搜档网
当前位置:搜档网 › 第一章 几何光学基本定律与成像概念习题

第一章 几何光学基本定律与成像概念习题

第一章 几何光学基本定律与成像概念习题
第一章 几何光学基本定律与成像概念习题

一:选择题(可以有多选)

1、下面关于几何光学的几本定律陈述正确的是(BCD )

A、光是沿直线传播方向传播的,“小孔成像”即是运用这一定律的很好例子。

B、不同光源发出的光在空间某点相遇时,彼此不影响各光束独立传播。

C、在反射定律中,反射光线和入射光线位于法线两侧,且反射角与入射角绝对值相等。D:光的全反射中,光线是从光密介质向光疏介质入射。

2、下列关于单个折射面成像,说法错误的是(D )

A、垂轴放大率仅取决于共轴面的位置。

B、折射球面的轴向放大率恒为正。

C、角放大率表示折射球面将光束变宽或是变细的能力。

D、α、γ、β三者之间的关系为γβ=α。

3、一个物体经单个折射球面成像时,其垂轴放大率β>1,且已知n

A、物像位于该折射球面的同侧。

B、角放大率γ>0。

C、像高大于物高。

D、该折射球面能把入射光束变宽。

4.、一个物体经单个反射球面成像时,其垂轴放大率β>0,则(BD )

A、物象位于系统的同侧。

B、物象虚实性质相反。

C、角放大率γ>0。

D、轴向放大率α<0。

二、填空题

1、与平面波对应的光束称为平行光束;与球面波对应的光速称为同心光束;与任意曲面波对应的光束称为像散光束。

2、光学系统成完善像应满足的三个等价条件分别是○1入射波面是球面波时,出射波面也是球面波;。;○2入射光是同心光束时,出射光也是同心光束○3物点及其像点之间任意两条光路的光程相等

3、在子午面内,光线的位置由物方截距,物方孔径角确定。

4、一束平行细光束入射到一半径r=30mm、折射率为1.5的玻璃球上,经左侧球面折射后形成像A’1,则像方截距为30 mm,成像是(填“实像”或“虚像”);经右侧球面再次成像A’2,则像方截距为90 mm,成像是(填“实像”或“虚像”)。

三、简答题

1发生全反射的条件?

1、○1光线从光密介质向光疏介质射入○2入射角大于临界角

2、怎样根据垂轴放大率β确定物体的成像特性?

2、○

1若β>0,即y ’与y 同号,表示成正像;反之,y ’与y 异号,表示成倒像。 ○

2若β>0,即l ’与l 同号,物像虚实相反;反之l ’与l 异号,表示物像虚实相同。 ○

3若| β |>1,则| y ’ |>|y |成放大的像;反之| y ’ |<|y |,成缩小像。 四 计算题

1.一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属薄片。若在玻璃板上盖一圆形的纸片,使得在玻璃板上方任何方向上都看不到该金属薄片,问纸片的最小直径应为多少?

解: 设纸片的最小直径为L ,考虑边缘光线满足

L 全反射条件时,

x n1 2s i n I =2

1n n sin90°=0.666667 1I

n2 2c o s I

=2666667.01-=0.745356 2I 200mm

×=2002tan I =200X 745356.0666667.0=178.8855

L=(2x+1)mm=358.77mm

2.在公路的转弯处设置一个凸球面反射镜,有一人身高1.75m ,在凸球面镜前1.75m 处,此人经过凸球面镜所成像在镜后0.1m 处,求此人经凸球面镜所成的像高y ’和凸球面镜曲率半径r 。

∵ 由题知, 物点在凸球面镜表面发生全反射,则n=-n ’

