搜档网
当前位置:搜档网 › 系泊系统的设计与建模2016

系泊系统的设计与建模2016

系泊系统的设计与建模2016
系泊系统的设计与建模2016

系泊系统的设计和探究

赛区评阅编号(由赛区组委会填写): 2016年高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 料 我们的报名参赛队号(12位数字全国统一编号): 参赛学校(完整的学校全称,不含院系名): 参赛队员 (打印并签名) :1. 2.

3. 指导教师或指导教师组负责人 (打印并签名): (指导教师签名意味着对参赛队的行为和论文的真实性负责) 日期:年月日 送全国评阅统一编号(赛区组委会填写): 全国评阅随机编号(全国组委会填写): (请勿改动此页内容和格式。此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。注意电子版论文中不得出现此页。)

系泊系统的设计和探究 摘要 本文利用牛顿力学定律,力矩平衡原理、非线性规划、循环遍历法等方法对系泊系统进行了设计与探究。通过对系泊系统各组件和浮标运用牛顿经典力学体系进行分析,得到了各个情况下的钢桶倾斜角度、锚链状态、浮标吃水深度和游动区域。 ?, 。当风 对于第二问,求解当海面风速为36m/s时,浮标的吃水深度和游动区域、钢桶以及钢管的倾斜角度和锚链形态。利用第一问中的力学方程和程序,求得钢桶的倾角为19.5951?和四节钢管的倾斜角度依次为19.756?、19.755?、19.916?、20.076?。浮标的游动区域为以锚在海面上的投影为圆心,半径为18.8828m的圆。由于部分数据与问题二中钢桶的倾斜角度不超过5?,锚链在锚点与海床的夹角不超过16?的要求不符,所以通过调节重物球的质量使钢桶的倾斜角度和锚链在锚点与海床的夹角处在要求的范围之内。借助MATLAB程序中的循环遍历法,可以求得重物球的质量3770kg。

系泊系统的设计

系泊系统的设计 摘要 一、问题重述 不同海域,不同环境,对船的稳定,信息的传输都有影响,近海观测网主要是对船的安全固定,和探测周围海域的信息预警。而近海观测网主要由浮标系统、系泊系统和水声系统组成。观测和固定主要是由钢桶、锚链,钢管的角度决定观测的效果。在此对系泊系统进行设计检验,使倾斜角度最小.

问题 1 假设某传输节点选用二型长度为22.05m 锚链,选用重物球质量为1200kg 。现在将该传输节点放在水深为18m 、海床平坦,海水密度为1.025*10的海域。假设海水平静,分别计算海面风速为12/,24/m s m s 时钢桶和钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。 问题2 在问题1的假设下求海面风速为36/m s 时钢桶和钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。请调节重物球的质量,使钢桶的倾斜角度不超过5度,锚链在锚点与海床夹角不超过16度。 问题3 由于潮汐等因素的影响,布放海域的实测水深介于16~20m m 之间。布放点的海水速度最大可达到1.5/m s ,风速最大可达到36/m s 。请给出考虑风力,水流力和水深情况下系泊系统设计,分析不同情况下钢桶和钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。 二、模型假设 三、符号说明

四、模型的建立与求解 121201 1212sin 0cos 0F F F G F -?=??--?=? 简后1111 s i 23 G L ??- ? 风力()211112cos 0.625F R L h v =-???????

钢管1 12232312 2022323sin sin 0cos cos 0F F F F G F ?-?=???+--?=? 化简后()202221222212222sin sin cos cos sin 0G F L F L F L θθθ-+?-?=

