搜档网
当前位置:搜档网 › 脱硫石膏成分分析标准

脱硫石膏成分分析标准

脱硫石膏成分分析标准
脱硫石膏成分分析标准

脱硫石膏主要成分测试标准

一、石膏中亚硫酸盐含量的测定

取1.0000g左右干燥后的石膏样品放入锥形烧瓶并加入10mL 0.05mol/L的I2溶液(必须能显示出I2 溶液的颜色,即使CaSO3得到充分氧化);加入5mL HCl(1+1),摇动并放置3 min,用0.05mol/L标定后的Na2S2O3溶液滴定, 当液体颜色变淡黄时加入1%淀粉指示剂,当溶液蓝色消失时即为滴定终点;最后不加石膏样品作空白值。

计算公式如下:

CaSO3·1/2H2O(%) =

V0—空白试验时消耗的Na2S2O3的体积,ml

V1—滴定剩余I2消耗的Na2S2O3的体积,ml

m—石膏样品的重量,g

二、石膏中碳酸盐含量的测定

称取约1.0000g干燥后的石膏样品放入烧杯中,并加入5mL30%H2O2和100mL除盐水,置于磁力搅拌器上搅拌10min,并静置2min。加入20mL 0.1mol/L HCl的标准溶液,搅拌后将溶液加热至60℃(若碳酸钙含量较高需加入足够量的HCl并煮沸)并静置15min。用0.1mol/L 的NaOH标准溶液滴定溶液中过量的HCl,用酚酞指示剂指示滴定终点,滴至pH到达7.0溶液由无色变成淡红色,30秒内不褪色即为滴定终点。最后不加石膏样品作空白值。

计算公式如下:

V0—空白试验时消耗的NaOH的体积,ml

V1—滴定过量盐酸消耗的NaOH的体积,ml

m—石膏样品的重量,mg

三、石膏中硫酸盐含量的测定

离子交换法

称取烘干的0.1000g石膏样品倒入烧杯内,加入5ml 30% H2O2和100mL煮沸的除盐水,在搅拌器上搅拌10分钟,加入15.0000g用热水反复洗至中性(pH值=7.0)的阳离子交换树脂,继续搅拌10分钟,将样品连同树脂用定量快速滤纸过滤,再用煮沸的除盐水反复冲洗树脂7-8次,在滤液中加入溴甲酚绿-甲基红混合指示剂,用0.1mol/L的NaOH溶液滴定滤液至亮绿色。

计算公式如下:

CaSO4·2H2O(%)=

CNaOH—NaOH的摩尔浓度,mol/l

m—石膏试样重量,g

V—消耗NaOH体积,mL

V0—树脂空白值(一般为0),mL

—石膏样品中CaSO3·1/2H2O的质量浓度,%

硫酸钡重量法

取1.0000g干燥后的石膏样品,放入烧杯中,加入10ml(1+1)HCl 和100ml 除盐水,用滤纸过滤,然后用热水冲洗并用容量瓶收集滤液,加热样品,开始沸腾时一边搅拌一边逐渐加入20ml 10%BaCl2继续沸腾几分钟,然后放在加热器中1h,冷却放置一晚以使SO42-与Ba2+反应完全。用无灰级滤纸过滤,然后用热水反复冲洗,直到洗液中不含Cl‐为止(用AgNO3标准溶液滴至滤液无混浊现象),将过滤物和滤纸放入已称重坩锅中,用烘箱在

105-110℃温度下烘2h,待沉淀物干燥后,放入马弗炉内在700-800 ℃温度下加热30min,用干燥器干燥处理后冷却样品30min,然后称重得到BaSO4晶体和坩埚的重量。

根据下面的公式可以计算出CaSO4·2H2O的含量。

计算公式如下:

式中:

A—干燥后的石膏样品重量,g

B—坩埚的重量,g

C—BaSO4晶体和坩埚的重量,g

172.17—CaSO4·2H2O的分子量

233.4—BaSO4的分子量

(测试原理:首先加入盐酸溶液并加热以除去石膏中CaSO3的影响,充分溶解的SO42-与标准的BaCl2反应生成溶解度极低的BaSO4,通过过滤收集到的BaSO4和无灰级滤纸放在已称重的坩锅内,在700-800℃高温下得到BaSO4晶体。具体反应方程式如下:)

《石灰石石灰---石膏法烟气脱硫工程设计规范》企业标准制订(工艺系统编制)

《石灰石/石灰---石膏法烟气脱硫工程设计规范》 ---企业标准制订(工艺系统编制) 1.术语 1.1 工艺术语 1.1.1 脱硫岛 指脱硫装置及为脱硫服务的建(构)筑物。 1.1.2 吸收剂 指脱硫工艺中用于脱除二氧化硫(SO 2)等有害物质的反应剂。本工艺的吸收 剂指石灰石(CaCO 3)或石灰(CaO )。 1.1.3 吸收塔 是指脱硫工艺中脱除SO 2等有害物质的反应装置。 1.1.4 副产物 指脱硫工艺中吸收剂与烟气中SO2等反应后生成的物质。 1.1.5 废水 指脱硫工艺中产生的含有重金属、杂质和酸的污水。 1.1.6 装置可用率 指脱硫装置每年的总运行时间减去因脱硫系统故障导致的停运时间后,占总运行时间的百分比。按计算: %100×?=A B A 可用率 式中: A :脱硫装置每年的总运行时间,h 。 B :脱硫系统每年因故障导致的停运时间,h 。 1.1.7 脱硫效率 指脱硫前后烟气中SO2的浓度差与脱硫前烟气中SO2浓度的比值,按计算: %100C C C 121×?=脱硫效率 式中: C1:脱硫前烟气中SO 2在过剩空气系数为(燃煤:1.4;燃油燃气:1.2)时 的折算浓度,mg/m 3; C2:脱硫后烟气中SO 2在过剩空气系数为(燃煤:1.4;燃油燃气:1.2)时 的折算浓度,mg/m 3。

