搜档网
当前位置:搜档网 › 完整版直线平面平行与垂直的综合问题

完整版直线平面平行与垂直的综合问题

完整版直线平面平行与垂直的综合问题
完整版直线平面平行与垂直的综合问题

第六节直线、平面平行与垂直的综合问题

考点一立体几何中的探索性问题

[典例](2018全国卷川)如图,矩形ABCD所在平面与半圆弧C D所在平面垂直,M是

C D上异于c, D的点.

⑴证明:平面AMD丄平面BMC.

⑵在线段AM上是否存在点P,使得MC //平面PBD?说明理由.

[解](1)证明:由题设知,平面CMD丄平面ABCD,交线为CD.因为BC丄CD , 平面ABCD ,

所以BC丄平面CMD,所以BC丄DM .

因为M为C D上异于C, D的点,且DC为直径,

所以DM丄CM.

又BCn CM = C,所以DM丄平面BMC.

因为DM ?平面AMD,所以平面AMD丄平面BMC .

⑵当P为AM的中点时,MC //平面PBD.

证明如下:

连接AC交BD于0.

因为四边形ABCD为矩形,

所以0为AC的中点.

所以MC // 0P.

又MC?平面PBD, 0P?平面PBD ,

所以MC //平面PBD.

[题组训练]

1.如图,三棱锥P-ABC中,PA丄平面ABC, PA = 1 , AB = 1, AC

=2, / BAC= 60°.

(1)求三棱锥P-ABC的体积;

(2)在线段PC上是否存在点M,使得AC丄BM,若存在,请说明理由,并求MC的值.

解:(1)由题设AB= 1 , AC = 2,/ BAC = 60°

1

可得ABC = 2 AB AC sin 60° =亍.

由PA丄平面ABC,可知PA是三棱锥P-ABC的高,

又FA= 1 ,

所以三棱锥P-ABC的体积V= 3 &ABC PA晋. BC?

连接0P,因为P为AM的中点,

⑵在线段PC上存在点M,使得AC丄BM,证明如下: 如图,在平面ABC

PA交PC于点M,连接

由PA丄平面ABC,

所以MN丄AC.

因为BN n MN = N,

又BM?平面MBN ,

所以AC丄BM.

1

在Rt△ BAN 中,AN= AB ?os/ BAC = ,

3

从而NC = AC-AN = 3,

,....,,/曰PM AN 1 由MN// PA,得MC = AC = 1.

2.如图,在四棱锥P-ABCD中,PD丄平面ABCD,底面ABCD为正方形,BC= PD = 2, E为PC的中点,CB= 3CG.

⑴求证:PC丄BC;

(2)AD边上是否存在一点M,使得PA //平面MEG ?若存在,求出AM的长;若不存在,请说明理由.

解:⑴证明:因为PD丄平面ABCD, BC?平面ABCD ,

所以PD丄BC.

因为四边形ABCD是正方形,所以BC丄CD.

又PD n CD = D , PD?平面PCD , CD?平面PCD ,

所以BC丄平面PCD.

因为PC?平面PCD,所以PC 丄BC.

⑵连接AC, BD交于点O, 连接EO , GO ,

延长GO交AD于点M,连接EM,贝U PA //平面MEG.

证明如下:因为E为PC的中点,O是AC的中点,

所以EO // PA.

因为EO?平面MEG , PA?平面MEG,所以PA //平面MEG.

C

2

因为△ OCGOAM,所以AM = CG = -,

3

所以AM的长为|.

2

BP = DQ = -DA ,求三棱锥 Q-ABP

的体积.

解:(1)证明:由已知可得,/ BAC = 90°即BA 丄AC. 又因为 BA 丄 AD , ACn AD = A , 所以AB 丄平面ACD. 因为AB?平面ABC , 所以平面 ACD 丄平面 ABC.

⑵由已知可得,DC = CM = AB = 3, DA = 3返. 2

又 BP = DQ = 3DA ,所以 BP = ^/2.

考点二平面图形的翻折问题

[典例](2018全国卷I )如图,在平行四边形 ABCM 中,AB = AC = 3,/ ACM = 90°.以

AC 为折痕将^ ACM 折起,使点M 到达点D 的位置,且

AB 丄 DA.

(1)证明:平面 ACD 丄平面 ABC ;

(2)Q 为线段AD 上一点,P 为线段BC 上一点,且

如图,过点Q作QE丄AC,垂足为E,则QE綊彳DC.

3

由已知及⑴可得,DC丄平面ABC,

所以QE丄平面ABC, QE= 1.

1 1 1

因此,三棱锥Q-ABP 的体积为V Q-ABP= 1X Ss BP X QE = 3X3X ^f2sin 45 °X 1= 1.

3 3 2

[题组训练]

1. (2019湖北五校联考)如图1所示,在直角梯形ABCD中,/ ADC = 90° AB // CD ,

1

AD = CD = 2AB = 2, E为AC的中点,将△ ACD沿AC折起,使折起后的平面ACD与平面ABC垂直,得到如图2所示的几何体D-ABC.

(1)求证:BC丄平面ACD ;

⑵点F在棱CD上,且满足AD //平面BEF,求几何体F-BCE的体积.

解:⑴证明:??? AC^AD2+ CD2= 2羽,

/ BAC = / ACD = 45°, AB = 4,

???在^ ABC 中,BC2= AC2+ AB2—2AC X ABX cos 45°= 8,

??? AB2= AC2+ BC2= 16,.?. AC丄BC.

???平面ACD丄平面ABC,平面ACD n平面ABC = AC,

??? BC丄平面ACD.

(2)?/ AD //平面BEF , AD?平面ACD,平面ACD n 平面BEF = EF, ? AD // EF,

?/ E为AC的中点,??? EF为^ ACD的中位线,

1

由(1)知,几何体F-BCE的体积V F-BCE=V B-CEF = -X S A CEF X BC,

3

SA CEF = 4S A ACD = ^x 苏2 X 2 = 2,

4 4 2 2

?- V F-BCE = 1x Jx 272=*.