∴球面像位置的关系为r

l l 211'=+

m l m l 75.1,1.0'=-=

75

.111.012

-+=∴r ?m r 21.0= 又β=

y y '=l n nl ''?y ’=y l l ' 代入数据得y ’= 0.1m

第二章 几何光学知识

第二章几何光学知识 光是一种电磁波,具有波动和微粒两重性。几何光学是撇开光的波动性,仅以光的直线传播性质为基础,研究光在透明介质中的传播问题。 第一节基本概念 一、光的基本性质 (一)发光体和发光点 所有本身能发光的物体,称为发光体或光源。如太阳、电灯。不考虑发光体的大小时,可将其视为发光点或点光源,以下讨论中提到的光源,即常指点光源。 (二)光波和光速 光作为一种电磁波,有一定的波长,故又光波。 人眼可见的光波称为可见光,其波长范围为380~760nm, 在电磁波谱中的位置见图2-1-1。在可见光区域之外的 两端为紫外光区(小于380 nm一端)和红外光区(大于 760 nm一端),人眼不能见。单一波长的光具有特定的 颜色,称为单色光。几种单色光混合后产生的光称为复 色光。阳光即是一种复色光。 不同波长的光波在真空中均以完全相同的速度传播,每秒 为30万千米。光波在不同密度介质中的传播速度不同, 均比在真空中要小。如空气中的光速较小,但近似于真 空中的光速。图2-1-1 可见光在电磁波谱中的位置联(三)光线和光束 几何光学在研究光的传播时,并不把光当作电磁波来研究波动的能量传播问题,而只看作是简单的光线传播,即把“光线”看成是无直径、无体积、有一定方向的几何线条,用来表示光能传播的方向。 有一定关系的一些光线集合起来,称为光束。由一发光点发出的光束,称为散光束。发光点或会聚点在无穷远时,光束中的所有光线互相平行,称为平行光束。这些都属于同心光束。而当光束中的光线既不相交于一点又不互相平行时,称为像散光束。 二、光的基本定律和原理 (一)直线传播定律 1、定律:均匀介质中,光是沿着直线传播的。 2、注意:本定律只在一定条件下成立,如:在不均匀的介质中光线将发生弯曲;光线遇到直径接近光波波长的小孔时将发生衍射现象而偏离直线。 (二)独立传播定律 定律:来自不同方向的光线相遇时互不影响,仍朝各自的方向前进。 注意:本定律只适用于不同光源发出的光。如光线自同一光源发出后分为两束光,传播后相交,可发生干涉现象。

第一章 几何光学基本定律与成像概念习题

一:选择题(可以有多选) 1、下面关于几何光学的几本定律陈述正确的是(BCD ) A、光是沿直线传播方向传播的,“小孔成像”即是运用这一定律的很好例子。 B、不同光源发出的光在空间某点相遇时,彼此不影响各光束独立传播。 C、在反射定律中,反射光线和入射光线位于法线两侧,且反射角与入射角绝对值相等。D:光的全反射中,光线是从光密介质向光疏介质入射。 2、下列关于单个折射面成像,说法错误的是(D ) A、垂轴放大率仅取决于共轴面的位置。 B、折射球面的轴向放大率恒为正。 C、角放大率表示折射球面将光束变宽或是变细的能力。 D、α、γ、β三者之间的关系为γβ=α。 3、一个物体经单个折射球面成像时,其垂轴放大率β>1,且已知n0。 C、像高大于物高。 D、该折射球面能把入射光束变宽。 4.、一个物体经单个反射球面成像时,其垂轴放大率β>0,则(BD ) A、物象位于系统的同侧。 B、物象虚实性质相反。 C、角放大率γ>0。 D、轴向放大率α<0。 二、填空题 1、与平面波对应的光束称为平行光束;与球面波对应的光速称为同心光束;与任意曲面波对应的光束称为像散光束。 2、光学系统成完善像应满足的三个等价条件分别是○1入射波面是球面波时,出射波面也是球面波;。;○2入射光是同心光束时,出射光也是同心光束○3物点及其像点之间任意两条光路的光程相等 3、在子午面内,光线的位置由物方截距,物方孔径角确定。 4、一束平行细光束入射到一半径r=30mm、折射率为1.5的玻璃球上,经左侧球面折射后形成像A’1,则像方截距为30 mm,成像是(填“实像”或“虚像”);经右侧球面再次成像A’2,则像方截距为90 mm,成像是(填“实像”或“虚像”)。 三、简答题 1发生全反射的条件? 1、○1光线从光密介质向光疏介质射入○2入射角大于临界角

第三章 几何光学的基本原理1

第三章 几何光学的基本原理 1 证明反射定律符合费马原理。 证明:设平面Ⅰ为两种介质的分界面,光线从A 点射向界面经反射B 点,在分界面上的入射点为任意的C 点;折射率分别为:n 1、n 2。 (1)过A 、B 两点做界面的垂直平面Ⅱ,两平面相交为直线X 轴,过C 点做X 轴的垂线,交X 轴于C '点,连接ACC '、BCC '得到两个直角三角形,其中:AC 、BC 为直角三角形的斜边,因三角形的斜边大于直角边,根据费马原理,光线由A 点经C 点传播到B 点时,光程应取最小值,所以在分界面上的入射点必为C '点,即证明了入射光线A C '和反射光线B C '共面,并与分界面垂直。 (2)设A 点的坐标为(x 1,y 1),B 点坐标为(x 2,y 2),C 点坐标为(x ,0),入射角为θ,反射角为θ',则光线由A 传播到B 的光程: ))()((2 2222 1211y x x y x x n +-+ +-=? 若使光程取极值,则上式的一阶导数为零,即: 0)()(22 2 2221 2 11=+--- +--=? y x x x x y x x x x dx d 从图中得到:21 2 11)(sin y x x x x +--= θ 22 2 22)(sin y x x x x +--= 'θ 也即:sin θ=sin θ',说明入射角等于反射角,命题得证。 2 根据费马原理可以导出在近轴条件下,从物点这出并会聚到象点所有光线的光程都相等。由此导出薄透镜的物象公式。 解: 3 眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板,平板的厚度d

