、填空题 11.在4144.1-,2-,722,3 π ,32-,?3.0,Λ121111*********.2中,无理数的个 数是 . 12.81的算术平方根是_________,=-327 . 13.负数a 与它的相反数的和是 ,差是 . 14. 在数轴上表示的点离原点的距离是 . 15.a 是9的算术平方根,而b 的算术平方根是4,则=+b a . 16.已知12+x 的平方根是5±,则45+x 的立方根是 . 17.一个正数的平方根为m -2与63+m ,则=m ,这个正数是 . 18. 比较下列实数的大小 12 ② 2 1 5- 5.0; 19.小于15的正整数共有 个,它们的和等于 . 20.10的整数部分是a ,小数部分是b ,则=-b a . 三、解方程 21. 27)1(32 =-x ; 22. 0125 81 33 =+ x 四、计算题 ①5 145203- - ②2)32(62-+

北师大版八年级数学上册第二章实数知识点及习题

实数 知识点一、【平方根】如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2 ≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。因此: 1、当a=0时,它的平方根只有一个,也就是0本身; 2、当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。 3、当a <0时,也即a 为负数时,它不存在平方根。 例1. (1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。 (3)若 x 的平方根是±2,则x= ;的平方根是 (4)当x 时,x 23-有意义。 (5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少? 知识点二、【算术平方根】: 1、如果一个正数x 的平方等于a ,即a x =2 ,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根 号a”,其中,a 称为被开方数。特别规定:0的算术平方根仍然为0。 2、算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。 3、算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此, 算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为: a ±。 例2. (1)下列说法正确的是 ( ) A .1的立方根是1±; B .24±=; ( C )、81的平方根是3±; ( D )、0没有平方根; (2)下列各式正确的是( ) A 、981±= B 、14.314.3-=-ππ C 、3927-=- D 、235=- (3)2 )3(-的算术平方根是 。 (4)若x x -+ 有意义,则=+1x ___________。 (5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32 =-+-b a ,求c 的取值范围。 (7)如果x 、y 分别是4- 3 的整数部分和小数部分。求x - y 的值. (8)求下列各数的平方根和算术平方根. 64; 121 49 ; 0.0004; (-25)2; 11. 1.44, 0,8, 49 100 , 441, 196, 10-4

北师大-八年级数学上册第二章实数测试卷(精华)(带答案)

八 年 级 上 册 数 学 第二章 实数 单元测试卷(一卷) 一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有 一个答案是正确的,请把正确答案的代号填在该小题后的括号内。 1、若x 2=a ,则下列说法错误的是( ) (A )x 是a 的算术平方根 (B )a 是x 的平方 (C )x 是a 的平方根 (D )x 的平方是a 2、下列各数中的无理数是( ) (A )16 (B )3.14 (C )113 (D )0.01…(两个1之间的零的个数依次多1个) 3、下列说法正确的是( ) (A )任何一个实数都可以用分数表示 (B )无理数化为小数形式后一定是无限小数 (C )无理数与无理数的和是无理数 (D )有理数与无理数的积是无理数 4、9=( ) (A )±3 (B )3 (C )±81 (D )81 5、如果x 是0.01的算术平方根,则x=( ) (A )0.0001 (B )±0.0001 (C )0.1 (D )±0.1 6、面积为8的正方形的对角线的长是( ) (A )2 (B )2 (C )22 (D )4 7、下列各式错误的是( ) (A )2)5(5= (B )2)5(5-= (C )2)5(5-=(D )2)5(5-= 8、4的算术平方根是( ) (A )2 (B )2 (C )4 (D )16 9、下列推理不正确的是( ) (A )a=b b a = (B )a=b 33b a = (C )b a = a=b (D )33b a = a=b 10、如图(一),在方格纸中, 假设每个小正方形的面积为2, 则图中的四条线段中长度是 有理数的有( )条。 (A )1 (B )2 (C )3 (D )4