2. (2018合肥二检)如图1,在平面五边形ABCDE中,AB // CE,且AE= 2, / AEC =

60° CD = ED = 77, cos/ EDC = |.将^ CDE 沿CE 折起,使点D 到P 的位置,且AP ={3, 得到如图2所示的四棱锥P-ABCE.

(1)求证:AP丄平面ABCE ;

⑵记平面PAB与平面PCE相交于直线I,求证:AB/ I.

证明:(1)在^ CDE 中,??? CD = ED = V7, cos/ EDC = 5,

由余弦定理得CE = 2+ B 2-2X 萌X^7 x-7= 2.

连接AC ,

?/ AE= 2, / AEC = 60 °

??? AC= 2.

又AP=£,

???在^ PAE 中,AP2+ AE2= PE2,

即AP丄AE.

a 同理,AP丄AC.

?/ ACn AE = A, AC?平面ABCE , AE?平面ABCE ,

??? AP丄平面ABCE.

(2) ?/ AB// CE, 且CE?平面P CE, AB?平面PCE,

??? AB/ 平面PCE.

又平面PABn 平面PCE = l ,??? AB / l.

[课时跟踪检测]

1.如图,四棱锥 P-ABCD 的底面ABCD 是圆内接四边形(记此圆为 W),且PA 丄平面ABCD.

(1)当BD 是圆 W 的直径时,PA = BD = 2, AD = CD = A /3,求四棱锥 P-ABCD 的体积. (2)在(1)的条件下,判断在棱FA 上是否存在一点 Q ,使得BQ //平面PCD ?若存在,求

出AQ 的长;若不存在,请说明理由.

因为 BD = 2, AD =73,所以 AB = 1. 同理BC = 1,所以S 四边形ABCD = AB AD = ^3. 因为PA 丄平面 ABCD , PA = 2, 所以四棱锥P-ABCD 的体积 -1S

四边形 ABCD PA = 2—3.

2

⑵存在,AQ =-理由如下.

延长AB , DC 交于点E ,连接PE ,则平面PAB 与平面PCD 的交线是PE.

AQ A B

则 BQ // PE ,所以"PA = AB-.

经计算可得 BE = 2,所以AE = AB + BE = 3,

2.如图,侧棱与底面垂直的四棱柱 ABCD-A 1B 1C 1D 1的底面是梯形,AB // CD , AB 丄AD , AA 1= 4, DC = 2AB , AB = AD = 3,点 M 在棱 A 1B 1 上,且 A 1M = -A 1 B 1.已知点 E 是直

解:(1)点E 在线段CD 上且EC = 1,理由如下:

在棱C 1D 1上取点N ,使得 D 1N = A 1M = 1,连接 MN , DN , 因为D 1N // A 1M ,所以四边形 D 1NMA 1为平行四边形, 所以MN 綊A 1D 1綊AD.

所以四边形 AMND 为平行四边形,所以 AM // DN. 因为CE = 1,所以易知 DN // EC 1,所以AM // EC 1, 又 AM?平面 BC 1E , EC 1?平面 BC 1E , 所以AM //平面BC 1E.

解:⑴因为BD 是圆W 的直径,所以 BA 丄AD , 假设在棱PA 上存在一点Q ,使得BQ //平面

PCD ,

2 所以AQ =

|. 故存在这样的点 Q ,使BQ //平面PCD ,且

2

AQ

= 3.

线CD 上的一点,

AM //平面 BC i E.

(1)试确定点 E 的位置,并说明理由; (2)求三棱锥 M-BC i E 的体积.

f )

A M , F , L , A 四点共面,

又 MF //平面 AD i E ,? MF // AL. ???四边形AMFL 为平行四边形, ?AM =FL

=i AB

,豐=4

4.如图i 所示,在Rt △ ABC 中,/ ABC = 90° D 为AC 的中点,AE 丄BD 于点E(不同

于点D),延长AE 交BC 于点F ,将△ ABD 沿BD 折起,得到三棱锥 A i -BCD ,如图2所示.

故点E 在线段CD 上且EC = 1. ⑵由⑴知,AM //平面BC i E , 所以 V M-BC i

E = V A-BC i

E = V C i

-ABE = 3^

3 3 X 4= 6.

3. (20i9湖北武汉部分学校调研 )如图i ,在矩形ABCD 中,AB = 4, AD = 2, E 是CD 的中 点,将^ ADE 沿AE 折起,得到如图2所示的四棱锥 D i -ABCE ,其中平面D i AE 丄平面ABCE.

(1)证明:BE 丄平面 D i AE ;

(2)设F 为CD i 的中点,在线段 AB 上是否存在一点 M ,使得MF //平面D i AE ,

右存在,求

出AB 的值;若不存在,请说明理由.

AB

解:(1)证明:???四边形 ABCD 为矩形且 AD = DE = EC = BC = 2, A / AEB= 90° 即BE 丄AE , 又平面D i AE 丄平面 ABCE ,平面 D i AE n 平面 ABCE = AE ,A BE 丄平面 D i AE.

⑵当AB =4时,

MF //平面D i AE ,理由如下:取 D i E 的中点L ,连接FL ,

??? FL // EC ,又 EC // AB , ??? FL // AB ,且

⑴若M是FC的中点,求证:直线DM //平面A i EF.

⑵求证:BD丄A i F.

⑶若平面A i BD丄平面BCD,试判断直线A i B与直线CD能否垂直?请说明理由.

解:⑴证明:??? D, M分别为AC, FC的中点,

??? DM // EF,

又E F?平面A i EF, DM?平面A i EF,

??? DM // 平面A i EF .

(2)证明:? EF 丄BD , A i E丄BD, A i E n EF = E,

A i E?平面A i EF, EF?平面A i EF,

??? BD 丄平面A i EF,

又A i F?平面A i EF ,??? BD 丄A i F.

⑶直线A i B与直线CD不能垂直.理由如下:

? ?平面BCD丄平面A i BD,平面BCD n平面A i BD = BD , EF丄BD, EF?平面BCD , ??? EF 丄平面A i BD,

又? A i B?平面A i BD ,??? A i B 丄EF ,

又? DM // EF, ? A i B 丄DM.