为30cm ,求PQ 的象P 'Q '与物体之间的距离d 2。 解:方法一 P 'Q '是经过两个平面折射所形成的象 (1)PQ 经玻璃板前表面折射成象: 设PQ 到前表面的距离为s 1,n=1、n '=1.5 由平面折射成象的公式:11s n n s '= ' 得到:112 3s s =' (2)PQ 经玻璃板前表面折射成象: 从图中得到:s 2=s 1+d 、n=1.5、n '=1 根据:22s n n s ' = ' 解出最后形成的象P 'Q '到玻璃板后表面的距离:d s s 3 212+=' 物PQ 到后表面的距离:s=s 1+d 物PQ 与象P 'Q '之间的距离d 2:d 2 = s 2'-s =(3 2 1- )d=10cm 方法二:参考书中例题的步骤,应用折射定律解之。 方法三:直接应用书中例题的结论:d 2 =d (1-1/n )即得。 4 玻璃棱镜的折射角A 为600,对某一波长的光其折射率为1.6,计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角。 解:(1)根据公式:2 sin 2 sin 0A A n += θ 代入数据:A=600,n=1.6 解出最小偏向角:θ0= 46016' (2)因:A i -=102θ 则入射角:53352/)(001'=+=A i θ (3)若能使光线从A 角两侧透过棱镜,则出射角i 1'=900 有:n sini 2'= 1 sin900 = 1 解出:i 2'=38.680 从图中得到:i 2 + i 2'= A 得到:i 2 =21.320

几何光学的基本原理

第三章几何光学 本章重点: 1、光线、光束、实像、虚像等概念; 2、Fermat原理 3、薄透镜的物像公式和任意光线的作图成像法; 4、几何光学的符号法则(新笛卡儿法则); 本章难点: 5、理想光具组基点、基面的物理意义; §3.1 几何光学的原理 几何光学的三个实验定律: 1、光的直线传播定律——在均匀的介质中,光沿直线传播; 2、光的独立传播定律——光在传播过程中与其他光束相遇时,不改变传播方 向,各光束互不受影响,各自独立传播。 3、光的反射定律和折射定律 当光由一介质进入另一介质时,光线在两个介质的分界面上被分为反射光线和折射光线。 反射定律:入射光线、反射光线和法线在同一平面内,这个平面叫做入射面,入射光线和反射光线分居法线两侧,入射角等于反射角 光的折射定律:入射光线、法线和折射光线同在入射面内,入射光线和折射光线分居法线两侧,介质折射率不仅与介质种类有关,而且与光波长有关。 §3.2 费马原理 一、费马原理的描述:光在指定的两点间传播,实际的光程总是一个极值(最大值、最小值或恒定值)。 二、表达式 ,(A,B是二固定点) Fermat原理是光线光学的基本原理,光纤光学中的三个重要定律——直线传播定律,反射定律和折射定律()——都能从Fermat原理导出。 §3.3 光在平面界面上的反射和折射、光学纤维 一、基本概念:单心光束、实像、虚像、实物、虚物等 二、光在平面上的反射 根据反射定律,可推导出平面镜是一个最简单的、不改变光束单心性的、能成完善像的光学系统. 三、单心光束的破坏(折射中,给出推导) 四、全反射 1、临界角

2、全反射的应用 全反射的应用很广,近年来发展很快的光学纤维,就是利用全反射规律而使光线沿着弯曲路程传播的光学元件。 2、应用的举例(棱镜) §3.4 光在球面上的反射和折射 一、基本概念 二、符号法则(新笛卡儿符号法则) 在计算任一条光线的线段长度和角度时,我们对符号作如下规定: 1、光线和主轴交点的位置都从顶点算起,凡在顶点右方者,其间距离的数值为正,凡在顶点左方者,其间距离的数值为负。物点或像点至主抽的距离,在主轴上方为正,在下方为负。 2、光线方向的倾斜角度部从主铀(或球面法线)算起,并取小于π/2的角度。由主轴(或球面法线)转向有关光线时,若沿顺时针方向转,则该角度的数值为正;若沿逆时针方向转动时,则该角度的数值为负。 3、在图中出现的长度和角度只用正值。 三、球面反射对光束单心性的破坏 四、近轴光线条件下球面反射的物像公式 五、近轴光线条件下球面折射的物像公式(高斯公式) 六、高斯物像公式 七、牛顿物像公式(注意各量的物理意义) 八、例题一个折射率为1.6的玻璃哑铃,长20cm,两端的曲率半径为2cm。若在哑铃左端5cm处的轴上有一物点,试求像的位置和性质。 §3.5 薄透镜 一、基本概念: 凸透镜、凹透镜、主轴、主截面、孔径、厚透镜、薄透镜、物方焦平面、像方焦平面等 二、近轴条件下薄透镜的成像公式 如果利用物方焦距和像方焦距