1.1.8 液气比(L/G) ; 指循环浆液喷淋量(l/h)与吸收塔出口处烟气流量(工况,湿态,实际O 2单位:m3/h)的比值。 1.1.9 钙硫比(Ca/S) 量的摩尔比值。 指吸收剂消耗量与脱除的SO 2 1.1.10 吸收剂纯度 指CaCO 或CaO的质量百分含量(%)。 3 1.1.8 增压风机 为克服脱硫装置产生的烟气阻力新增加的风机。 1.1.9 烟气换热器 为提高经脱硫后的烟气温度,以增加烟气抬升高度而设置的换热装置(GGH)。 2. 工艺系统 2.1 脱硫装置工艺参数的确定 2.1.1脱硫工艺的选择应根据锅炉容量和调峰要求、燃料品质、二氧化硫控制规 划和环评要求的脱硫效率、脱硫剂的供应条件、水源情况、脱硫副产物和飞灰的综合利用条件、脱硫废水、废渣排放条件、厂址场地布置条件等因素,经全面技术经济比较后确定。 2.1.2 脱硫工艺的选择一般可按照以下原则: 1)燃用含硫量Sar≥2%煤的机组、或大容量机组(200MW及以上)的电厂锅炉建设烟气脱硫装置时,宜优先采用石灰石-石膏湿法脱硫工艺,脱硫 率应保证在90%以上。 2)燃用含硫量Sar<2%煤的中小电厂锅炉(200MW以下),或是剩余寿命低于10年的老机组建设烟气脱硫装置时,在保证达标排放,并满足SO2排放总量控制要求,且吸收剂来源和副产物处置条件充分落实的情况下,宜 优先采用半干法、干法或其他费用较低的成熟技术,脱硫率应保证在75% 以上。 3)燃用含硫量Sar<1%煤的海滨电厂,在海域环境影响评价取得国家有关部门审查通过,并经全面技术经济比较合理后,可以采用海水法脱硫工艺; 脱硫率宜保证在90%以上。 4)电子束法和氨水洗涤法脱硫工艺应在液氨的来源以及副产物硫铵的销售途径充分落实的前提下,经过全面技术经济比较认为合理时,并经国家有关 部门技术鉴定后,可以采用电子束法或氨水洗涤法脱硫工艺。脱硫率宜保 证在90%以上。

脱硫石膏成分分析标准

脱硫石膏成分分析标准 脱硫石膏主要成分测试标准 一、石膏中亚硫酸盐含量的测定 取1.0000g左右干燥后的石膏样品放入锥形烧瓶并加入10mL 0.05mol/L的 I 溶液(必须能显示出I溶液的颜色,即使CaSO得到充分氧化);加入 5mL 22 3 HCl(1+1),摇动并放置 3 min,用 0.05mol/L标定后的NaSO溶液滴定, 当液223体颜色变淡黄时加入1%淀粉指示剂,当溶液蓝色消失时即为滴定终点;最后不加石膏样品作空白值。 计算公式如下: V,V,C,()129.1401NaSO223CaSO?1/2HO(,) = 32%m,,210 V—空白试验时消耗的NaSO的体积,ml 2230 V—滴定剩余I消耗的NaSO的体积,ml 12223 m—石膏样品的重量,g 二、石膏中碳酸盐含量的测定 称取约1.0000g干燥后的石膏样品放入烧杯中,并加入5mL30,HO和22100mL 除盐水,置于磁力搅拌器上搅拌10min,并静置2min。加入20mL 0.1mol/L HCl的标准溶液,搅拌后将溶液加热至60?(若碳酸钙含量较高需加入足够量的HCl并煮沸)并静置15min。用0.1mol/L的NaOH标准溶液滴定溶液中过量的HCl,用酚酞指示剂指示滴定终点,滴至pH到达7.0溶液由无色变成淡红色,30秒内不褪色即为滴定终点。最后不加石膏样品作空白值。 计算公式如下: (V,V),C,100.0901NaOH CaCO(%),,10032,m V—空白试验时消耗的NaOH的体积,ml 0

V—滴定过量盐酸消耗的NaOH的体积,ml 1 m—石膏样品的重量,mg 三、石膏中硫酸盐含量的测定 离子交换法 ~海量资源尽在本账号~ 称取烘干的0.1000g石膏样品倒入烧杯内,加入5ml 30% HO和100mL煮22沸的除盐水,在搅拌器上搅拌10分钟,加入15.0000g用热水反复洗至中性(pH 值,7.0)的阳离子交换树脂,继续搅拌10分钟,将样品连同树脂用定量快速滤纸过滤,再用煮沸的除盐水反复冲洗树脂7-8次,在滤液中加入溴甲酚绿,甲基红混合指示剂,用0.1mol/L的NaOH溶液滴定滤液至亮绿色。 计算公式如下: ,,,,,C(VV)172.17172.170NaOHCaSO?2HO(%)= ,,C%421,,CaSO,HO32,,210m129.142,, C—NaOH的摩尔浓度,mol/l NaOH m—石膏试样重量,g V—消耗NaOH体积,mL V—树脂空白值(一般为0),mL 0 —石膏样品中CaSO?1/2HO的质量浓度,, C321CaSOHO322 硫酸钡重量法 取 1.0000g干燥后的石膏样品,放入烧杯中,加入 10ml(1+1) HCl 和 100ml 除盐水,用滤纸过滤,然后用热水冲洗并用容量瓶收集滤液,加热样品,开始沸腾时一边搅拌一边逐渐加入 20ml 10%BaCl继续沸腾几分钟,然后放在2 2+2-加热器中1h,冷却放置一晚以使SO与Ba反应完全。用无灰级滤纸过滤,然4

脱硫石膏对水泥性能的影响及其品质差异分析.