假设A i B 丄CD , ? DM n CD = D,

?- A i B丄平面BCD ,

?- A i B丄BD,与/ A i BD为锐角矛盾,

???直线A i B与直线CD不能垂直.

5. (20i9河南名校联考)如图,在多面体ABCDEF中,四边形ABCD是梯形,AB / CD , AD = DC = CB= a, / ABC = 60°四边形ACFE是矩形,且平面ACFE丄平面ABCD,点M

在线段EF上.

2.

易知EF = AC = ^a,所以AN =学a.

3

因为

V3 EM^33a,

所以皿2 2^3 MF= 2EF= 3 a,

所以MF 綊AN,

所以四边形ANFM是平行四边形,

所以AM // NF,

又NF?平面BDF , AM?平面BDF ,

所以AM //平面BDF.

6.如图所示的五面体ABEDFC中,四边形ACFD是等腰梯形,AD // FC,/ DAC = 60°BC 丄平面ACFD , CA= CB = CF = 1, AD = 2CF,点G为AC的中点.

(1)在AD上是否存在一点H,使明;

若不存在,说明理由;

GH //平面BCD?若存在,指出点H的位置并给出证

(2)求三棱锥G-ECD的体积.

解:(1)存在点H使GH //平面BCD,此时H为AD的中点?证明如下. 取点H为AD的中点,连接GH ,

因为点G为AC的中点,

所以在△ ACD中,由三角形中位线定理可知GH // CD,

又GH?平面BCD, CD?平面BCD ,

所以GH //平面BCD. = = = ■

⑴求证:BC丄平面ACFE;

⑵当EM为何值时,AM //平面BDF ?证明你的结论.

解:(1)证明:在梯形ABCD 中,因为AB // CD , AD = DC = CB = a, / ABC= 60°

所以四边形ABCD是等腰梯形,且/ DCA =/ DAC = 30° / DCB = 120°

所以/ ACB =/ DCB-/ DCA = 90° 所以AC 丄BC.

又平面ACFE丄平面ABCD,平面ACFE n平面ABCD = AC, BC?平面ABCD ,

所以BC丄平面ACFE.

(2)当EM月

a时,AM //平面BDF,理由如下:

如图,在梯形ABCD 中,设ACn BD = N,连接FN.

由⑴知四边形ABCD 为等腰梯形,且/ ABC = 60° 所以AB = 2DC,贝U CN : NA = 1 :

D

A

i

t

A f)

(2)因为AD // CF , AD?平面ADEB , CF?平面ADEB ,

所以CF //平面ADEB ,

因为CF?平面CFEB,平面CFEB n平面ADEB = BE,

所以CF // BE,

又CF?平面ACFD , BE?平面ACFD ,

所以BE //平面ACFD ,

所以V G-ECD = V E-GCD = V B-GCD .

因为四边形ACFD是等腰梯形,/ DAC = 60° AD = 2CF = 2AC,所以/ ACD = 90°

1

又CA= CB= CF = 1,所以CD =护,CG =二,

又BC丄平面ACFD ,

所以V B-GCD = 3 X 2cGX CD X BC = fx 舟X 护X 1 =鲁.

所以三棱锥G-ECD的体积为鲁.

直线、平面平行与垂直的综合问题考点与题型归纳

直线、平面平行与垂直的综合问题考点与题型归纳 考点一立体几何中的探索性问题 [典例](2018·全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧?CD所 在平面垂直,M是?CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC. (2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由. [解](1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC?平面ABCD, 所以BC⊥平面CMD,所以BC⊥DM. 因为M为?CD上异于C,D的点,且DC为直径, 所以DM⊥CM. 又BC∩CM=C,所以DM⊥平面BMC. 因为DM?平面AMD,所以平面AMD⊥平面BMC. (2)当P为AM的中点时,MC∥平面PBD. 证明如下: 连接AC交BD于O. 因为四边形ABCD为矩形, 所以O为AC的中点. 连接OP,因为P为AM的中点, 所以MC∥OP. 又MC?平面PBD,OP?平面PBD, 所以MC∥平面PBD. [题组训练] 1.如图,三棱锥P-ABC中,P A⊥平面ABC,P A=1,AB=1,AC =2,∠BAC=60°. (1)求三棱锥P-ABC的体积;

(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PM MC 的值. 解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=3 2 . 由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高, 又P A =1, 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =3 6. (2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下: 如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM . 由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC . 因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ?平面MBN , 所以AC ⊥BM . 在Rt △BAN 中,AN =AB ·cos ∠BAC =1 2, 从而NC =AC -AN =3 2, 由MN ∥P A ,得PM MC =AN NC =1 3 . 2.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG . (1)求证:PC ⊥BC ; (2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由. 解:(1)证明:因为PD ⊥平面ABCD ,BC ?平面ABCD , 所以PD ⊥BC . 因为四边形ABCD 是正方形,所以BC ⊥CD .

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

空间几何——平行与垂直证明

c c ∥∥b a b a ∥?一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?b ∥a b a αα??α ∥a ?