费马原理

费马原理的运用 王瑞林(03010425) (东南大学能源与环境学院,南京 210010) 摘要:本文介绍了几何光学的基本定理——费马原理的定义、传统表述及运用波动光学对其本质的介绍。并且运用费马原理证明了几何光学的三大定律,并求出了最速降线。 关键词:费马原理;折射定律;圆锥曲线光学性质;最速降线;最小作用量原理 The use of Fermat’s principle Wangruilin (The college of environment and energy , Southeast University, Nanjing 210096 ) Abstract: We introduced the Fundamental theorem of geometrical optics- Fermat’s principle. We introduced the definition and presentation of Fermat's principle, analysis its essemce . we also got the three basic laws of geometrical optics, and find the brachistochrone with proof of Fermat's principle. key words: Fermat’s principle;Law of ref raction;Optical properties of coni c;Brachistochrone;Principle of least action 我们之前在初高中就已经学习过几何光学,并了解了其中的一些重要定律,但是都只是一些经验的描述和一些实验的简单验证,本文我们运用几何光学的基础原理——费马原理对已学过的几何定律做一个简单的梳理并简单介绍一下运用费马原理对最速降线问题的求解。 费马原理简介 一、费马定理的表述 关于费马原理的定义,教科书上的表述如下:“过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。”其实表述并不足够准确,因为对于某些路程,不能简单的以光程极值来加以限定,最为准确而精炼的表述要利用到数学上的泛函知识,具体描述为:“过两个定点的光走且仅走光程的一阶变分为零的路径。”其中光程的定义为光通过的介质对光的折射率与光通过的路程的乘积。费马原理的数学表述形式为 其中,δ是变分符号,p1、p2表示空间中两个固定点,n为介质的折射率,s表示路程。我们将路径视为一个函数,而变分则是对泛函求导,其结果类似于我们函数求导,我们可以用函数求导来类似理解变分的求解。 费马定理还有另外一种表述:“过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。”其实就是把光程换成了时间t

第一章几何光学的基本原理试题库

一、 选择题 思考题作业3:选择:光由光疏介质进 )波长变长 (D )频率变大 思考题作业4:选择:光学系统的虚物定入光密介质时,有 (A )光速变大 (B )波长变短 (C 义为 (A )发散的入射同心光束的顶点 (B )会聚的入射同心光束的顶点 (C )发散的出射同心光束的顶点 (D )会聚的出射同心光束的顶点。 二、 作图题: 1.MN 为薄透镜的主轴, AB 和BC 是一对共扼光线.用作图的方法找出透镜的两个主焦点F 、F '的 位置,图示出透镜的性质。 三、 计算题: 1、某玻璃棱镜的折射棱角A 为45o,对某一波长的光,其折射率n=1.6,请计算:(1)此时的最小偏向角;(2)此时的入射角;(3)使光线从A 角两侧透过棱镜的最小入射角。 解:(1)∵2 sin 2 sin α δαm n += , ∴m δ=2arcsin αα-)2sin (n =2arcsin 45)2 45sin 6.1(-?= 4576.372-?=30.5o (2))(21min 1αδ+=i =)455.30(2 1 +=37.75o (3) 1 1sin sin i i n '==22 sin sin i i ' ∴2sin i =n i 2sin '=6 .190sin =6.11,6.11 arcsin 2=i =38.68o=38o41′ 而21 i i -='α=45o-38o41′=6o19′ )sin arcsin(11i n i '==)916sin 6.1arcsin('? ≈10.3o 2、光从水中射入到不与空气的界面,取水的折射率1n =4/3,空气的折射率2n =1,求此时的临界角。 解:c i =arcsin 1 2n n =arcsin 3/41=arcsin 43 ≈49o (光从玻璃棱镜与空气的界面上,玻璃棱镜的折射率为 1n =1.5,空气的折射率2 n =1,则 c i =arcsin 1 2n n =arcsin 13/2=arcsin 2 3≈42o) 3、水面下20cm 处有一点光源,试求出能折射出水面的光束的最大圆半径。 解:由题意可知,当水面下点光源S 射向水面的光线入射角i ≥c i 时,光线不能折射出水面,否则就可以折射出水面。 则折射出水面的光束最大圆半径为AB=AS ×tg c i n 空