单点系泊系统

第十章单点系泊系统 第一节概述 海上油田的原油输出,目前大多采用铺设海底管道或油轮驳运两种方式,而油轮驳运则需设单点系泊供停靠。油田产量稳定高产时,这两种方法各有利弊;当油田开采寿命可疑时(产量少、不稳定)不宜采用海底管道,因其投资大,难于回收,施工难度大,工期长,在海水过深和环境条件恶劣时,还无法施工,采用单点系泊系统就可解决此难题。同时,无论单点系泊系统以何种类型系住油轮都可自由地绕着单点系泊转动,能使油轮处于海浪流速和风速以及风力综合造成的最小阻力位置。另外,原油运输费用随着油轮吨位的增加而明显下降,促使巨大型油轮日益增多,而人造深水港的费用高,施工周期长。因此,从可靠和经济的观点考虑,采用单点系泊系统实为一种最佳选择。近50年来,为了适应海上油田的开发和深海恶劣环境条件的要求,单点系泊的技术日新月异,得到了很大的发展。目前世界上单点系泊装置的类型增多了,技术越来越先进并纳入规范,美国船级社(ABS)早在1975年就颁布了单点系泊系统建造入级规范。国外研制单点系泊系统比较著名的公司有:SBM公司、IMODCO公司、SOFEC公司、MCDERMOTT公司等。 单点系泊系统从20世纪50年代后期发展到现在,已经成为广泛使用的一种海上系泊油轮的方式。它对海上油田的开发起着极为重要的作用,具有很多优点,而且这种技术本身还在不断地发展之中。归纳起来,它适用于以下几个方面: ①可作为进出口原油的深水港,供大型或超大型油轮系泊和装卸原油,能充分发挥大型油轮经济运输的优越性,而不必花费巨额投资去建设深水港。 ②海上大型油田的开发是十分复杂的,固定生产设备的投资大,建设时间长,在储量尚未充分掌握之前,很难作出切合实际的技术决策,采用单点系泊装置为核心的早期生产系统,可以提早开发油田,为油田永久性开发的技术决策提供依据。 ③单点系泊装置是边际油田、深海油田及离岸遥远油田经济开采的先进技术手段。 ④可在经济上或技术上不宜铺管的海域代替海底输油管道。 ⑤能系泊海上石油加工处理厂,回收和利用石油伴生气,使海洋石油资源得到合理利用。 271

2016数学建模A题系泊系统设计

系泊系统的设计 摘要 对于问题一,建立模型一,已知题目给出的锚链长度与其单位长度的质量,得到悬链共210环。对各节锚链,钢桶,四节钢管受力分析得出静力平衡方程,使用分段外推法,可以得到静力平衡下的迭代方程。其中锚对锚链的拉力大小方向为输入变量,迭代的输出变量为浮标的位置和对钢管的拉力,在给定的风速下,输入和输出满足关系2)2(25.1cos 水v h T -=α,αθcos cos 11T T =,通过多层搜索算法得出最符合的输入输出值,即可得到给定风速下浮标的吃水深度,浮标拉力、锚链与海床夹角。利用MATLAB 软件编程求解模型得到:风力12m/s 时,钢桶与竖直方向上的角度1.9863度,从下往上四节钢管与竖直方向夹角为1.9652度、1.9592度、1.9532度、1.9472度,浮标吃水0.7173m ,以锚为圆心浮标的游动区域16.5125m ,锚链末端切线与海床的夹角3.8268度。风力24m/s 时,锚链形状,钢桶与竖直方向上的夹角3.9835度,从下往上四节钢管与竖直方向夹角为3.9420度、3.9301度、3.9183度、3.9066度,浮标吃水0.7244m ,以锚为圆心浮标的游动区域18.3175m 。锚链末端切线与海床夹角15.9175度。 对于问题二的第一小问,使用模型一求解,当风速36m/s 时,锚链末端切线与海床夹角26.3339度,浮标吃水0.7482m ,浮标游动区域为以锚为圆心半径为18.9578m 的圆形区域,从下往上四节钢管与竖直方向倾斜角度为8.4463度、8.4225度、8.3989度、8.3753度,钢桶与竖直方向倾斜角度为8.5294度。为满足问题二的要求,在模型一的基础上把重物球质量作为变量,建立模型二,将钢桶倾斜角小于5度和锚链前端夹角小于16度当做两个约束条件,通过MATLAB 编程求解得到满足约束条件要求的重物球质量取值范围为3700kg 到5320kg 。 对于问题三,首先取不同水深、水速、风速三种情况,建立模型三,即在模型一的基础上增加水流对系统产生的影响。在三种情况下,找到合适的锚链型号、锚链长度,重物球质量,对吃水深度、游动区域、钢桶的倾斜角三个目标进行优化达到最小。通过MATLAB 编程实现该模型三得到结果:选用Ⅲ型锚链,锚链长度为27.24m ,重物球质量为2580kg 。 关键词:平面静力系分析 多层搜索算法 遗传算法 逐步外推法 多目标优化

系泊系统的设计和探究

系泊系统的设计和探究 This model paper was revised by the Standardization Office on December 10, 2020

赛区评阅编号(由赛区组委会填写): 2016年高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或资料(包括网上资料),必须按照规定的参考文献的表述方式列出,并在正文引用处予以标注。在网上交流和下载他人的论文是严重违规违纪行为。 我们以中国大学生名誉和诚信郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号(从A/B/C/D中选择一项填写): 我们的报名参赛队号(12位数字全国统一编号): 参赛学校(完整的学校全称,不含院系名): 参赛队员 (打印并签名) :1.