两条直线平行与垂直作业

两条直线平行与垂直作业 一、选择题(每小题8分) 1.下列命题 ①如果两条不重合的直线斜率相等,则它们平行; ②如果两直线平行,则它们的斜率相等; ③如果两直线的斜率之积为-1,则它们垂直; ④如果两直线垂直,则它们斜率之积为-1. 其中正确的为( ) A.①②③④ B.①③ C.②④ D.以上全错 2.已知点A(1,2),B(m,1),直线AB 与直线y=0垂直,则m 的值为( ) A.2 B.1 C.0 D.-1 3.以A(5,-1),B(1,1),C(2,3)为顶点的三角形是( ) A.锐角三角形 B.钝角三角形 C.以A 为直角顶点的直角三角形 D.以B 为直角顶点的直角三角形 4.已知12l l ⊥,直线2l 的倾斜角为45°,则直线1l 的倾斜角为( ) A.45° B.135° C.-45° D.120° 5.满足下列条件的1l 与2l ,其中12l l ⊥的是( ) (1) 1l 的斜率为- , 2l 经过点A(1,1),B(0,- ); (2) 1l 的倾斜角为45°, 2l 经过点P(-2,-1),Q(3,-5); (3) 1l 经过点M(1,0),N(4,-5), 2l 经过点R(-6,0),S(-1,3). A.(1)(2) B. (1)(3) C.(2)(3) D.(1)(2)(3) 6.若A (-4,2),B(6,-4),C(12,6),D(2,12),则下列四个结论: ① AB ∥CD ② AB ⊥AD ③ AC ∥BD ④ AC ⊥BD 中正确的个数为( ) A.1 B.2 C.3 D.4 7.已知直线l 与过点M(2,3-),N(3,2-)的直线垂直,则直线l 的 倾斜角( ) A.60° B.180° C. 45° D.153° 8.若P (a,b )与Q (b-1,a+1)关于直线l 对称,则l 的倾斜角为( ) A .135° B.45° C. 30° D.60° 二、填空题(每小题8分) 9、经过点P(-2?-1)?Q(3,a)的直线与倾斜角为45°的直线垂直.则a= _____ 10、如果下列三点:A(a,2),B(5,1),C(-4,2a)在同一直线上, 则a= _____ 11、 1l 过点A(m,1),B(-3,4), 2l 过点C(0,2),D(1,1),且1l ∥2l ,则m=_______. 2312

两条直线平行与垂直的判定说课稿

《两条直线平行与垂直的判定》的说课稿 江川县第二中学:杨雪芳 课题:§ 3.1.2 两条直线平行与垂直的判定 教材:普通高中课程标准实验教科书(人教A版)必修(2)第三章第一节第二部分的内容 课时:1课时 下面,我从教材分析、学情分析、教学目标及教学重难点设计、课堂结构设计、教学过程设计及教学评价设计六个方面对本节课的思考进行简单说明。 一、教材分析 直线与方程是平面解析几何初步的第一章,主要内容是用坐标法研究平面上最基本、最简单的几何图形——直线。学习本章,既能为进一步学习解析几何的圆、圆锥曲线、线性规划、以及导数、微分等做好知识上的必要准备,又能为今后灵活运用解析几何的基本思想和方法打好坚实的基础。 本节课是在学生学习了直线的倾斜角、斜率概念和斜率公式等知识的基础上,进一步探究如何用直线的斜率判定两条直线平行与垂直的位置关系。核心内容是两条直线平行与垂直的判定。它既是直线斜率概念的深化和简单应用,也是后续内容学习的重要基础。因此,我认为本节课的教学重点为:根据两条直线斜率判定两条直线平行与垂直。 用斜率判定两条直线的位置关系,体现了用代数方法研究几何问题的思想,这是贯穿于本节乃至本章内容始终的一种思想方法,它是解析几何研究问题的基本思想,本质还是数形结合。因此体会数形结合的数学思想也是本节课的教学任务之一。 二、学情分析: 在初中数学中,学生已学习过两条直线平行与垂直的判定。对两条直线平行与垂直的几何判断方法并不陌生,并且具备了一些初步推理能力。但用两条直线的斜率判定两条直线平行与垂直,是用代数方法研究几何问题,学生面对的是一种全新的思维方法,首次接触会感到不习惯。要学好本节内容,学生还需具备三角函数的有关知识,但此前学生并没有这方面的知识储备。尤其是对诱导公式 的认识是有一定困难的。因而要导出两条直线垂直的斜率条件,学生会感到困难。因此,我确定本节课的教学难点为:探究两条直线斜率与两条直线垂直的关系。 三、教学目标、重难点的确定 《课程标准》指出本节课的学习目标是:能根据斜率判定两条直线平行或垂直。根据《课标》要求和本节教学内容,结合学生的实际,我把本节课的教学目标确定为: (一)知识技能 1.掌握两条直线平行与垂直的条件。

平行与垂直的综合应用

平行与垂直的综合应用 [基础要点] 指出每个箭头方向表示的定理: ⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽ ⑾ ⑿ 题型一、平行关系的综合应用 例1、如图示,正三棱柱111ABC A B C -的底面边长为2,点E 、F 分别是棱上11,CC BB 的点,点M 是线段AC 上的动点,EC=2FB=2 (1)当点M 在何位置时,MB ∥平面AFE (2)若MB ∥平面AFE ,判断MB 与EF 的位置关系,说明理由,并求MB 与EF 所成角的余弦值。 变式:如图示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD ,试问:截面在什么位置时,其截面的面积最大? 题型二、垂直关系的综合应用 例2、如图示,已知平行六面体1111ABCD A BC D -的底面ABCD 是菱形,且11C CB C CD BCD ∠=∠=∠ (1)求证:1C C BD ⊥ A B C 1 A 1 B 1 C E F N M B H C A D G F E D

(2)当 1 CD CC 的值为多少时,能使1 AC ⊥平面1C BD ?请给出证明 变式:平面α内有一个半圆,直径为AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影 (1)求证:NH ⊥SB (2)这个图形中有多少个线面垂直关系? (3)这个图形中有多少个直角三角形? (4)这个图形中有多少对相互垂直的直线? 题型三、空间角的问题 例3、如图示,在正四棱柱1111ABCD A BC D -中 , 11,1A B B B =+,E 为1BB 上使11B E =的点,平面1 AEC 交1DD 于F ,交11A D 的延长线于G ,求: (1)异面直线AD 与1C G 所成的角的大小 (2)二面角11A C G A --的正弦值 变式:如图示,在四棱锥S -ABCD 中,底面ABCD 为正方形,SB ⊥面ABCD ,SB=AB ,设Q 为SD 的中点,M 为AB 的中点, (1)求证:MQ ∥平面SBC (2)求证:平面SDM ⊥平面SCD (3)求锐二面角S -M -C 的大小 题型四、探索性、开放型问题 例4、已知正方体中1111ABCD A BC D -,E 为棱1CC 上的动点, (1)求证:1A E ⊥BD (2) 当E 恰为棱1CC 的中点时,求证:平面1A BD ⊥平面 EBD (3)在棱1CC 上是否存在一个点E ,可以使二面角1A BD E --的大小为45 ?如果存在, C1 A1D B C B1 G F A E D1 A C D S Q A