初二数学实数单元测试及答案

初二数学 实数典型习题集 、选择题:(40分) 在实数—?. 3、0.21、一、丄>0.70107中,其中无理数的个数为( 2 8 C 、3 A 、无理数都是无限小数 无限小数都是无理数 C 、带根号的数都是无理 数 不带根号的数都是无理数 x F 列各组数中,不能作为一个三角形的三边长的是(2、 J6的算术平方根为( C 、 3、 F 列语句中,正确的是( 4、 若a 为实数,贝U 下列式子中一定是负数的是( 5、 A - a 2 B - (a 1)2 C 、-, a 2 D _(_a+1) F 列说法中,正确的个数是( (1) —64的立方根是- 4; (2) 49的算术平方根是 -7 ; (3)丄的立方根为 27 (4) 1是丄的平方根。 4 16 B 、2 A 1 6.估算.28 -、7的值在 7、 C 、 8、 A. 7和8之间 C. 3和4之间 F 列说法中正确的是( 若a 为实数,则 若x 、y 为实数, 若 0 ::: X ::: 1,则 B 、 X 、 B. 6 D. 2 B 、 和7之间 和3之间 若a 为实数,则a 的倒数为- a D 若a 为实数,则 a 2 — 0 x 2 、—、?? x 中,最小的数 是( x C x x 2 1、 B 、2 9、 1、1000、1000 B 、 2、 3、 5 C 、32、42、52 D 3 8、3 27、3 64

10.观察图8寻找规律,在“? ”处填上的数字是( ) (A)128 (C)162 二、填空题:(40分) 1. _____ 和数轴上的点 --- 对应. 2. 若实数a, b 满足二+2=0,则雯= 冋 |b |ab| --------------- 3、 ______________________________________________ 如果a =2 , |b =3,那么a 2b 的值等于 _________________________________________ . 1 4. 有若干个数,依次记为q, a 2 , a 3 川川,a n ,若內二--,从第2个数起,每个 2 数都等于1与它前面的那个数的差的倒数,则 a 。。:二 _______________________________ . 6. 如图,数轴上的两个点A B 所表示的数 y= _______ . 8、计算:3-兀十U (兀一 4)2的结果是 _________ 9. 用“*”定义新运算:对于任意实数a , b ,都有a*b=b 2 1 那么5*3 =— 10. 右图是小李发明的填图游戏,游戏规则是:把 5, 6, 7, 四个数分别填入图中的空格内,使得网格中每行、每列的数字从 左至右和从上到下都按从小到大的顺序排列?那么一共有 — (B)136 (D)188 5.比较大小:-23 -0.02 ; 3 5 ________ 43 . 分别是a ,b ,在a b , a _b , ab ,a — b 中,是正数的有 ________ 个. 7. 若x 3是4的平方根,贝U x 二 ,若一8的立方根为y -1,则 _______ ;当m 为实数时, m* (m*2)

北师大版八年级数学上册第2章实数(培优试题)

第二章实数 2.1认识无理数 专题无理数近似值的确定 1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是() A.x是有理数 B.x取0和1之间的实数 C.x不存在 D.x取1和2之间的实数 2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗? (2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间. 3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.

答案: 1.D 【解析】∵面积为3的正方形的边长为x,∴x2=3,而12=1,22=4,∴1<x2<4,∴1<x<2,故选D. 2.解:(1)边长为5cm. (2)设大正方形的边长为x,∵大正方形的面积=32+32=18,而42=16,52=25, ∴16<x2<25,∴4<x<5,故正方形的边长不是整数,它的值在4和5之间. 3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.