2. 3. 指导教师或指导教师组负责人 (打印并签名): (指导教师签名意味着对参赛队的行为和论文的真实性负责) 日期:年月日 (请勿改动此页内容和格式。此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。) 赛区评阅编号(由赛区组委会填写): 2016年高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅记录(可供赛区评阅时使用): 送全国评阅统一编号(赛区组委会填写): 全国评阅随机编号(全国组委会填写):

系泊系统建模.

系泊系统的设计 摘要 本文通过建立数学模型,对系泊系统的传输节点示意图进行受力分析,建立了静力学模型,并通过增加风力、水流力等对系泊系统进行更优化的设计。 对于问题一,在海平面处于静止状态下,对风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标吃水深度和浮标游动区域的计算,首先对锚链运用微元法对其中一节进行分析,再对其他物体进行受力分析和力矩平衡,得到静力学平衡的方程组,使用MATLAB对其求解,可得锚链形状(见图1和图2)其它求解结果:风速12m/s时,钢桶的倾斜角度为1.1023°,从上到下的倾斜角度为1.0746°1.0814°1.0882°1.0953°,吃水深度为0.7045(m),游动区域为14.785(m)。风速24m/s时,钢桶的倾斜角度为4.0641°,从上到下的倾斜角度为3.968°3.9916°4.0155°4.0397°,吃水深度为0.7287(m),游动区域为17.9502(m)。 对于问题二,在风速为36m/s时,钢桶和各节钢管的倾斜角度、锚链形状、和浮标游动区域的计算问题,首先利用问题1中的算法求解出结果,发现在风速为36m/s时,钢桶的倾斜角度超过了5度,锚链在锚点与海床的夹角超过了16度,调节重物球的质量为3000kg,其调节前和调节后36m/s的求解结果,调节前:钢桶的倾斜角度为8.0293°从上到下的倾斜角度为 2.1008°2.1061°2.1114°2.1168°,游动区域为15.5842(m)。调节后:钢桶的倾斜角度为2.1222°从上到下的倾斜角度为7.8575°7.8998°7.9425°7.9856°,游动区域为16.7009(m)。 对于问题三,在考虑风力和水流力的情况下,本文基于风力和水流力为一对阻力的基础上,在布放点水的深度变化下,首先分别对浮标、钢管、钢桶及重物球系统进行受力分析,重新建立静力学模型,再利用软件进行求解出在水深为下,钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域(结果见文中),同时推出更合理的系泊系统的设计。 关键词:系泊系统的设计静力学模型单目标优化力学方程组

单点系泊系统方案

单点系泊系统系泊锚:海底系泊锚可采用吸力锚、大抓力锚、桩锚等形式。 系泊退:采用悬链线的系泊方式,以FPSO为中心呈放射状 布置,由锚链、缆绳、配重块等部件构成。 水下基盘:只设置1套水下基盘,用于海管与柔性立管的 连接。 旋转轴承:与FPSO连接的旋转轴承必须能使FPSO进行360 度的自由旋转。 旋转接头:预留未来周边油田并入增加设备的空间。 光钎滑环、公用滑环。 2、查找并学习相关的单点系泊系统关键技术探讨。 单点系泊系统悬链腿系泊系统(CALM):依靠悬链效应来产生恢复力; 单锚腿系泊系统(SALM):依靠浮筒的净浮力来产生恢复 力; 转塔系泊系统(STP):CALM系统的不同类型; 固定塔式系泊系统(FTM):依靠缆索的弹性来产生恢复 力; 软刚臂系泊系统(SYM):依靠重力势能来产生恢复力; 悬链腿系泊系统(CALM):如下图所示。它使用一个大直径(约10~17m)的圆柱形浮筒作为主体,以4条以上的长垂曲线锚链固定在海底基座上。浮筒上部是一个装有轴承可旋转360度的转台。中心部位的流体旋转头,下面连接着水下软管和海底输油管汇,上面连接着漂浮软管并通向油轮。油轮是用缆绳系泊在浮筒转台的桩柱上。 CALM主要优点是结构简单、便于制造和安装;它的组成部件除旋转头和软管之外,都是常规产品,设计、制造、安装简便、造价低廉。缺点是要求海底地貌平坦,浮筒的漂移、升沉随环境条件的恶劣而增长,这将使水下软管过度挠曲而易于损坏。在持续摇荡期间,工作艇难于靠近,给维修保养工作带来不便。