2010.No.10项目化学成分/% 率值 矿物组成/% Loss SiO 2Al 2O 3CaO Fe 2O 3MgO SO 3fCaO K 2O Na 2O KH n P C 3S C 2S C 3A C 4AF 熟料A 0.3421.905.3064.783.362.460.501.22 0.640.220.892.531.5855.3621.108.4010.21熟料B 0.48 20.16 6.38 63.57 3.58 2.98 0.98 1.16 0.23 0.92 2.02 1.78 54.80

16.60 10.90 10.80 0引言 脱硫石膏是以石灰石/石灰—石膏法对燃煤烟气 进行脱硫处理得到的工业副产物,每脱除1t SO 2约产生脱硫石膏2.7t 。脱硫石膏化学成分以二水硫酸钙为主,并含有少量碳酸钙、亚硫酸钙以及微量Na +、Mg 2+、 Cl -、F -等水溶性离子,Cr 、Cd 、Hg 、Pb 重金属含量均甚 微[1-3]。随着我国脱硫技术的应用与发展,脱硫石膏年排放量巨大,目前年排放量已约700万t 。为此,人们在用脱硫石膏作建筑石膏、石膏板材、石膏砌块以及水泥缓凝剂等方面进行了大量的研究。 脱硫石膏品质与脱硫工艺中石灰石的品质(化学成分、粒径、比表面积、活性)、脱硫效率和氧化效率等有关,因而,不同产地脱硫石膏的化学成分和品质存 在较大差异。目前,人们在脱硫石膏作水泥缓凝剂方面已进行了较多的研究与应用,但对脱硫石膏的品质差异及其对水泥体积稳定性、与外加剂相容性等物理性能影响却关注研究较少。为此,本文对不同产地脱硫石膏及天然石膏对水泥物理性能的影响进行了比较,分析探讨脱硫石膏的品质差异及其对水泥性能的影响机制。 1试验材料 本文选取矿相成分不同的两种水泥熟料(A 和

利用脱硫石膏制备高品质二水石膏.

第45卷第1期人工晶体学报v01.45N。.1垫!鱼生!旦:一——』些坐坠坚』堡堡堡』些些些————————墅鬯垡坠 利用脱硫石膏制备高品质二水石膏 卢静昭,赵斌,陈学青,曹吉林 (河北工业大学化工学院,河北省绿色化工与高效节能重点实验室,天津300130) 摘要:利用脱硫石膏在酸性溶液中重结晶的特点,采用重结晶技术对脱硫石膏进行脱色提纯,通过对溶解、结晶过程 的控制制备出高纯度、高自度的二水石膏。研究了硫酸浓度、晶种量、料浆浓度、稳定剂、温度、反应时闻、陈化时闻对 二水石膏结晶的影响,并进行了母液循环实验。研究结果表明:常压下,H2S04用量lO.O%,ca(()H)z用量0.5%,料 浆浓度7.4%。聚乙二醇用量0.5%,反应温度120℃,反应时间2.5h,陈化24h后生成的二水硫酸钙结晶形貌良好, 白度为94.0l%,纯度达99.24%;母液循环3次后生成的二水石膏纯度大于98%。 关键词:脱硫石膏;重结晶;二水硫酸钙 中图分类号:TD98文献标识码:A文章编号:1000-985x(2016)01枷97聊 Prep黜曩6触ofthelIigll-quali锣Gyps啪byDihydrateFGD 明j堍一批o,ZHA0B讥,CHENX妣一q吨,CA0沁h (HebeiProvincialKeyLabofGreenCheIIIical‰hnolo盱&HighE雎cientEnergySav咄,Sch00l0fchemicalE嚼ne谢ng&‰h叫。盱,He鼬Ulliv∞i‘y0f 2015,口a删31^Mgmf1khnolo盯,Ti删in300130,Clli∞) (女缸it】ed7J£五y2015) Abst姻ct:BasedontllerecrystaⅡizationch锄cteristicsofgypsuminacidic舭on,a姗隅phe出acids01蕊on IIletllodwasusedtodec010dI唱动rp呲nbycontIDUingtlleprepa瑚商onofcrystaUization舳ds幽cdissolutionpIDcess,

脱硫石膏成分分析标准

脱硫石膏主要成分测试标准 一、石膏中亚硫酸盐含量的测定 取1.0000g左右干燥后的石膏样品放入锥形烧瓶并加入10mL 0.05mol/L的I2溶液(必须能显示出I2 溶液的颜色,即使CaSO3得到充分氧化);加入5mL HCl(1+1),摇动并放置3 min,用0.05mol/L标定后的Na2S2O3溶液滴定, 当液体颜色变淡黄时加入1%淀粉指示剂,当溶液蓝色消失时即为滴定终点;最后不加石膏样品作空白值。 计算公式如下: CaSO3·1/2H2O(%) = V0—空白试验时消耗的Na2S2O3的体积,ml V1—滴定剩余I2消耗的Na2S2O3的体积,ml m—石膏样品的重量,g 二、石膏中碳酸盐含量的测定 称取约1.0000g干燥后的石膏样品放入烧杯中,并加入5mL30%H2O2和100mL除盐水,置于磁力搅拌器上搅拌10min,并静置2min。加入20mL 0.1mol/L HCl的标准溶液,搅拌后将溶液加热至60℃(若碳酸钙含量较高需加入足够量的HCl并煮沸)并静置15min。用0.1mol/L 的NaOH标准溶液滴定溶液中过量的HCl,用酚酞指示剂指示滴定终点,滴至pH到达7.0溶液由无色变成淡红色,30秒内不褪色即为滴定终点。最后不加石膏样品作空白值。 计算公式如下: V0—空白试验时消耗的NaOH的体积,ml V1—滴定过量盐酸消耗的NaOH的体积,ml m—石膏样品的重量,mg 三、石膏中硫酸盐含量的测定 离子交换法 称取烘干的0.1000g石膏样品倒入烧杯内,加入5ml 30% H2O2和100mL煮沸的除盐水,在搅拌器上搅拌10分钟,加入15.0000g用热水反复洗至中性(pH值=7.0)的阳离子交换树脂,继续搅拌10分钟,将样品连同树脂用定量快速滤纸过滤,再用煮沸的除盐水反复冲洗树脂7-8次,在滤液中加入溴甲酚绿-甲基红混合指示剂,用0.1mol/L的NaOH溶液滴定滤液至亮绿色。 计算公式如下: CaSO4·2H2O(%)= CNaOH—NaOH的摩尔浓度,mol/l m—石膏试样重量,g V—消耗NaOH体积,mL V0—树脂空白值(一般为0),mL —石膏样品中CaSO3·1/2H2O的质量浓度,% 硫酸钡重量法 取1.0000g干燥后的石膏样品,放入烧杯中,加入10ml(1+1)HCl 和100ml 除盐水,用滤纸过滤,然后用热水冲洗并用容量瓶收集滤液,加热样品,开始沸腾时一边搅拌一边逐渐加入20ml 10%BaCl2继续沸腾几分钟,然后放在加热器中1h,冷却放置一晚以使SO42-与Ba2+反应完全。用无灰级滤纸过滤,然后用热水反复冲洗,直到洗液中不含Cl‐为止(用AgNO3标准溶液滴至滤液无混浊现象),将过滤物和滤纸放入已称重坩锅中,用烘箱在