直线、平面平行与垂直的判定及其性质 复习

直线、平面平行的判定及其性质 知识点一、直线与平面平行的判定 ⅰ.直线和平面的位置关系(一条直线和一个平面的位置关系有且只有以下三种) 位置关系直线在平面内直线与平面相交直线与平面平行 公共点有无数个公共点有且只有一个公共点没有公共点 符号表示a?αa∩α=A a||α 图形表示 注:直线和平面相交或平行的情况统称为直线在平面外 ⅱ.思考:如图,设直线b在平面α内,直线a在平面α外,猜想在什么条件下直线a 与平面α平行.(a||b) 判定 文字描述直线和平面在空间永无交点,则直线 和平面平行(定义) 平面外的一条直线与平面内的一条直线平 行,则该直线与此平面平行 图形 条件a与α无交点 结论 a∥αb∥α

知识点二、直线与平面平行的性质 性质 文字描述一条直线与一个平面平行, 则这条直线与该平面无交点 一条直线和一个平面平行,则过 这条直线的任一平面与此平面 相交,这条直线和交线平行. 图形 条件 a∥αa∥α,a?β,α∩β= b 结论 a∩α=?a∥b 线面平行,则线线平行 特别提示 证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通 过“线线”平行,证得“线面”平行;②利用两平面平行的性质定理,通过“面面”平行, 证得“线面”平行. 判定 文字描述如果两个平面无公共 点,则这两个平面平行一个平面内有两条相 交直线与另一个平面 平行,那么这两个平面 平行. 如果两个平面同时垂直于 一条直线,那么这两个平 面平行。 图形 条件 α∩β=?a,b?β a∩b=P a∥α b∥α l⊥α l⊥β 结论 α∥βα∥βα∥β

知识点四、平面与平面平行的性质 性质 文字描述如果两个平行平面同时和第 三平面相交,那么他们的交 线平行如果两个平面平行,那么其中一个平面内的直线平行于另一个平面 图形 条件α∥β β∩γ=b α∩γ=a α∥β a?β 结论a∥b a∥α 直线、平面垂直的判定及其性质 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直线都 垂直,我们就说直线l与平面互相垂直, 记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥b l⊥m,l⊥n,m∩n=B,mα,nα 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条直线 垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.图形

第2讲 空间中的平行与垂直

第2讲空间中的平行与垂直 高考定位 1.以几何体为载体考查空间点、线、面位置关系的判断,主要以选择题、填空题的形式出现,题目难度较小;2.以解答题的形式考查空间平行、垂直的证明,并与空间角的计算综合命题. 真题感悟 1.(2019·全国Ⅲ卷)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则() A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 解析连接BD,BE, ∵点N是正方形ABCD的中心, ∴点N在BD上,且BN=DN, ∴BM,EN是△DBE的中线, ∴BM,EN必相交. 连接CM,设DE=a,则EC=DC=a,MC=3 2a,

∵平面ECD ⊥平面ABCD ,且BC ⊥DC , ∴BC ⊥平面EDC , 则BD =2a ,BE = a 2+a 2=2a , BM = ? ?? ?? 32a 2 +a 2=72a , 又EN = ? ????a 22 +? ?? ?? 32a 2 =a , 故BM ≠EN . 答案 B 2.(2019·全国Ⅰ卷)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为________. 解析 如图,过点P 作PO ⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离. 再过O 作OE ⊥AC 于E ,OF ⊥BC 于F , 连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC . 所以PE =PF =3,所以OE =OF , 所以CO 为∠ACB 的平分线, 即∠ACO =45°. 在Rt △PEC 中,PC =2,PE =3,所以CE =1, 所以OE =1,所以PO =PE 2-OE 2= (3)2-12= 2. 答案 2 3.(2020·全国Ⅲ卷)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:

时两条直线的平行与垂直配套练习必修

两条直线的平行与垂直(2) 分层训练 1 . .若直线ax y 1 0和直线2x by 1 0垂直,则a,b满足() (A)2a b 0 (B)2a b 0 (C)ab 2 0 (D)ab 2 0 2 ..已知两点A( 2,0), B(0,4) ,则与 直 线AB垂直的直线方程可写成( ) (A)2x y m 0 (B)2x y m 0 (C) x 2 y m 0 (D) x 2y m 0 3?已知两点A( 1,3), B(3,1),点C在坐标轴上.若ACB -,则这样的点C有 ( ) (A)1 个(B)2 个(C)3 个(D)4 个 4.原点在直线I上的射影是P( 2,1),则|的方程为( ) (A)x 2y 0 (B) x 2y 4 0 (C)2x y 5 0 (D) 2x y 3 0 5.已知直线mx 4y 2 0 和2x 5y n 0互相垂直,且垂足为(1,p),则m n p的 值是() (A)24 (B)20 (C) 0 (D) 4 6?根据条件,判断直线l i与I2是否垂直: (1)l i的倾斜角为45°, I2的方程是x y 1 : _______________________ ; (2)I1 经过点M (1,0), N(4,5) , J过点R( 6,0), S( 1,3): ________________________ . 7?直线I在y轴上的截距为2,且与直线l': x 3y 2 0垂直,则I的方程是__________ 8.已知直线Ax 4y 2 0和直线2x y C 0垂直且垂足的坐标为(1,m),则 A ______ , C ________ ,m ________ . 9?求经过点(2,1),且与直线2x y 10 0垂直的直线I的方程.