单锚腿系泊系统(SALM)可以分为带立管和不带立管两种形式,带立管SALM 既适用于浅水区,又适用于深水区,如果用于深水区,则锚链下端需连接一段有输油管的立管,立管上头与锚链铰接,下头铰接在海底基座上。立管可在任意方向摆动。流体旋转头安装在立管顶部。流体旋转头以上的所有部件都可以转动。不带立管SALM有一个细长的圆柱形浮筒,通常直径约为6~7m,高度约为15m。浮筒下面用锚链拉住,锚链的下端固定在海底基座上。由于浮筒具有正的剩余浮力,所以锚链始终保持一定的力。海底基座是以承受浮筒的正浮力和最大系泊载荷为条件的。锚链与浮筒之间、锚链与海底基座之间,都用万向接头相连接;这种结构能使整个浮筒和油轮围绕系泊中心转动,而无需在浮筒上面安装轴承和转台。输油管路不通过浮筒,水下软管与漂浮软管合为一条,直通油轮。下图为不带立管SALM。

数学建模a题系泊系统设计

摘要 本题要求观测近海观测网的组成,建立模型对其中系泊系统进行设计,在不同风速和水流的情况下确定锚链,重物球,钢管及浮标等的状态,从而使通讯设备的工作效果最佳。求解的具体流程如下: 针对问题一,分别对系统中的受力物体在水平方向和竖直方向上的力进行分析,找出锚链对锚无拉力时的临界风速,运用力矩平衡求出钢管与钢桶的倾斜角度。对于锚链,将其等效为悬链线模型,根据风速不同判断锚链的状态,从而求出结果。 ?时能够正常工针对问题二,需要调节重物球的质量,使通讯设备在36m m 作。为了确定重物球的质量,首先将实际风速与临界风速进行比较,判断此时系统中各物体的状态,与题目中已知数据进行比较。在钢桶倾斜角度达到临界角度时,计算锚链与海床的夹角并于题中数据进行比较,计算重物球的质量。在浮标完全没入海面时,计算相应条件下重物球的质量,从而确定满足条件的重物球的质量范围。 针对问题三,要求在不同条件下,求出系泊系统中各物体的状态。以型号I 锚链为例,当水流方向与风速方向相同时,系统条件最差,分析在不同水深条件下的系泊系统设计。由题中已知条件确定系统设计的限制条件,对系统各物体进行受力分析,以使整体结果最小,即可得出最优的系泊系统设计。 # 》 关键词:悬链线多目标非线性规划 @

一、问题重述 近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。水声通讯系统安装在一个长1m、外径30cm 的密封圆柱形钢桶内,设备和钢桶总质量为100kg。钢桶上接第4节钢管,下接电焊锚链。钢桶竖直时,水声通讯设备的工作效果最佳。若钢桶倾斜,则影响设备的工作效果。钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。 系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。 问题1某型传输节点选用II型电焊锚链,选用的重物球的质量为1200kg。现将该型传输节点布放在水深18m、海床平坦、海水密度为×103kg/m3的海域。若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。 | 问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。 问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。布放点的海水速度最大可达到s、风速最大可达到36m/s。请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。 二、模型假设 1.不考虑流体对锚链的作用,忽略锚链本身的伸长,锚链沿长度均匀分布; 2.假设风是二维的,只存在平行于水平面的风速,不存在垂直方向上的分量;

系泊系统的设计数学建模差分法

模型假设 假设所有的材料都是普通钢材,,普通钢材的密度直接按照铁的密度计算,即所有材料密度为7.9×103kg/m3。 问题分析 问题总分析:本题最关键的就是讨论出系泊系统中各个参数之间的关系。我们把系泊系统中的锚链、钢管和钢桶的每一段,都看作是一条理想的杆,再对每一段杆进行受力分析,通过对每根杆分析受力平衡和力矩平衡,得出递推关系,建立差分方程;再利用二分法确定差分方程的初值,从而解出每段杆各个参数的值。 问题一的分析: 先对每段理想的杆进行受力分析,和力矩平衡分析,得到拉力以及夹角的差分递推关系,得 T的大小和方向,就能计算得到整个系泊系统的状态。再知只要知道第一根杆受到的拉力1 分析第一根理想杆即浮标的受力情况,得知它受到的拉力又由浮标吃水深度f决定,最后利用二分法确定f,从而得到整个系泊系统的状态。 问题二的分析: 在问题一的假设上,风速变为36m/s,利用同样的方法求解,求得海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。为使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度,我们从1200逐步增加重物球的重量,观察两个角度的大小变化,得到重物球质量的下限;接着再考虑浮标的吃水深度问题,因浮标不能完全浸入水中,计算得到重物球的质量的上限。 问题三的分析: 要考虑风力、水流力和水深情况下的系泊系统设计,就是要确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。为了确定锚链的型号,先分析在极端情况,即水深20m,海水速度为1.5m/s,风速36m/s的情况下的锚链在锚点与海床的夹角为16度附近需要锚链长度较短的锚链。再以这个最短锚链长度为例,求对应的重物球质量范围,使得锚链在锚点与海床的夹角不超过16度,钢桶的倾斜角度不超过5度,并使得浮标不能完全浸没在水中。最后给出一个特定取值状态下系泊系统的状态。 符号说明