脱硫石膏在我公司使用经验

脱硫石膏在我公司使用经验 脱硫石膏是火力发电厂烟气脱硫时SO2和CaCO3反应生成的一种工业副产石膏,主要成分为二水硫酸钙还有一些杂质。根据国家节能环保生产要求及对工业废渣综合利用的相关政策,利用脱硫石膏作为水泥缓凝剂生产水泥,即可降低成本,又可将工业废渣变废为宝,我公司早在2006年就开始尝试使用粉状脱硫石膏,经过多年摸索和改进,目前已完全用脱硫石膏替代天然二水石膏。 我公司使用的脱硫石膏SO3含量42.2%左右,水分7%,压块状物含量45%左右,天然二水石膏SO3含量30.2%左右。 一、生产中使用方法 为了解决脱硫石膏水分大,颗粒细小入库后易造成蓬库、堵料下料不畅的问题,用建筑混凝土配料计量称将脱硫石膏和粒状石灰石(1—3料)按比例预配后入库使用,大大减少了堵料下料不畅的问题,但是每天堵料时间累计在1小时左右,目前还没有完全解决此问题。 二、脱硫石膏使用后的情况 1. 脱硫石膏使用后水泥的比表面积都明显偏大,这是因为脱硫石膏的 易磨性比天然石膏要好,而且脱硫石膏已是粉状物料,对物料有助磨作用。 2.对凝结时间的影响 脱硫石膏的细度小,在水泥中能与水泥颗粒充分接触,溶解度大,所 以更能有效调节水泥凝结时间,水泥SO3指标一般按2.2-2.5%控制, 而加天然石膏的水泥SO3指标一般按2.7-3.0%控制,凝结时间才能 基本一样。 3.对水泥强度的影响

加脱硫石膏制成的水泥比加加天然石膏的水泥强度稍高一些。因为脱硫石膏中有部分未反应的CaCO3和部分可溶性盐,如K盐、Na 盐,这些杂质有利于加速水泥水化,激发混合材活性的发挥,而天然石膏的杂质在水化时一般不参加反应。这说明脱硫石膏有效组分高于天然石膏,所以在一定程度上天然石膏性能不及脱硫石膏。 总的说来脱硫石膏代替天然石膏作缓凝剂,可以用于水泥生产。 三、经济效益分析 成球加工后的脱硫石膏一吨价格是60元,天然石膏一吨价格是95元,天然石膏因为SO3含量低,易磨性成差,水泥SO3指标高约0.5,所以配比较高我公司生产中配比天然石膏6-7%,脱硫石膏4-5%,我公司一年生产水泥50万吨,消耗脱硫石膏2万吨,如果用天然石膏消耗3万吨,矿渣少用1万吨,矿渣价格60元。光材料费用可节约105万元,考虑天然石膏破碎设备、电耗、人工费用大约按10万元计,每年可节约115万元经济效益可观。 2012-4-7

浅析脱硫石膏的综合利用

浅析脱硫石膏的综合利用 脱硫石膏得到有效利用是推动各电厂脱硫装置正常运行的前提条件。脱硫石膏可作为天然石膏替代品,用作水泥缓凝剂或用于制作石膏制品、改良土壤与路基回填等。从技术层面考虑,上述综合利用途径在国内外均有了一定实践经验,存在的技术难点也能得到较好的解决,从而为电厂烟气脱硫的实施提供了支持。 关键词电厂烟气脱硫脱硫石膏综合利用 一、脱硫石膏的基本性能 脱硫石膏外观特征 1.脱硫石膏的含水率 脱硫石膏含吸附水〔游离水〕约9-18%,电厂生产附着水也一直处于变动之中甚至高于18%,附着水含量受电厂运行、燃煤含硫量、石灰石碳酸钙含量及脱硫设备等多种因素影响。 〔2〕脱硫石膏颗粒级配分析

石灰石-石膏湿法烟气脱硫系统中,石灰石浆液中的石灰石粒度基本有两种:250目90%通过及325目90%通过。因此所产生的脱硫石膏颗粒也是很细的且比较集中。大都在30-60μm之间。 〔3〕脱硫石膏与天然石膏颗粒形状显微观察 脱硫石膏电子图象天然石膏电子图象 由上图可以看出,脱硫石膏与天然石膏的晶型有明显的不同。天然石膏细粒较多,粗细颗粒差别明显,晶型呈板状,晶体粗大,不规则;脱硫石膏颗粒比较均齐,晶体成短柱状,长径比较小,外观规整。 2. 脱硫石膏化学成份

整体颗粒成分能谱定性分析主要元素有O、K、Al、Si、S、Ca、Fe、Mg Cl。 杂质多含Mg、Al、Na、K、Fe、Si和少量的氯元素。 可溶性杂质及其危害: Cl、Na、K等影响与纸的粘结;Na、K产生析晶使制品出现返霜现象。K、Na可使制品出现返霜,影响石膏的凝结性能,因此,超量时须增设水洗、分级、中和等净化、脱水设施,对脱硫石膏进行净化处理。 不溶性杂质及其危害CaCO3,MgCO3煅烧后产生CaO、MgO,使石膏碱度加大。在不利条件下会析出盐类,使制品出现返霜现象,影响产品外观和粘结;颗粒较小的Fe 和未完全燃烧的煤粉颗粒影响产品的白度和粘结性能。原矿带入的Si将对设备产生磨损;有机质、粉尘等将使产品呈灰色影响外观。 二、我国脱硫石膏利用现状 可作为建筑石膏(生产纸面石膏板和石膏砌块)、模具石膏和水泥缓凝剂等建材领域。其中: 建筑石膏(可生产纸面石膏板和石膏切块)项目,对脱硫石膏消耗量大是其优势所在。 做纸面石膏板是大量综合利用脱硫石膏的最佳途径之一,但其投资金额,技术含量高。 石膏砌块是新型墙体材料,是国家环保政策鼓励的发展方向。我国石膏总量的4~7%用于制作石膏墙体,而其它发