几何光学

光的折射 全反射 一、光的折射定律和折射率 1.折射现象(如图所示) 光束从一种介质斜射进入另一种介质时传播方向 2.折射定律 (1)内容:折射光线与入射光线、法线处在 内,折射光线与入射光线 分别位于 ;入射角的正弦与折射角的 (2)表达式: (3)光的折射现象中,光路是 . 例1.两束不同频率的单色光a 、b 从空气平行射入水中,发生了图所示的折射现象(α>β).下列结论中正确的是( ) A .光束b 的频率比光束a 低 B .在水中的传播速度,光束a 比光束b 小 C .水对光束a 的折射率比对光束b 的折射率小 D .若光束从水中射向空气,则光束b 的临界角比光束a 的临界角大 二、全反射和光的色散现象 1.全反射 (1)条件:①光从 射入 . ② 大于等于 . (2)现象:折射光完全消失,只剩下 . (3)临界角C :sinC=________ (4)应用:①全反射棱镜 ②光导纤维 2.光的色散 (1)色散现象 白光通过 会形成由红到紫各色光组成的彩色光谱. (2)规律 由于n 红

第三章__几何光学的基本原理复习课程

第三章__几何光学的 基本原理

第三章几何光学的基本原理 3.眼睛E和物体PQ之间有一块折射率为1.5的玻璃平板(如图所示),平板的厚度d为30cm。求物体PQ的像Q P' '与物体PQ之间的距离2d为多少? 已知:1 = n,5 1. = 'n,cm d30 = 求:? = 2 d 解: 由图可知 1 2i QN Q Q d sin = ' =, 设x QN=,即光线横向的偏移,则 1 2i x d sin =(1) 在入射点A处,有 2 1 i n i n sin sin' = 在出射点B处,有 1 2 i n i n' = 'sin sin,因此可得1 1 i i' = 即出射线与入射线平行,但横向偏移了x。 由图中几何关系可得:()()2 1 2 2 1 i i i d i i AB x- = - =sin cos sin 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 又因为 1i 和2i 很小,所以 12≈i cos , ()2121i i i i -≈-sin 而 21i n ni '= ,所以 1121 i n i n n i '='= 则 ()??? ??'-=-=11211i n i d i i d x ,即 ??? ??'-'=n n di x 11 (2) (2)式代入(1)式得 cm d d n n i i d d 103 1 511511112==??? ??-=??? ??'-'≈ .. 6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,并作光路图。 已知:cm y 5=, cm s 12-=,cm f 10-=' 求:?='s ?='y 作光路图 解:根据 f s s '='+1 11 得601 121101111-=+-=-'='s f s , cm s 60-='∴ 又据 n n s s y y '?'=' ,而 n n -=' 所以得 cm y s s y 25512 60-=?---='-=' 光路图(cm r cm r f 20102 -=∴-== ',Θ )C 为圆心。 7. 一个5cm 高的物体放在球面镜前10cm 处,成1cm 高的虚像。求:(1)此镜的曲率半径;(2)此镜是凸面镜还是凹面镜?

第一章 几何光学基本定律与成像概念

第一章几何光学基本定律与成像概念 1.试由折射定律证明光线的可逆性原理。 2.试对几何光学的每条基本定律提出一个实验来证明它。 3.弯曲的光学纤维可以将光线由一端传至另一端,这是否和光在均匀介质中直线传播 定律相违背? 4.证明光线通过置于空气中的几个平行的玻璃板时,出射光线和入射光线的方向永远 平行。 5.试说明,为什么远处灯火在微波荡漾的湖面形成的倒影拉得更长? 6.弯曲的光学纤维可以将光线由一端传至另一端,这是否和光在均匀介质中直线传播 定律相违背 7.证明光线通过几个平面的玻璃板时,出射光线和入射光线的方向永远平行。 8.太阳的高度恰好使它的光线和水平面成40°角,问镜子需怎样放置,才能使反光镜 的阳光垂直射入井底? 9.水的折射率是1.33,光线从空气射入水中,入射角是30°,问:折射角是多大?如 果光线从正入射连续改变到掠入射时,折射角相应地有多大的改变? 10.光以60°的入射角射到玻璃板上,一部分光被反射,一部分光被折射,若反射光线 和折射光线互成90°,玻璃的折射率是多少? 11.光从水射到某种玻璃时的相对折射率是1.18,从水射到甘油时的相对折射率是1.11, 光线从这种玻璃入射到甘油时的相对折射率是多少? 12.给出水(折射率1.33)和玻璃(折射率1.55)的分界面,求一束光在水中以45°角 入射到分界面上时透射光线的折射角,若现在倒过来光线沿此透射光方向返回从玻璃投射倒分界面上,证明其折射角为45°。 13.有一折射率为1.54的等腰直角棱镜,求入射光线与该棱镜直角边法线成什麽角度时, 光线经斜面反射后其折射光线沿斜边出射。 14.有一个玻璃球,其折射率为1.5163,处于空气中,今有一光线射到球的前表面,若 入射角为60°,求在该表面上此反射光线和折射光线之间的夹角。 15.折射率n1=1.4,n1′=n2=1.6,n2=1的三种介质,被二平行界面分开,试求在第二介 质中发生全反射时,光线在第一分界面上的入射角。 16.一条位于空气中的光学纤维,其芯线和包层的折射率分别为1.62和1.52,试计算该 光学纤维的数值孔径。 17.一个截面为等边三角形的棱镜,用光学玻璃ZF6制成,其折射率nc=1.7473(红光), nD=1.7550(黄光),nh=1.8061(紫光),若D光经第一折射面折射后与截面底边平行,而C光、F光在第一面的入射角与D光相同,求三色光经第二折射面后的折射角各为多少,并用示意图表示出三色光的位置。 18.试利用符号规则查出下列光组及光线的实际位置。(1)r=-30mm,L=-100mm,U=-10°; (2)r=30mm,L=-100mm,U=-10°;(3)r1=100mm,r2=-200mm,d=5mm,L=-200mm,U=-20°;(4)r=-40mm,L′=200MM,U′=-10°;(5)R=-40MM,L=-100mm,U=-10′,L′=-200mm。 19.试用符号规则画出几个图形,以表示公式h=rsinΦ,式中h为光线与球面交点到光轴 的距离(称入射高度),r为折射球面半径,Φ为光线入射点处法线与光轴的夹角。 20.试证明一个垂直于光轴的平面物体,即使用细光束成像,其像仍是一个曲面。 21.当要求允许相对误差为万分之一时,其近轴区的范围为多少? 22.与光轴成U=-3°32′46″的光线,自折射率n=1的介质射到r=100mm、折射率n′=1.6248