数学建模A题系泊系统设计完整版

数学建模A题系泊系统 设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

系泊系统的设计 摘要 本题要求观测近海观测网的组成,建立模型对其中系泊系统进行设计,在不同风速和水流的情况下确定锚链,重物球,钢管及浮标等的状态,从而使通讯设备的工作效果最佳。求解的具体流程如下: 针对问题一,分别对系统中的受力物体在水平方向和竖直方向上的力进行分析,找出锚链对锚无拉力时的临界风速,运用力矩平衡求出钢管与钢桶的倾斜角度。对于锚链,将其等效为悬链线模型,根据风速不同判断锚链的状态,从而求出结果。 ?时能够正常工作。为针对问题二,需要调节重物球的质量,使通讯设备在36m m 了确定重物球的质量,首先将实际风速与临界风速进行比较,判断此时系统中各物体的状态,与题目中已知数据进行比较。在钢桶倾斜角度达到临界角度时,计算锚链与海床的夹角并于题中数据进行比较,计算重物球的质量。在浮标完全没入海面时,计算相应条件下重物球的质量,从而确定满足条件的重物球的质量范围。 针对问题三,要求在不同条件下,求出系泊系统中各物体的状态。以型号I锚链为例,当水流方向与风速方向相同时,系统条件最差,分析在不同水深条件下的系泊系统设计。由题中已知条件确定系统设计的限制条件,对系统各物体进行受力分析,以使整体结果最小,即可得出最优的系泊系统设计。 关键词:悬链线多目标非线性规划 一、问题重述 近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。钢桶上接第4节钢管,下接电焊锚链。钢桶竖直时,水声通讯设备的工作效果最佳。若钢桶倾斜,则影响设备的工作效果。钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。 系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

单点系泊系统与FPSO

单点系泊系统与FPSO Single Point Mooring System and FPSO 单点系泊储油装置(Single Point Mooring Storage Tanker) 由单点系泊浮筒与储油驳船两大部分组成。单点系泊浮筒用4~8根锚链固定在海底。浮筒上有转盘和旋转密封接头。储油驳船与单点浮筒的转盘用钢丝绳或钢臂连接,可作360旋转,似风标,使之保持在受力最小的方位。原油从海底管线经过单点上的旋转密封接头进入储油驳船;运油轮则从储油驳船上装油外运。 世界上第一个单点系泊浮筒于1959年在瑞典的德提奥港投产,用作深水输油码头。1974年发展了钢臂式单点系泊储油装置,用A字形钢架代替钢丝绳连接,避免了储油驳船与浮筒的碰撞,减少了大量维修工作。1980年在菲律宾海域安装了第一座浮式生产、储存、装卸系统。可在该系统上进行油气处理、储存和外输。1981年11月又发展了一种软钢臂连接,在菲律宾近海油田设计和安装,适合于浅水恶劣海况。单点系泊装置结构简单,成本低,适用水深大,发展较快,已有200多座单点系泊装置投入使用。但在有冰的海域尚无采用这种装置的实例。 单点系泊卸油装置(Single Point Mooring Offloading Tanker) 单点系泊油轮不用靠港,而是在离岸足够水深处,设置一浮单点卸油装置,通过漂浮在海面上的浮筒和铺设在海底与陆地贮藏系统连接的管道,将油卸输至岸。(相对优势:由于没有深水港,原油进入受到了运输条件和成本的极大限制。)而传统的固定码头卸油方式是:油轮进港靠泊,通过管道卸油至岸。