3.火电厂脱硫石膏主要成分及粒径分布

1.火电厂脱硫石膏主要成分 石膏浆液是含有石膏晶体、CaCl2、少量未反应石灰石、CaF2和少量飞灰等的混合物。 半水亚硫酸钙CaSO 3*1/2 H 2 O(粘性大) CaCO 3 CaSO 4.2H 2 O 氯离子Cl- 飞灰粉尘(粒径小) 脱硫石膏基本性质 脱硫石膏又称排烟脱硫石膏、硫石膏或FGD石膏,主要成分和天然石膏一样,为二水硫酸钙。烟气脱硫石膏呈较细颗粒状,平均粒径约40~60μm,颗粒呈短柱状,径长比在1.5~2.5之间,颜色呈灰、黄,二水硫酸钙含量较高一般都在90%以上,含游离水一般在10%~15%,其中还含飞灰、有机碳、碳酸钙、亚硫酸钙及由钠、钾、镁的硫酸盐或氯化物组成的可溶性盐等杂质。 脱硫石膏化学监督要求: CaCO 3 W% <3 CaSO 3 W% <1 自由水分W% ≤10 CaSO 4.2H 2 O W% ≥90 溶解于石膏中的Cl-含量以干石膏为基准(以无游离水石膏为基准)<100ppm Wt%<0.01 溶解于石膏中的F-含量以干石膏为基准(以无游离水石膏为基准)<100ppm Wt%<0.01 溶解于石膏中的Mg2+含量以干石膏为基准(以无游离水石膏为基准)<450ppm

2.火电厂脱硫石膏粒径分布 石膏浆液颗粒度分布较宽,60μm以上的大颗粒占60%以上,10μm以下的小颗粒占5%以下,大颗粒占有很大比例,这样的颗粒分布所构成的石膏滤饼结构有利于脱水机进行脱水。

3.解决过滤板堵塞问题 3.1选择合适的过滤板 现场取样:成分、粒径 过滤板微孔结构、孔径 3.2亚硫酸钙导致结垢——清洗液、超声波、清洗工艺过程控制 亚硫酸钙的分子结构图 简介 性质:CaSO3·1/2H2O 无色六方结晶或白色粉末。 密度:1.595g/cm3 式量:120(不含结晶水)

(完整word版)石膏检测标准

石膏检测标准 DL/T 1483-2015石灰石-石膏湿法烟气脱硫系统化学及物理特性试验方法 GB/T 17669.1-1999建筑石膏一般试验条件 GB/T 17669.2-1999建筑石膏结晶水含量的测定 GB/T 17669.3-1999建筑石膏力学性能的测定 GB/T 17669.4-1999建筑石膏净浆物理性能的测定 GB/T 17669.5-1999建筑石膏粉料物理性能的测定 GB/T 21371-2008用于水泥中的工业副产石膏 GB/T 23456-2009磷石膏 GB/T 26204-2010纸面石膏板护面纸板 GB/T 28627-2012抹灰石膏 GB/T 5463.3-2013非金属矿产品词汇第3部分:石膏 GB/T 5483-2008天然石膏 GB/T 5484-2012石膏化学分析方法 GB/T 9775-2008纸面石膏板 GB/T 9776-2008建筑石膏 GSB 08-1352-2014水泥用石膏成分分析标准样品 GSB 08-2991-2014脱硫石膏成分分析标准样品 GSB 08-3200-2014磷石膏成分分析标准样品 HG/T 4219-2011磷石膏土壤调理剂 HG/T 4753-2014双翻盘磷石膏湿渣滤液机 HJ/T 179-2005火电厂烟气脱硫工程技术规范石灰石/石灰-石膏法 HJ/T 211-2005环境标志产品技术要求化学石膏制品 JB/T 11734-2013石膏型熔模铸造用铸型粉 JB/T 11887-2014石灰石-石膏湿法烟气脱硫工艺水系统设计规程 JC/T 1021.8-2007非金属矿物和岩石化学分析方法第8部分石膏矿化学分析方法JC/T 1023-2007石膏基自流平砂浆 JC/T 1025-2007粘结石膏 JC/T 2038-2010α型高强石膏

关于脱硫石膏品质影响因素的分析

影响脱硫石膏品质的因素分析 一、我厂脱硫工艺介绍 我厂一期2X 600MW机组脱硫系统采用上海石川岛电站环保工程有限公司的湿法石灰石-石膏工艺。该套烟气脱硫系统(FGD)处理烟气量为100%勺烟气量,不设烟气旁路,FGD S统由以下子系统组成:烟气系统(未设增压风机及GG)吸收塔系统、 石膏脱水系统(包括真空皮带脱水系统和石膏储仓系统)、石灰石制备系统(未设磨机)、公用系统、排放系统、废水处理系统、电气系统、控制系统。 1.烟气参数(设计煤种,100%BMC负荷) 表1烟气参数 表2 石灰石粉参数

3.脱硫装置主要性能指标 表3 脱硫装置性能指标 4.脱硫系统设备概况 表4脱硫设备概况

二、目前脱硫运行存在的问题 1.吸收塔浆液和生成石膏的化验数据 表5化验报告单

2.近期石灰石粉品质统计 见附件 三、影响石膏品质的因素分析 1、物料因素 影响石膏生成品质的主要因素是石膏浆液的品质,以下是国内普遍认可的石膏浆液的控制标准:

而石灰石品质不仅直接影响脱硫效率,也影响石膏浆液的品质,决定了石膏浆液中硫酸盐和碳酸盐的含量。石灰石品质主要有以下指标:化学成分、粒径、活性、比表面积等。其中化学成分主要有氧化钙、氧化镁、二氧化硅等。以下各指标对脱硫工艺性能的影响: 化学成分中的氧化钙含量越高,越有利于提高脱硫效率和石膏品质;氧化镁含量越高, 石灰石的活性越低,影响石膏生成的品质;二氧化硅含量高,影响脱硫工艺设备的耐磨 性。 石灰石粉的粒径越小,其比表面积越大,溶解性越好,反应效率高;相反,如果粒径 大,必须在很低的PH值下才能充分溶解,但这样又影响了脱硫效率。 石灰石的活性越高,反应速度越快;相反,反应速率越快的石灰石粉,其活性越好。 根据湿法石灰石一石膏法脱硫设计技术规范要求,石灰石中的碳酸钙含量大于90%燃用中低硫份煤种时,石灰石细度要保证250目90%以上的过筛率,燃用高硫分煤种时,石灰石细度要保证325目90鸠上的过筛率。由于,我厂周边煤矿产煤属于低硫煤,因此,我厂脱硫工艺设计中,石灰石的品质也是按规范要求设计。 2、运行控制因素 2.1浆液PH值的控制浆液的ph 值对石灰石的溶解、石膏的生成、脱硫效率、亚硫酸钙的生 成都有不 同的影响。根据石灰石一石膏法的脱硫运行经验,浆液PH值一般控制在5.5-6.0 。

石膏的资料分析解析

1.1 我国石膏工业现状、研究历史和发展前景 1.1.1 我国石膏行业现状 石膏胶凝材料是一种多功能的气硬性胶凝材料,也是一种应用历史最悠久的胶凝材料之一,它与石灰、水泥并列为传统的无机胶凝材料中的三大支柱。石膏的化学式为 CaSO 4·2H 2 O。天然石膏按其产出形状和结构的不同分为纤维石膏、透明石膏、雪花石膏 和柱状石膏。截止2000年底,我国已探明的石膏储量为600亿吨,居世界之首。分布于全国六大行政区的23个省区。主要集中在山东、内蒙、青海、湖南、湖北、宁夏、西藏、安徽、四川九省区,合计占全国储量的90.1﹪,其中,山东省占总储量的65.6﹪。我国虽然是一个石膏资源大国,但石膏资源长期也未能得到很好的开发利用。多年来,石膏资源大部分用于水泥生产中作缓凝剂,约占石膏利用总量的9﹪,而在其它方面如石膏墙体材料,胶凝材料,农业上作土壤改良剂,化工、轻工、食品、工艺美术、文教、医药等方面的用量仅占8﹪左右,同发达国家相比差距很大,原因是生产技术落后,工业基础薄弱,国有大中型企业少,手工作业的乡镇企业多,矿山机械化程度仅为10~40﹪,生产工艺落后,缺乏开发新产品的能力。当年一些世界发达国家的人均销售量为:美国86~106㎏,伊朗120㎏,日本46㎏,法国115㎏(包括出口),加拿大287㎏(包括出口),而我国仅为5.6㎏。 我国石膏建材工业起步于七十年代后期,经过了二十多年的发展,目前已形成了以β型普通石膏粉和α型高强石膏粉为主体的基础产品体系,但由于我国石膏矿石分布的特殊地理位置(大多矿藏均分布于偏远或贫困山区)以及长期石膏技术研究开发与实际生产的脱节,大多数生产企业均随矿山而位于经济较差的贫困地区,限于资金、技术等各方面的原因,均存在着煅烧设备不过关、控制手段落后、自动化程度低下等技术与设备问题,造成了所生产的产品多为性能较差且质量极不稳定的低档次半成品,很多不能满足日益发展的市场需求,进而限制了石膏产品的推广应用,制约了企业参与市场竞争的能力。近年来,随着建材工业的发展,以石膏为主体的新型墙体材料、石膏制品及其他特殊用途应用行业,对不同性能和种类的石膏产品的市场需求量在不断增长。不同应用行业对石膏产品的性能要求有所不同,对产品性能要求也更加严格,而生产企业要改变目前产品品种单一、产品档次低、性能指标不能符合市场需求的现状,需从生产工艺设备及控制手段等各个工艺环节来解决,这些均需投入大量资金来实现,这对于目前大多数企业来说都是无法实现的。另外,中国建材行业“十五”期间发展的基本原则也指出:努力推进技术进步,重点围绕环保、节能、节地,提高产品质量,开发新品种,提高效益和替代进口,推进企业技术改造,发展高新技术产业,促进产品更新换代。 1.1.2 发展前景 我国石膏及其制品的研究与开发工作起步较晚,而我国又是石膏资源的大国,所以,今后的研究将主要集中在以下几个方面: (1)石膏基复合材料的研制:充分利用石膏独特的防火、保温、隔热、隔声、轻质、

脱硫石膏数据分析

关于脱硫石膏试验数据分析 一、沙钢脱硫石膏试验(小磨机试验) 470、483、494; 2、三天活性作为参考值为别为:58、58、56、54; 3、分析: (1)随着脱硫石膏掺量的提高,比表面积逐渐增大,脱硫石膏有一定的助磨性(对球磨机而言); (2)用脱硫石膏作为激发剂对活性有提高的可能; (3)沙钢脱硫石膏掺量为0.5%时,7天活性最好; 二、马钢脱硫石膏试验(脱硫石膏外掺) 化学成分和物理性能

分析: (1)掺量分别为不掺、0.5%、1.0%、1.5%、2.0%; (2)矿粉比表面积442,三天活性作为参考值为别为:47、57、52、60、54;(3)用马钢脱硫石膏作为激发剂,在1.5%以内,随着石膏掺量的逐渐增加,7天和28天活性明显增加,掺量为2%时28天活性反而下降;用马钢脱硫石膏掺量控制在1.5%左右为最佳; 马钢脱硫石膏跟进试验(二) (1)掺量分别为不掺、1.25%、1.5%、1.75%、2.0%; (2)矿粉比表面积437,由于试验只有7天活性结果出来,仅能做数据推测分析, 2%时7天活性明显降低,掺量为 1.75%没有明显下降,28天结果有待继续分析; (3)掺量细微变化后活性的差别可以看出,掺量为 1.75%对本次试验而言是个拐点。 初步结论: 1、通过上述试验研究工作,脱硫石膏用作粒化高炉矿渣粉激发剂试验,可 以初步判定:脱硫副产物以适当的比例(1.5%左右),合适的加入方法,均匀的掺入到粒化高炉矿渣粉中,不会较大影响粒化高炉矿渣粉的质量,其活性度完全可以达到GT/18046-2008《用于水泥和混凝土的粒化高炉矿 渣粉》的标准要求,并且有可能提高7天和28天活性。 2、烧结烟气脱硫副产物用作粒化高炉矿渣粉激发剂的方法,是可以消纳利 用烧结烟气脱硫副产物的途径。 3、沙钢和马钢脱硫石膏做为激发剂掺入对矿粉影响有所不同,真正实施南 钢脱硫石膏作为矿粉激发剂,需要产品出来后仍需做大量的试验验证南 钢脱硫石膏掺入后对矿粉质量的影响以及最佳掺量的确定,同时需要跟 踪脱硫石膏掺入后对混凝土性能指标的影响。