几何光学的基本原理

《几何光学》练习题1 一、填空题 1.若平行平板的厚度为d,折射率为n,则其等效空气板的厚度为:。 2.全反射的条件是大于,光从光密介质射向光疏介质产生全反射。 5.某种透明物质对于空气的临界角为45°,该透明物质的折射率等于。6.半径为r的球面,置于折射率为n的介质中,系统的焦距与折射率关,光焦度与折射率关。 7.共轴球面系统主光轴上,物方无限远点的共轭点定义为;象方无限远的共轭点定义为。 9.光学系统在成象过程中,其β=-1.5,则所成的象为的象。(正立、放大、虚像) 10.在符号法则中(光线从左向右入射)规定:主光轴上的点的距离从量起,左负右正;轴外物点的距离上正下负;角度以为始边,顺时针旋转为正,反之为负,且取小于π/2的角度。 13.主平面是理想光具组的一对共轭平面;节点是理想光具组的一对共轭点。 14.在几何光学系统中,唯一能够完善成象的是系统,其成象规律为。 16.曲率半径为R的球面镜的焦距为,若将球面镜浸入折射率为n的液体内,该系统的焦距为。 17.通过物方主点的光线,必通过象方,其横向放大率为。20.实物位于凹球面镜的焦点和曲率中心之间,象的位置在与之间。 二、选择题 1.玻璃中的气泡看上去特别明亮,是由于 A,光的折射;B,光的反射;C,光的全反射;D,光的散射 2.通过一个厚玻璃观察一个发光点,看到发光点的位置 A,移近了;B,移远了;C,不变;D,不能确定 4.物象共轭点相对于透镜的位置有一种规律

A,物、象点必在透镜的同侧;B,物象点必在透镜的异侧; C,物象分别在F,Fˊ的同侧;D,物象点分别在F,Fˊ的异侧 6.棱镜的顶角为A,折射率为n,当A很小时的最小偏向角为 A,A;B,nA;C,(n-1)A;D,(n+1)A 7.在空气中,垂直通过折射率为n,厚度为d的平板玻璃观察物体,看到的象移近了 A,d/n;B,nd;C,(n-1)d; D.(n-1)d/n 10.空气中,平行光从平面入射到半径为3cm、折射率为1.5的玻璃半球,其象方焦点距离球面顶点为 A,2cm;B,4cm;C,6cm;D,8cm 12.放置于焦距为20cm的发散透镜左侧80cm处的物体的象在 A,透镜右侧16cm;B,透镜左侧16cm处;C,透镜右侧26.7cm;D,透镜左侧26.7cm处 15.双凸透镜的两曲率半径均为10cm,折射率为1.5,若将薄透镜置于水中(n=1.33),薄透镜的光心到镜心之间的距离等于 A,0;B,1cm;C,2cm;D,3cm。 17.曲率半径为10cm的凸球面镜,用s表示物距,能产生实象的虚物位置范围为 A,s>10cm;B,05cm;D,0

几何光学光学系统_成像与分析(2).