单点系泊系统卸油装置 国内外研制单点系泊系统的著名公司 SBM公司、IMODCO公司、SOFEC公司、MCDERMOTT公司

一种简易单点系泊系统的可行性研究

第34卷第1期 2000年1月 上海交通大学学报 JO U RN AL O F S HAN GHA I JIAO TO N G U N IV E RSIT Y Vol.34No.1 Jan.2000  收稿日期:1999-03-15 作者简介:刘建成(1974~),男,博士. 文章编号:1006-2467(2000)01-0132-05 一种简易单点系泊系统的可行性研究 刘建成1 , 李润培1 , 顾永宁1 , 张剑波 2 (1.上海交通大学船舶与海洋工程学院,上海200030; 2.胜利油田钻井工艺研究院,东营257017)摘 要:针对渤海海域海上油田的开采,提出了一种简易单点系泊系统,并在考虑风、浪、流三种载荷同时作用的情况下,对该系统的可行性从总体上加以论证.利用设计谱理论计算油驳的波浪诱导 纵荡力,利用经验公式计算油驳风力和流力,将以上三种力线性叠加得到系泊力;利用设计波理论,由Mo rison 公式计算平台自身所受波流力,利用经验公式计算风力.在考虑平台同时受到系泊力、波流力、风力的作用下,计算平台的结构应力,最后选用API RP 2A-W SD 规范,对平台构件进行屈服校核和冲剪校核.分析校核表明,该简易系泊系统是可行的,且具有经济有效等特点,适用于边际油田开采. 关键词:海洋平台强度;单点系泊;海上油田 中图分类号:U 674.38+ 1 文献标识码:A Feasibility Study on Simply Equipped Single Point Mooring System LIU J ian -cheng 1, LI Run -pei 1, GU Yong -ning 1, Z H AN G J ian -bo 2 1.Schoo l of Naval Architecture &Ocean Eng.,Shanghai Jiao to ng Univ.,Sha nghai,200030,China; 2.Well -Drilling Technolo gy Inst .o f Sheng li Oil Field ,Do ng ying 257017Abstract :A sim ply equipped single point moo ring system ,in which a n oil storag e tanker is moo red o n the w ell head platfo rm w ith the aid of mo oring ro pe,w as proposed fo r the exploitatio n o f Shengli Offshore Oil Field in Bohai Sea ,and the feasibility study on the system w as introduced .The wav e induced surg e force o n the sto rage tanker w as calculated by using the design spectrum theory .The wind force a nd cur rent fo rce acting o n the tanker were calculated according to the ex perim ental form ulas.The moo ring fo rce w as assumed to be the superpositio n of the abov e three forces.Then,the env iro nmental forces acting o n the m oo ring pla tform w as w o rked out in accorda nce with the desig n w av e method .The calcula tion of the stresses of the pla tform under the actio n of moo ring force,w ave fo rce,wind fo rce and current fo rce w as perfo rmed,and the yield check and punching shear check o f the com po nents w ere com pleted based o n API RP 2A -W SD .The feasibility study show s tha t the system is safe for the no rmal exploitatio n o f Sheng li Offsho re Oil Field ,a nd the system can be econo mically and efficiently used in the ex ploitation o f ma rgin oil fields of shallo w w ater. Key words :offsho re pla tform streng th;sing le point moo ring sy stem;marine oil field 我国渤海采油区域一般属于浅海,在边际油田的开采过程中,存在着许多中小型的采油平台.对于原油的储运,若按照深海大型采油平台的做法设置 大型系泊装置,如软刚臂(yo ke)单点系泊系统,或铺 设管道.从安全和技术的角度讲,这样做能满足作业要求.但这两种方法都过于复杂,设备投资大,采油成本高,甚至使一些小储量的油田失去开采价值,造成自然资源浪费.所以从经济角度讲,需要新的简易系泊系统.