脱硫石膏成分分析标准-热工院

脱硫石膏主要成分测试标准 一、石膏中CaSO 31/2H 2O 的测试 取1.0000g 左右干燥后的石膏样品放入锥形烧瓶并加入10mL 0.05mol/L 的 I 2溶液(必须能显示出I 2 溶液的颜色,即使CaSO 3得到充分氧化);加入 10mL HCl(1+1),摇动并放置 3 min ,用 0.05mol/L 标定后的Na 2S 2O 3溶液滴定, 当液体颜色变淡黄时加入1%淀粉指示剂,当溶液蓝色消失时即为滴定终点;最后不加石膏样品作空白值。 实验原理:在酸性溶液中亚硫酸盐与碘进行氧化原反应,过量的碘用硫代硫酸钠标准溶液滴定。其反应式为: CaSO 3+I 2+H 2O=CaSO 4+2HI 2Na 2S 2O 3+I 2=Na 2S 4O 6+2NaI 计算和记录 CaSO 3·1/2H 2O(%) = %10 214 .129)(3 2 210????-m C V V O S Na V 0—空白试验时消耗的Na 2S 2O 3的体积,ml V 1—滴定剩余I 2消耗的Na 2S 2O 3的体积,ml m —石膏样品的重量,g 二、石膏中的碳酸钙含量 测试方法及计算 称取约 1.0000g 干燥后的石膏样品放入烧杯中,并加入100mL 除盐水和1mL30%H 2O 2,置于磁力搅拌器上搅拌10min ,并静置2min 。加入40mL 0.1mol/L HCl 的标准溶液,搅拌后将溶液加热至60℃并静置15min 。用0.1mol/L 的NaOH 标准溶液滴定溶液中过量的HCl ,用酚酞指示剂指示滴定终点,滴至pH 到达7.0溶液由无色变成淡红色,30秒内不褪色即为滴定终点。 HCl 和NaOH 标准溶液(0.1mol/L )的配制与标定见GB601-88,酚酞指示剂的配制见GB603-88。 CaCO 3 +2HCl △CaCl 2+H 2O+CO 2 ↑ MgCO 3+2HCl △MgCl 2+H 2O+CO 2 ↑ NaOH+HCl =NaCl+H 2O

年处理电厂脱硫石膏30万吨报告

年处理电厂脱硫石膏30 万吨 报告

最新资料 Word 版可自由编辑!】年生产10万至30万吨脱硫石 膏 水泥缓凝剂 性研究 报告

郑州市中州型煤机械厂2007 年10 月20 日国内销售部技术工程部

冃U ≡ 第一节概述 一、水泥厂缓凝剂 二、市场情况 三、产品论证 四、技术方案 五、主要技术经济指标 第二节设计规模和产品方案 一、设计规模 二、产品技术方案 第三节工艺技术和主要设备 一、生产工艺 二、主要设备选型 第四节建设条件和环保 一、建厂条件 二、主要设施:水电设施、运输设施 三、环境保护 第五节主要原料来源和物料消耗 第六节劳动组织和生产定员 第七节工程进度安排 第八节结论

第九节系列压球机与脱硫石膏的生产工艺及技术

年生产30 万吨脱硫石膏水泥缓凝剂 可行性研究报告 随着环保意识的加强,据国家发展和改革委员会,国家环保总局颁布的《现有燃煤电厂二氧化硫治理“十一五”规划》的政策及法规要求,凡在“两控区”新建、改建的燃煤含硫量大于1%的电厂在2010 年前必须分期建成脱硫设施,燃煤发电,给人们带来清洁能源,但排放出SO2 气体能产生酸雨,会造成全球性污染,烟气脱硫装置以后则排出大量固体脱硫废渣,造成区域性污染。据时将会产生大量的烟气脱硫石膏,而电厂实施脱硫设施后所产生的脱硫石膏得到有效利用才是推动各电厂脱硫装置正常运行的前提条件。 鉴于废渣污染环境严重的状况,开展废渣利用,是资源再生的大好事,利用脱硫废渣生产水泥厂缓凝剂,变废为宝,资源综合利用,节约天然资源,是保护生态环境,建设节约型社会,发展循环经济,走可持续发展道路的典型,一举多得。现就年生产30 万吨脱硫石膏水泥缓凝剂产品的可行性报告编写如下: 第一节概述 一、水泥厂水泥缓凝剂脱硫石膏做为石膏的一种,其主要成分和天然石膏 一样,都 是二水硫酸钙,其中二水硫酸钙含量高达95%,纯度在75-90%、成分稳定、料度在30-60um(微米)、粉状、颗粒呈短柱状,径长比在 1.5- 2.2 之间,大小较为平均,级配较差不及天然石膏磨细后的石膏 粉,标稠用水量大,含有一定量的碳酸钙和较多的水溶性盐。脱