几何光学 光的折射与反射 O435.12006031858对运动镜面上的光反射行为的研究=Study o n the actio n of light r eflectio n o n the mov ement mirr or[刊,中]/朱孟正(淮北煤炭师范学院物理系.安徽,淮北(235000,赵春然淮北煤炭师范学院学报. 2006,27(1. 22 25 利用四维波矢量的洛伦兹变换,对光在运动镜面上的反射行为作了详细的分析,推导出此情形下入射角与反射角、入射光频率与反射光频率之间的关系。图5参 4(严寒 光学系统、成像与分析 TH7032006031859离轴反射式光学系统设计=Desig n o f reflect ive off ax is sy stem[刊,中]/伍和云(安徽建筑工业学院数理系.安徽,合肥(230022,王培纲光电工程. 2006,33(1. 34 37 提出通过光瞳和视场离轴,实现无中心遮拦的离轴反射式光学系统设计方法。在同轴三反射光学系统基础上,将光瞳和视场适当离轴,实现镜间遮拦的消除。分主镜或次镜为系统孔径光阑两种情况,导出同轴三反射光学系统初始像差公式和初始结构参数计算公式。由三反射系统成像性质,进一步总结无焦光路条件。根据设计理论计算离轴三反射系统初始结构,利用Zemax优化得到无中心遮拦的离轴三反射空间观测望远镜。入瞳320nm,视场( 0.3 ( 0.6 ,焦距1800mm。图7表4参5(于晓光 TH7032006031860反射折射多分辨率全向相机设计=Desig n of multi r eso lut ion omni dir ect ional camera based on catadioptric pr inci ple[刊,中]/李青(西安交通大学人工智能与机器人研究所.陕西,西安(710049,郑南宁光电工程. 2006, 33(2. 115 118 为了满足智能车辆自动驾驶的需要,提出了一种真正单视点、多分辨率的反射折射式系统,作为车载全向相机。该系统由光学反射器件和折射器件组成,由于使用了椭圆锥镜面的光学反射器件,故其是真正单视点的,能够为车辆前方场景提供比侧

费马原理

2011年8月17日,是费马(Pierre de Fermat)诞辰410周年。今天,谷歌推出新涂鸦——费马大定理以纪念这位最专业的业余数学家。 除了费马大定理,相信大家也一定都听说过费马原理。它通常被表述为过空间中两定点的光,实际路径总是光程(或者时间)最短。费马原理是一条十分令人着迷的原理,从它可以推导出光的直线传播定律、反射定律和折射定律,几乎包含了几何光学的全部内容。然而,对于这个原理,很多人都存在着或多或少的误解,这是由于费马原理表述有误造成的。在今天这个有纪念意义的日子里,本文就来一一澄清。 首先说明一点,在费马原理的表述中,光程和光传播所用的时间是等效的,因为这两个量之比就是真空中的光速c。所以本文中后面只说光程而不说时间。 百度百科的不靠谱说法 不妨先看看百度百科给出的费马原理的定义:光波在两点之间传递时,自动选取费时最少的路径。这是一种很常见的错误表述,只要看下面这个平面镜反射的例子就知道了。 从A发出的光线,经过平面镜的反射到达B点,这条光线必然是可以真实存在的。可是这是光程最短的路径吗?显然不是,从A发出直接到达B的光线光程更短。所以使用“最小”一词是绝对错误的,费马原理其实是个局域性的原理,所有诸如最小的词均应当替换为极小。只要光程取极小值,无论是否是最小,它都是真实存在的光线。 用“极值”表述正确吗 那如果费马原理表述成:过两个定点的光总走光程极小的路径,是不是就正确了呢?其实这仍是一种错误的表述。光程取极小值只是一种常见情形,也存在其他情形。

首先举一个光程是定值的例子,如下图的椭圆形反射镜。 从椭圆的一个焦点A出发的光线,经过椭圆形镜子上任意一点的反射,一定会汇聚到另一个焦点B。这是因为椭圆的数学性质保证了这样光线的反射角一定等于入射角。在这个例子当中,任何一条真实光线都不是极小值了,因为不管反射点是椭圆上的哪个点,光程都是定值(是椭圆的定义:到两定点的距离之和为常值的点的轨迹)。 再举一个光程取极大值的例子,如下图: 图中A、B是蓝色椭圆的两个焦点,在椭圆内任取一条黑色曲线为镜面。假设椭圆对称轴上的O点为黑色曲线和蓝色椭圆的切点。根据椭圆的性质,我们可以知道过O点的黑色光线确为真实光线。而在镜面上随意选取O’作为反射点形成的红色光线,则比黑色光线光程更短(只要记得椭圆的定义并注意到黑色曲线在椭圆内部即可知道这一点)。然而红色光线却并不满足反射角等于入射角,也就说它并非真实的光线。因此在这个例子中,光选取的路径实际上取了极大值。 什么是最正确的表述 那如果费马原理表述成:过两个定点的光总走光程为极大值、极小值或者定值的路径,是不是就正确了呢?这是物理专业课本中的表述,但仍然不够准确。仍以上图为例,说黑色光线取了极大值,其实是不准确的。因为只要本该是直线的光线稍微一弯曲,光程就会变得更长,从这个角度来讲,这又是一种极小值了。所以单说它是极大值还是极小值都不够准确。理解这种既极大又极小的函数也很简单,看看双曲抛物面的形状就可以了