系泊系统的研究设计

Internal Combustion Engine &Parts 0引言 近海系泊系统作为气象监控,海洋探测的主要载体工具,对工程的实际应用有一定的积极作用。为了开发海洋资源,促进经济的发展,满足日益增长的能源需求量,深海油气的开发已成为必然趋势,而系泊系统的设计是深海平台开发的关键问题之一,其设计的目的是保证选择的型号满足工作功能需求,建立相关的代数模型研究在不同情况下的设计方案。 1系泊系统模型 1.1系泊系统平衡模型 忽略作用在锚链上的流动力, 可以将整个锚链简化成悬链线的形式,浮标系统和系泊系统在经过持续海风时浮 标停止运动,系泊系统达到平衡,运用牛顿运动定律和平 行四边形状规则对系统内的各个物体进行受力分析,得到关系表达式为 第一钢管对浮标的拉力为T ,T 与竖直方向多的夹角为θ,浮标所受的浮力为F f ,所受海风荷载为F N ,浮标本身的重力为G ,浮标沉在水中的百分比为α,浮标的直径为d ,沉在水中的高度为h f ,海水的密度为ρ,风速为V ,根据海风荷载近似公式为 求。同时满足轮胎加防滑链极限包络大于 15mm 间隙要求。图3图4Z 向空间 >80mm 图5铆接设计图6铆接设计 ③翼子板下部设计。翼子板下部设计成台阶形。当下部长度>120mm ,需设计成双台阶形(图4),便于两个安装点安装。当翼子板下部刚度不足时,翼子板下部增加下部加强板。翼子板下部设计注意几点:1)翼子板下部加强板材料DC05,料厚为0.7-1.0。2)翼子板下部加强板与翼子板下部安装面打3-5焊点相连。④翼子板后部设计。翼子板后部由于前门总成运动包络影响,翼子板翻边向内小于45度,利于成型。通常安装面设计成台阶形或平 面。翼子板后部安装孔设计圆孔或开口U 形孔,U 形更利于装配。 ⑤翼子板上部设计。 翼子板上部通常安装点采有台阶设计。根据冲压工艺反馈,翻边高度设计为<40mm ,防止出现面品问题。 为满足行人保护要求,通常会从以下几种方式考虑。通常翼子板支架设计成几字形,并在支架两开孔落化(图4)。翼子板上部与边梁高度控制在80mm 以上(图4)。翼子板翻边在满足刚度前提下,尽量开豁口。随着新工艺的发展,翼子板结构,可以采铆接技术,具体设计如图5、6所示。 3制造过程控制 ①翼子板周边件产品要符合设计精度要求。②翼子板过涂装通常有两种方式,一种是在焊装装配 随车身一同电泳,另一种是单件单独电泳。建议采用第一 种,防止总装配出现难调整问题。③总装装配严格按工艺装配相关件。按装配顺序装配完成,再作微调。4结语总之保证翼子板品质,要从设计、制造过程着手。随着 铝合金翼子板、塑料翼子板应用,翼子板设计、制造过程有所变化,但总体设计理念不变。参考文献: [1]袁亮,秦信武,苗布和.汽车前翼子板的布置和结构设计[J].设计研究,2012,04,28. 系泊系统的研究设计 王莎莎;晏明莉 (河南师范大学,新乡453007) 摘要:本文所建立的近海系泊系统模型主要用于研究系泊系统在不同环境下的内在关系,进而给出适应不同情况的设计方案。影 响系泊系统的主要因素分别为锚链的型号,长度和重物球的质量,以及锚链的倾斜角度,浮标的吃水深度和游动区域,通过对系统中各个部分进行受力分析,建立相关的代数模型。该模型通过建立平衡方程组,采用最优控制策略、二分法收敛性和迭代判断,反复迭代计算求解。分别把锚链的型号,长度和重物球的质量作为自变量,把锚链的倾斜角度,浮标的吃水深度和游动区域作为因变量,建立模型进而得出不同环境下系泊系统的设计方案。 关键词:系泊系统设计;最优控制策略;二分法;平衡方程组;迭代计算

数学建模系泊系统的设计

系泊系统的设计 摘 要 近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成,其中系泊系统由钢管、钢桶、重物球及锚链共同组成。此种系泊系统承受风、浪、流的作用及锚链的作用力,运动特性十分复杂。因此,针对海洋环境中水声通讯系统的要求,分析风浪中浮标的动力问题并设计出既安全又经济的系泊系统,对保证水声通讯系统的工作效果来说意义重大。 本文运用了两种方法对锚链进行了受力分析,首先对单一材质的锚链进行分析,从而得出了经典悬链方程,对不同段不同材质的锚链进行分段受力分析,得出了不同段不同材质的悬链方程,该方程的得出极大的方便了计算浮标锚泊系统的初始状态,为动力分析奠定基础;其次利用牛顿法对锚链受力问题进行了数值求解,得到当海面风速为12/m s 加大到24/m s 时,每节钢管的倾斜角度也随之变大,浮标的吃水深度也不断增大,浮标的游动区域增加的更为明显。当风速加大为36/m s 时,钢桶的倾斜角已超过5度,为使钢桶倾斜角小于5度,须将重物球的质量增加至1783kg 。 再考虑风力、水流力、潮汐(波浪)等动力因素时,可以将问题进行简化,即直接考虑在水深18m 的情况下由于波浪的作用(准确的说是2m 波浪的作用),可使整个浮标漂浮于水面上(20m 情形),也可使整个浮标沉于水面下(16m 情形)。最后通过对浮标的受力分析,可得到浮标的动力控制方程,采用数值方法,可以得到在风速为36/m s ,水流速度为1.5/m s 时,倾斜角、吃水深度的数值解。 关键词: 浮标;系统;设计;动力分析