必修二示范教案两条直线平行与垂直的判定

3.1.2 两条直线平行与垂直的判定 整体设计 教学分析 直线的平行和垂直是两条直线的重要位置关系,它们的判定,又都是由相应的斜率之间的关系来确定的,并且研究讨论的手段和方法也相类似,因此,在教学时采用对比方法,以便弄清平行与垂直之间的联系与区别.值得注意的是,当两条直线中有一条不存在斜率时,容易得到两条直线垂直的充要条件,这也值得略加说明. 三维目标 1.掌握两条直线平行的充要条件,并会判断两条直线是否平行.掌握两条直线垂直的充要条件,并会判断两条直线是否垂直.培养和提高学生联系、对应、转化等辩证思维能力. 2.通过教学,提倡学生用旧知识解决新问题,注意解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力. 重点难点 教学重点:掌握两条直线平行、垂直的充要条件,并会判断两条直线是否平行、垂直. 教学难点:是斜率不存在时两直线垂直情况的讨论(公式适用的前提条件). 课时安排 1课时 教学过程 导入新课 思路1.设问(1)平面内不重合的两条直线的位置关系有哪几种?(2)两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立?(3)“α=β”是“tanα=tanβ”的什么条件?根据倾斜角 和斜率的关系,能否利用斜率来判定两条直线平行呢? 思路2.上节课我们学习的是什么知识?想一想倾斜角具备什么条件时两条直线会平行、垂直呢?你认为能否用斜率来判断.这节课我们就来专门来研究这个问题. 推进新课 新知探究 提出问题 ①平面内不重合的两条直线的位置关系有几种? ②两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立? ③“α=β”是“tanα=tanβ”的什么条件? ④两条直线的斜率相等,这两条直线是否平行?反过来是否成立? ⑤l1∥l2时,k1与k2满足什么关系? ⑥l1⊥l2时,k1与k2满足什么关系? 活动:①教师引导得出平面内不重合的两条直线的位置关系有平行和相交,其中垂直是相交的特例. ②数形结合容易得出结论. ③注意到倾斜角是90°的直线没有斜率,即tan90°不存在. ④注意到倾斜角是90°的直线没有斜率. ⑤必要性:如果l1∥l2,如图1所示,它们的倾斜角相等,即α1=α2,tanα1=tanα2,即k1=k2.

第2章习题课直线、平面平行与垂直分析

直线、平面平行与垂直 1.能熟练应用直线、平面平行与垂直的判定及性质进行有关的证明.2.进一步体会化归思想在证明中的应用. a 、 b 、 c 表示直线,α、β、γ表示平面. 位置关系 判定定理(符号语言) 性质定理(符号语言) 直线与平面平行 a ∥b 且________?a ∥α a ∥α,________________?a ∥ b 平面与平面平行 a ∥α, b ∥α,且________________ ?α∥β α∥β,________________?a ∥b 直线与平面垂直 l ⊥a ,l ⊥b ,且________________ ?l ⊥α a ⊥α,b ⊥α?________ 平面与平面垂直 a ⊥α, ?α⊥β α⊥β,α∩β=a ,____________ ?b ⊥β 一、选择题 1.不同直线M 、n 和不同平面α、β.给出下列命题: ① ?????α∥βm ?α?M ∥β; ② ? ??? ?m ∥n m ∥β?n ∥β; ③ ?????m ?αn ?β?M ,n 异面; ④ ? ????α⊥βm ∥α?M ⊥β. 其中假命题的个数为( ) A .0 B .1 C .2 D .3 2.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的个数有( ) A .4 B .1 C .2 D .3 3.若a 、b 表示直线,α表示平面,下列命题中正确的个数为( ) ①a ⊥α,b ∥α?a ⊥b ;②a ⊥α,a ⊥b ?b ∥α; ③a ∥α,a ⊥b ?b ⊥α. A .1 B .2 C .3 D .0 4.过平面外一点P :①存在无数条直线与平面α平行;②存在无数条直线与平面α垂直;③有且只有一条直线与平面α平行;④有且只有一条直线与平面α垂直,其中真命题的个数是( ) A .1 B .2 C .3 D .4 5.如图所示,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( ) A .线段 B 1C

空间中的平行与垂直

空间中的平行与垂直(文/理) 热点一空间线面位置关系的判定 空间线面位置关系判断的常用方法 (1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题; (2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断. 例1(1)(·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是() A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 (2)关于空间两条直线a、b和平面α,下列命题正确的是() A.若a∥b,b?α,则a∥α B.若a∥α,b?α,则a∥b C.若a∥α,b∥α,则a∥b D.若a⊥α,b⊥α,则a∥b 答案(1)D(2)D 解析(1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交. (2)线面平行的判定定理中的条件要求a?α,故A错;对于线面平行,这条直线与面内的直线的位置关系可以平行,也可以异面,故B错;平行于同一个平面的两条直线的位置关系:平行、相交、异面都有可能,故C错;垂直于同一个平面的两条直线是平行的,故D正确,故选D. 思维升华解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中. 跟踪演练1设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题: ①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;

人教版数学高一-必修2学案 2.4平行与垂直综合问题

2.4平行与垂直综合问题 自测自评 1.已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则(D) A.n⊥βB.n∥β或n?β C.n⊥αD.n∥α或n?α 解析:在平面β内作直线l垂直于α,β的交线,则由α⊥β得直线l⊥α.又m⊥α,所以l∥m.若m?β,结合图形知,要满足题中限制条件,显然只能n∥α或n?α;同理m?β,仍有n∥α或n?α.综上所述,D正确.2.若三个平面α,β,γ,之间有α∥γ,β⊥γ,则α与β(A) A.垂直B.平行 C.相交D.以上三种可能都有 3.对于任意的直线l与平面α相交,在平面α内不可能有直线m,使m与l(A) A.平行B.相交 C.垂直D.互为异面直线 4.给出以下四个命题,其中真命题有①②④(填序号). ①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

基础达标 1.已知平面α外不共线的三点A,B,C,且AB∥α,则正确的结论是(D) A.平面ABC必平行于α B.平面ABC必与α相交 C.平面ABC必不垂直于α D.存在△ABC的一条中位线平行于α或在α内 2.设直线l?平面α,过平面α外一点A且与l,α都成30°角的直线有且只有(B) A.1条B.2条 C.3条D.4条 解析:如图所示 与α成30° 角的直线一定是以A为顶点的圆锥的母线所在直线,当∠ABC=∠ACB=30°时,直线AC,AB都满足条件,故选B. 3.下列命题中,正确的是(C) A.经过不同的三点有且只有一个平面 B.分别在两个平面内的两条直线一定是异面直线 C.垂直于同一个平面的两条直线是平行直线

(完整版)直线、平面平行与垂直的综合问题

第六节 直线、平面平行与垂直的综合问题 考点一 立体几何中的探索性问题 [典例] (2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧?CD 所在平面垂直,M 是?CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC . (2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. [解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ?平面ABCD , 所以BC ⊥平面CMD ,所以BC ⊥DM . 因为M 为?CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 因为DM ?平面AMD ,所以平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下: 连接AC 交BD 于O . 因为四边形ABCD 为矩形, 所以O 为AC 的中点. 连接OP ,因为P 为AM 的中点, 所以MC ∥OP . 又MC ?平面PBD ,OP ?平面PBD , 所以MC ∥平面PBD . [题组训练] 1.如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°. (1)求三棱锥P -ABC 的体积; (2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PM MC 的值. 解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=3 2 . 由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高, 又P A =1, 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =3 6 .