工程光学习题参考答案第一章几何光学基本定律

第一章 几何光学基本定律 1. 已知真空中的光速c =38 10?m/s ,求光在水(n=)、冕牌玻璃(n=)、火石玻璃(n=)、加拿大树胶(n=)、金刚石(n=)等介质中的光速。 解: 则当光在水中,n=时,v=m/s, 当光在冕牌玻璃中,n=时,v=m/s, 当光在火石玻璃中,n =时,v=m/s , 当光在加拿大树胶中,n=时,v=m/s , 当光在金刚石中,n=时,v=m/s 。 2. 一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =),下面放一直径为1mm 的金属片。若在玻璃 板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小 1mm I 1=90? n 1 n 2 200mm L I 2 x

2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2(1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0. 5. 一束平行细光束入射到一半径r=30mm 、折射率n=的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处反射光束经前表面折射后,会聚点又在何处说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。

工程光学习题参考答案第一章几何光学基本定律

第一章 几何光学基本定律 1. 已知真空中的光速c =38 10?m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s , 当光在金刚石中,n=2.417时,v=1.24 m/s 。 2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。若在玻 璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 2211sin sin I n I n =

66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。

工程光学-郁道银-第一章几何光学基本概念与成像规律课后习题答案

第一章习题 1 知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

几何光学基本原理证明反射定律符合费马原理证明费马

第三章 几何光学基本原理 1.证明反射定律符合费马原理。 证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。 ?=B A nds 或恒值 max .min ,在介质n 与'n 的界面上,入射光A 遵守反射定律1 1i i '=, 经O 点到达B 点,如果能证明从A 点到B 点的所有光程中AOB 是最小光程,则说明反射定律 符合费马原理。 设C 点为介质分界面上除O 点以外的其他任意一点,连接ACB 并说明光程? ACB>光程 ?AOB 由于?ACB 与?AOB 在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB 与AOB 的大小。 从B 点到分界面的垂线,垂足为o ',并延长O B '至 B ′ ,使B O B O '='',连接 B O ',根 据几何关系知B O OB '=,再结合 1 1i i '=,又可证明∠180='B AO °,说明B AO '三点在一直线上, B AO ' 与A C 和B C '组成ΔB AC ', 其中B C AC B AO ' +?'。 又∵ CB B C AOB OB AO B O AO B AO ='=+='+=', ACB CB AC AOB =+?∴ 即符合反射定律的光程AOB 是从A 点到B 点的所有光程中的极小值,说明反射定律符 合费马原理。 2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。 证明:由QB A ~FBA 得:OF\AQ=BO\BQ=f\s 同理,得OA\BA=f '\s ',BO\BA=f\s

由费马定理:NQA+NQ A '=NQ Q ' 结合以上各式得:(OA+OB)\BA=1得证 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少? 解:.由题意知光线经两次折射后发生的轴向位移为: cm n d p p 10)32 1(30)11(=-=-=',即像与物的距离为cm 10 题3.3图 4.玻璃棱镜的折射棱角A 为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角. 解:由最小偏向角定义得 n=sin 2 A 0+θ/sin 2A ,得θ0=46゜16′ 由几何关系知,此时的入射角为:i= 2 A 0+θ=53゜8′ 当在C 处正好发生全反射时:i 2’ = sin -1 6.11 =38゜41′,i 2=A- i 2’ =21゜19′ ∴i 1= sin -1(1.6sin 21゜19′)= 35゜34′ ∴imin =35゜34′ 5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长 的光可以依次循着图示的路径传播,出射光线为r.求证:如果2sin 1n = θ则12θθ=,且光束 i 与 r 垂直(这就是恒偏向棱镜名字的由来). 解: i nsin sin 11=θ

工程光学习题参考答案第一章几何光学基本定律

第一章几何光学基本定律 1. 已知真空中的光速c =3m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火 石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2. 一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm。 3. 一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻 璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 1mm I=90 n n 200mm L I x

4.光纤芯的折射率为,包层的折射率为,光纤所在介质的折射率为,求光纤的数值 孔径(即,其中为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n0. 5. 一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第 二面。

相关主题