(完整版)八年级上册数学第二章实数测试题

北师大版八年级数学上册第二章实数测试题(1) 一、选择题 1.下列各数:2π, 0·, 227,27,Λ1010010001.6,1中无理数个数为( ) A .2 个 B .3 个 C .4 个 D .5 个 2.在实数03 2-,|-2|中,最小的是( ). A .-23 B . C .0 D .|-2| 3.下列各数中是无理数的是( ) A . B C D .4.下列说法错误的是( ) A .±2 B 是无理数 C D . 2是分数 5.下列说法正确的是( ) A .0)2(π是无理数 B .33是有理数 C .4是无理数 D .38-是有理数 6.下列说法正确的是( ) A .a 一定是正数 B . 20163 是有理数 C .22是有理数 D .平方根等于自身的数只有1 7.估计20的大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 8. (-2)2的算术平方根是( ) A .2 B . ±2 C .-2 D .2 9.下列各式中,正确的是( ) A .3- B .3- C 3=± D 3=± 10.下列说法正确的是( ) A .5是25的算术平方根 B .±4是16的算术平方根 C .-6是(-6)2的算术平方根 D .0.01是0.1的算术平方根 11.36的算术平方根是( ) A .±6 B .6 C .±6 D . 6 12.下列计算正确的是( ) 4=± B.1= 4= 2=

13.下列运算正确的是( ) A .25=±5 B .43-27=1 C .18÷2=9 D .24· 32 =6 14.下列计算正确的是( ) A .822-= B .27-123=9-4=1 C .(25)(25)1-+= D .62322 -= 15.如图:在数轴上表示实数15的点可能是( ) A .点P B .点Q C .点M D .点N 16.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的 实数是 A .2.5 B .2 2 C . 3 D . 5 17.下列计算正确的是( ). A .2234-=4-3=1 B .)25()4(-?-=4-×25-2)×(-5)=10 C .22511+=11+5=16 D .32=3 6 18.已知n -12是正整数,则实数n 的最大值为( ) A .12 B .11 C .8 D .3 19.2)9(-的平方根是x , 64的立方根是y ,则x +y 的值为( ) A .3 B .7 C .3或7 D .1或7 20.若||4x =29y =,且||x y x y -=-,则x y +的值为( ) A .5或13 B .-5或13 C .-5或-13 D .5或-13 二、填空题 1.实数27的立方根是 2.若一个正数的两个平方根分别是2a -2和a -4,则a 的值是 . 3.-6的绝对值是___________. 4.估计7的整数部分是

北师大版八年级数学上册《第2章 实数》 单元测试卷 解析版

第2章实数 一.选择题(3×8=24分) 1.在下列各数0.2、3π、0、、、6.1010010001…、、无理数的个数是() A.1B.2C.3D.4 2.下列六种说法正确的个数是() ①无限小数都是无理数; ②正数、负数统称实数; ③无理数的相反数还是无理数; ④无理数与无理数的和一定还是无理数; ⑤无理数与有理数的和一定是无理数; ⑥无理数与有理数的积一定仍是无理数. A.1B.2C.3D.4 3.下列语句中正确的是() A.﹣9的平方根是﹣3B.9的平方根是3 C.9的算术平方根是±3D.9的算术平方根是3 4.下列运算中,错误的有() ①=;②=±4;③==﹣2;④=+= . A.1个B.2个C.3个D.4个 5.的平方根是() A.±5B.5C.﹣5D. 6.下列运算正确的是() A.B.C.D. 7.若a、b为实数,且b=,则a+b的值为()A.±1B.4C.3或5D.5 8.已知一个正方形的边长为a,面积为S,则()

A.B.S的平方根是a C.a是S的算术平方根D. 二.填空题:(4×6=24分) 9.请写出三个无理数:. 10.(﹣5)0的立方根是,10﹣2的算术平方根是,的平方根是.11.化简:=. 12.的绝对值是. 13.已知=0,则(a﹣b)2=. 14.计算:++x2﹣1=. 三.解答题:(本题共计52分) 15.(10分)计算 (1); (2)(﹣2)3×+×()2﹣. 16.(10分)解方程 (1); (2). 17.(7分)如图,实数a、b在数轴上的位置,化简﹣﹣. 18.(7分)若实数a、b、c满足等式a+2=b+6=c+10,求代数式+(b﹣c)2+的值. 19.(8分)已知a为实数,求代数式的值. 20.(10分)已知,求: .

相关主题