16-17版 第1部分 专题4 突破点11 空间中的平行与垂直关系

突破点11 空间中的平行与垂直关系 提炼1 异面直线的性质 (1)面内的两条直线或平面内的一条直线与平面外的一条直线. (2)异面直线所成角的范围是? ????0,π2,所以空间中两条直线垂直可能为异面垂直或相交垂直. (3)求异面直线所成角的一般步骤为:①找出(或作出)适合题设的角——用平移法;②求——转化为在三角形中求解;③结论——由②所求得的角或其补角即为所求. 提炼2 平面与平面平行的常用性质 (1)(2)经过平面外一点有且只有一个平面与已知平面平行. (3)如果两个平面分别平行于第三个平面,那么这两个平面互相平行. (4)两个平面平行,则其中一个平面内的任意一条直线平行于另一个平面. 提炼3 证明线面位置关系的方法 (1)平行的性质定理;③面面平行的性质定理;④线面垂直的性质定理. (2)证明线面平行的方法:①寻找线线平行,利用线面平行的判定定理;②寻找面面平行,利用面面平行的性质. (3)证明线面垂直的方法:①线面垂直的定义,需要说明直线与平面内的所有直线都垂直;②线面垂直的判定定理;③面面垂直的性质定理. (4)证明面面垂直的方法:①定义法,即证明两个平面所成的二面角为直二面角;②面面垂直的判定定理,即证明一个平面经过另一个平面的一条垂线.

回访1异面直线的性质 1.(2016·全国乙卷)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为() A. 3 2 B. 2 2 C. 3 3 D. 1 3 A[设平面CB1D1∩平面ABCD=m1. ∵平面α∥平面CB1D1,∴m1∥m. 又平面ABCD∥平面A1B1C1D1, 且平面CB1D1∩平面A1B1C1D1=B1D1, ∴B1D1∥m1.∴B1D1∥m. ∵平面ABB1A1∥平面DCC1D1, 且平面CB1D1∩平面DCC1D1=CD1, 同理可证CD1∥n. 因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形, 故直线B1D1与CD1所成角为60°,其正弦值为 3 2.] 2.(2015·广东高考)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是() A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 D[由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.] 回访2面面平行的性质与线面位置关系的判断 3.(2013·全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l

两直线的平行与垂直的条件

复习引入: 直线名称 已知条件 直线方程 使用范围 示意图 点斜式 k y x P ),,(111 )(11x x k y y -=- 存在k 斜截式 b k , b kx y += 存在k 两点式 ) ,(11y x (),22y x 1 21 121x x x x y y y y --= -- 2121,y y x x ≠≠ 截距式 b a , 1=+b y a x 0,0≠≠ b a 一般式 A 、 B 、 C R ∈ 0=++C By Ax 022≠+B A 1.特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行; (2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直王新敞 2.斜率存在时两直线的平行与垂直. 设直线1l 和2l 的斜率为1k 和2k ,它们的方程分别是: 1l :11b x k y +=; 2l :22b x k y +=. 两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特 征王新敞 ⑴两条直线平行(不重合)的情形. 如图,从位置关系、倾斜角、斜率的定义、正切函数的性质分析,得以下结论: 两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如 果它们的斜率相等,则它们平行,即21//l l ?1k =2k 且21b b ≠ 王新敞 要注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立. 例1 两条直线1l :0742=+-y x , 2l :052=+-y x .求证:1l ∥2l 例2 求过点)4,1(-A 且与直线0532=++y x 平行的直线方程.(两种方法) 注意: ①解法一求直线方程的方法是通法,必须掌握; ②解法二是常常采用的解题技巧。一般地,直线0=++C By Ax 中系数A 、B l 2l 1 α2 α1 x O y

(典型题)高考数学二轮复习 知识点总结 空间中的平行与垂直

空间中的平行与垂直 高考对本节知识的考查主要是以下两种形式:1.以选择、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题真假实行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体实行考查,难度中等. 1.线面平行与垂直的判定定理、性质定理 线面平行的判定定理 ? ??? ? a ∥ b b ?αa ?α?a ∥α 线面平行的性质定理 ? ??? ?a ∥α a ?βα∩β= b ?a ∥b 线面垂直的判定定理 ? ??? ?a ?α,b ?αa ∩b =O l ⊥a ,l ⊥b ? l ⊥α 线面垂直的性质定理 ? ????a ⊥αb ⊥α?a ∥b 2. 面面垂直的判定定理 ? ????a ⊥αa ?β?α⊥β 面面垂直的性质定理 ? ??? ?α⊥β α∩β=c a ?αa ⊥c ?a ⊥β