石膏板厂脱硫石膏检测方法

石膏板厂脱硫石膏检测方法 一、目的:为了能科学准确的检测脱硫石膏的质量,特制定本检测方法。 二、适用范围:本规定适用于生产纸面石膏板所用脱硫石膏的检测。 三、内容: 1、试样的制备与附着水含量的测定: 1.1 仪器与设备: 分析天平:量程200g ,精度0.0001g 烘箱:最高温度250℃,无鼓风,温度控制波动不超过±3℃ 研钵:120~140mm,最好是玛瑙研钵 不锈钢标准筛:0.20mm 方孔筛(或80目方孔筛) 磨口的玻璃瓶:250~300ml 带有磨口的称量瓶:¢45×15mm 培养皿:内径80~90mm 1.2 试样的缩分 采用四分法将取来的试样缩分至约500g,然后分成两等分,分别装入带磨口的玻璃瓶中密封,其中一份作为试验用样,另一份作为留样复检用。 1.3 附着水的测定 从试验用样中称取约1~2g 的试样,精确至0.0001g ,放入已烘干至恒重的带有磨口的称量瓶中,开盖与45±3℃的烘箱内烘1h ,取出,盖上磨口塞(别盖太紧),放入干燥器中冷却至室温。将磨口塞紧密盖好,称量。再开盖放入烘箱中烘30min,如此反复烘干、冷却、称量,直至恒重。最后结果取两平行实验的平均值,同一实验室允许误差为0.15%;不同实验室允许误差为0.20%。 附着水的质量百分数X 按式(1)计算: %1000 10?-=m m m X (1) 其中X-------质量百分数,% m 0-----烘前试样的质量,g m 1-----烘后试样的质量,g 1.4 分析试样的处理 1.4.1 试样的烘干 将试验用样平铺在培养皿中,然后将培养皿放入45±3℃的烘箱烘2h 后取出,放入干燥器中冷却至室温,称量。继续放入烘箱中烘30min,如此反复烘干、冷却、称量,直至恒重。

脱硫石膏汞开题

安徽理工大学本科毕业设计(论文)开题报告

2 研究现状 自然界中的汞有三种价态:单质汞(Hg0)、一价汞(Hg1+)和二价汞(Hg2+)。元素汞容易挥发,且难溶于水,是大气中相对比较稳定的形态,在大气中的停留时间长。Hg1+ 和Hg2+两种离子中,二价汞(Hg2+)比较稳定,许多二价形态的汞溶于水。汞的有机化合物不易解离,因而在生物体内的、外环境中容易造成累积,是最具毒性的形态。事实上,各种形态的汞,从污染源进入到大气、水体后,均可转化为甲基汞,甲基汞溶于水,进一步在藻类、鱼类等水生物体内富集,通过食物链直接危害人类健康甲基汞进入人体后主要侵害人的神经系统,尤其是中枢神经系统,最近的病理学研究表明,甲基汞可以穿过胎盘屏障侵害胎儿,使新生儿发生先天性疾病。除了神经系统受到损害外,儿童的免疫系统和循环系统的发育也受到侵害。 不同地区、不同煤种、不同矿层的煤中汞含量是不同的,含量差别很大。美国煤中汞含量0.09-0.51mg/kg,平均为0.22mg/kg;澳大利亚煤中含量在0.03-0.25mg/kg范围内,平均为0.087mg/kg;我国煤炭中汞量分布很不均匀,各学者对此也有争议。各种煤汞含量由高到低依次为:瘦煤>褐煤>焦煤>无烟煤>气煤>长焰煤。 燃煤过程中释放出的汞的形态转化与煤种、燃烧温度、烟气气氛、烟气成分、烟气冷却速率和除尘脱硫系统的布置有关。烟煤燃烧产生的烟气中,汞的形态以氧化态为主,无烟煤燃烧产生的烟气中,氧化态与元素态的汞比例相当,褐煤燃烧产生的烟气中,汞主要以元素态存在;相比普通煤粉炉,循环流化床燃烧温度要低一些,其燃烧烟气中的氧化态汞比例要大一些;氧化性烟气气氛对元素汞的氧化有促进作用,而还原性烟气气氛则不利于氧化态汞的生成;烟气中含有的微量元素成分氯、溴等影响元素汞的氧化。烟气不同冷却速率或烟气在冷却段的停留时间对于汞的形态转化是有影响的,较低的冷却速率可以促进汞(Hg0)向二价汞(Hg2+)转化。煤种痕量元素的释放、迁移转化的过程是极端复杂的,并且由于煤的非均匀性和不同煤种间煤中痕量元素浓度显著的变化性而使得问题更加复杂。在燃烧过程中,煤颗粒首先进行热解和着火,随着挥发份的析出,汞元素等气相元素气化,焦炭随后开始燃烧,以挥发的痕量元素蒸发,从焦炭颗粒中释放出,在高温环境下与周围的气体发生氧化还原反应。元素汞最后经历复杂的物理和化学变化,进入气相和气溶胶。其中绝大部分是蒸发释放,以金属汞蒸汽的形态存在与烟气中。在炉膛内的高温下,几乎所有煤中的汞转化为元素汞并停留在烟气中。 除尘设备汞脱除:CS-ESP(cold side-ESP)、HS-ESPS(hot side-ESP)和FF(Fabric Fitler)的平均脱汞效率分别为27%、4%和58%。总体来说,FF脱除气态汞的能力更为优越,并且低品质的煤引起除尘设备脱汞效率低,与烟气中的Hg0的浓度及煤种的含氯量也有关。脱硫装置汞脱除:湿法脱硫装置(WFGD)的脱硫效率高,适应性广,目前它对脱汞污染排放特性的影响也受到广泛关注。研究表明,WFGD对烟气内的Hg2+脱除效率可高达89.24%-99.1%;增加脱硫浆液和烟气体积比,有利于提高WFGD对Hg2+的脱除效率;WFGD对烟气中全汞的脱除效率可以达到50%以上,Hg2+在全汞中比例是决定WFGD 全汞脱除效果的关键因素。少于8%的Hg2+可以被还原为Hg0,这种转化与浆液中的硫酸氢根离子和金属离子有关,较高的二氧化硫浓度有利于促进Hg2+还原作用的发生。吸附剂脱汞:如活性碳类、飞灰、钙基类、沸石等固体吸收剂。 总之,当前我国对燃煤电厂脱汞尚处于初级阶段,大都停留在实验室规模研究,对吸附剂除汞的吸附过程中的内在机理还不甚清楚,而弄清楚吸附机理对于开发和发展汞排放控制技术又至关重要,因此应切实加强这方面的研究,争取早日开发出具有我国自主知识产权的新型廉价高效脱汞吸附剂。本课题对燃煤电厂汞的迁移规律进行研究,分析测定石膏的汞浓度,通过对燃煤副产物进行浸出和焙烧实验,研究汞在副产物中的赋

相关主题