面面平行的判定定理 ? ????a ?βb ?β a ∩ b =O a ∥α, b ∥α? α∥β 面面平行的性质定理 ? ??? ?α∥β α∩γ=a β∩γ=b ?a ∥b 3. 平行关系及垂直关系的转化示意图 考点一 空间线面位置关系的判断 例1 (1)l 1,l 2,l 3是空间三条不同的直线,则下列命题准确的是 ( ) A .l 1⊥l 2,l 2⊥l 3?l 1∥l 3 B .l 1⊥l 2,l 2∥l 3?l 1⊥l 3 C .l 1∥l 2∥l 3?l 1,l 2,l 3共面 D .l 1,l 2,l 3共点?l 1,l 2,l 3共面 (2)设l ,m 是两条不同的直线,α是一个平面,则下列命题准确的是 ( ) A .若l ⊥m ,m ?α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ?α,则l ∥m D .若l ∥α,m ∥α,则l ∥m 答案 (1)B (2)B 解析 (1)对于A ,直线l 1与l 3可能异面、相交;对于C ,直线l 1、l 2、l 3可能构成三棱柱的三条棱而不共面;对于D ,直线l 1、l 2、l 3相交于同一个点时不一定共面,如正方体一个顶点的三条棱.所以选B. (2)A 中直线l 可能在平面α内;C 与D 中直线l ,m 可能异面;事实上由直线与平面垂直的判定定理可得B 准确. 解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理实行判断,必要时能够利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全移植到立体几何中. (1)(2013·广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中准确的是 ( )

高中数学2.1.3两条直线的平行与垂直(2)教案苏教版必修2

2.1.3 两条直线的平行与垂直(2) 教学目标: 1. 掌握利用斜率判定两条直线垂直的方法,感受用代数方法研究几何问题的思想; 2. 通过分类讨论、数形结合等数学思想的渗透,培养学生严谨、辩证的思维习惯. 教材分析及教材内容的定位: 本节课和上节课研究的内容有类似之处,都是通过方程研究几何性质的. 教学重点: 用斜率判断两直线垂直的方法. 教学难点: 理解直线垂直的解析刻画. 教学方法: 探究合作. 教学过程: 一、问题情境 1?复习回顾:(1)利用直线的斜率关系判断两条直线平行; (2)利用直线的一般式方程判断两条直线的平行. 2 ?本节课研究的问题是:一一两条直线垂直, 两条直线垂直,那么他们的斜率之间有什么关系,体现在方程有何特征? 二、学生活动 探究:两条直线垂直,即倾斜角的差为直角,那么他们的斜率如何? 不妨设直线丨1,丨2(斜率存在)所对应的倾斜角分别为a 1, a 2,对应的斜率分别为k1, k2. 因为两条直线相互垂直,不妨设 a 1 — a 2= 90 .根据倾斜角与斜率的关系,我们知道 当倾斜角不是直角时,斜率存在,从而有k1=tan a 1, k2= tan a 2,于是根据诱导公式有 1 k1 tan 1 tan (90° 2) tan 2

即k i k2=—1 .此时,若两直线平行,则两直线的斜率乘积为一1. 反之,如果两直线的斜率(斜率存在)互为负倒数,即k i k2=—1,根据倾斜角和斜率 的关系以及正切函数的单调性可知倾斜角的差等于直角,从而说明它们互相垂直. 三、建构数学 两直线垂直. 一般地,设直线l i,丨 2 (斜率存在)所对应的斜率分别为k i, k2,则 11 I2 k i k2 1 说明: (1)如果直线丨1,丨2的斜率有一个不存在,那么其中有一条直线(不妨设 为I 1 )与X轴垂直,此时两条直线垂直的等价条件为I 2的斜率为0; (2)在利用以上结论判定两直线的位置关系时,一定要注意前提条件,即 斜率存在,因此在讨论问题过程中一定要注意对斜率是否存在作分类讨论. (3)设直线I 1: Ax + By+ Ci= 0, 12:Ax+ By + C2= 0,那么两条直线垂直的等价条件 为:A1A2 B1 B20 . 四、数学运用 例1 (1 )已知四点A(5, 3), B (10, 6) , C(3, —4) , D(—6 , 11),求证:AB丄 CD 3 2 (2)已知直线I 1的斜率k1= ,直线12经过点A (3a, —2) , B( 0 , a +1),且I』 4 12 ,求实数a的值. 例2 已知三角形的顶点为A (2 , 4), B (1, —2), C (—2 , 3),求BC边上的高AD 所在的直线. 例3在路边安装路灯,路宽23m,灯杆长2. 5m且与灯柱成1200角.路灯采用锥形灯罩,灯罩轴线与灯杆垂直. 当灯柱高h为多少米时,灯罩轴线正好通过道路路面的中线? (精确到0. 01m) 练习: 1. 求过点A(0 , —3),且与直线2x+ y—5= 0垂直的直线的方程. 2. 已知直线I与直线I : 3x+4y —12= 0互相垂直,且与坐标轴围成的三角形面积为6,求直线I的方

2021届高考数学考点与题型全归纳(文科)第八章 第六节 直线、平面平行与垂直的综合问题

第六节直线、平面平行与垂直的综合问题 考点一立体几何中的探索性问题 [典例](2018·全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所 在平面垂直,M是CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC. (2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由. [解](1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC?平面ABCD, 所以BC⊥平面CMD,所以BC⊥DM. 因为M为CD上异于C,D的点,且DC为直径, 所以DM⊥CM. 又BC∩CM=C,所以DM⊥平面BMC. 因为DM?平面AMD,所以平面AMD⊥平面BMC. (2)当P为AM的中点时,MC∥平面PBD. 证明如下: 连接AC交BD于O. 因为四边形ABCD为矩形, 所以O为AC的中点. 连接OP,因为P为AM的中点, 所以MC∥OP. 又MC?平面PBD,OP?平面PBD, 所以MC∥平面PBD. [题组训练] 1.如图,三棱锥P-ABC中,P A⊥平面ABC,P A=1,AB=1,AC =2,∠BAC=60°. (1)求三棱锥P-ABC的体积;

(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PM MC 的值. 解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=3 2 . 由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高, 又P A =1, 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =3 6. (2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下: 如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM . 由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC . 因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ?平面MBN , 所以AC ⊥BM . 在Rt △BAN 中,AN =AB ·cos ∠BAC =1 2, 从而NC =AC -AN =3 2, 由MN ∥P A ,得PM MC =AN NC =1 3 . 2.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG . (1)求证:PC ⊥BC ; (2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由. 解:(1)证明:因为PD ⊥平面ABCD ,BC ?平面ABCD , 所以PD ⊥BC . 因为四边形ABCD 是正方形,所以BC ⊥CD .

相关主题