一.问题重述 近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。水声通讯系统安装在一个长1m、外径30cm 的密封圆柱形钢桶内,设备和钢桶总质量为100kg。钢桶上接第4节钢管,下接电焊锚链。钢桶竖直时,水声通讯设备的工作效果最佳。若钢桶倾斜,则影响设备的工作效果。钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。 问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。 问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。 问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m20m之间。布放点的海水速度最大可达到1.5m/s、风速最大可达到36m/s。请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。 二.模型假设与符号说明 1.模型的假设 由于浮标在海洋受海风、气流、海浪等的作用,气象及水文条件多变,在此,我们对整个问题作适当假设,在下文中,当涉及到具体问题时,我们将有针对性地给出必要的补充。 (1)锚链重力远远大于锚链所受到的流体作用力; (2)海床平坦,无凹凸不平情况; (3)浮标始终是垂直于海平面的,无倾斜或跌倒现象; (4)海面风速均匀、恒定,且风向始终平行于海平面; (5)海水流速均匀(流速与水深无关),且方向恒定(海流无垂直分量); (6)锚链在整个过程中是不可弹性形变。

数学建模a题系泊系统设计完整版

数学建模a题系泊系统 设计 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

系泊系统的设计 摘要 本题要求观测近海观测网的组成,建立模型对其中系泊系统进行设计,在不同风速和水流的情况下确定锚链,重物球,钢管及浮标等的状态,从而使通讯设备的工作效果最佳。求解的具体流程如下: 针对问题一,分别对系统中的受力物体在水平方向和竖直方向上的力进行分析,找出锚链对锚无拉力时的临界风速,运用力矩平衡求出钢管与钢桶的倾斜角度。对于锚链,将其等效为悬链线模型,根据风速不同判断锚链的状态,从而求出结果。 ?时能够正常工针对问题二,需要调节重物球的质量,使通讯设备在36m m 作。为了确定重物球的质量,首先将实际风速与临界风速进行比较,判断此时系统中各物体的状态,与题目中已知数据进行比较。在钢桶倾斜角度达到临界角度时,计算锚链与海床的夹角并于题中数据进行比较,计算重物球的质量。在浮标完全没入海面时,计算相应条件下重物球的质量,从而确定满足条件的重物球的质量范围。 针对问题三,要求在不同条件下,求出系泊系统中各物体的状态。以型号I 锚链为例,当水流方向与风速方向相同时,系统条件最差,分析在不同水深条件下的系泊系统设计。由题中已知条件确定系统设计的限制条件,对系统各物体进行受力分析,以使整体结果最小,即可得出最优的系泊系统设计。 关键词:悬链线多目标非线性规划 一、问题重述 近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。钢桶上接第4节钢管,下接电焊锚链。钢桶竖直时,水声通讯设备的工作效果最佳。若钢桶倾斜,则影响设备的工作效果。钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

系泊系统的设计

系泊系统的设计 发表时间:2020-01-18T09:59:04.837Z 来源:《基层建设》2019年第28期作者:武佳雷宇张曼[导读] 摘要:系泊系统不论是在船舶航行,还是在海洋资源的综合利用与开发中,均得到了广泛应用,因而,系泊系统的设计问题十分具有现代意义。 华北理工大学数学建模实验室 063000摘要:系泊系统不论是在船舶航行,还是在海洋资源的综合利用与开发中,均得到了广泛应用,因而,系泊系统的设计问题十分具有现代意义。本文隔离系统各组成部分,逐一进行受力分析和力矩分析,构造相应的刚体力学方程组,并根据海水深度联系各参数最终建立系泊系统状态模型。 关键词:系泊系统状态模型;受力平衡;力矩平衡 0引言 当海面风速一定且海水静止时,系泊系统的状态,即钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域与系泊系统各部分之间的受力平衡和力矩平衡以及海水深度的约束密切相关。因此,可以隔离该系统的各组成部分,逐一进行力学分析,并最终根据海水深度,联系各参数建立系泊系统状态模型。具体数值参考2016年高教社杯全国大学生数学建模竞赛A题。系泊系统可分为浮标、钢管、钢桶和重物球、锚链四个部分,由题中锚链长度和型号计算得锚链共有210个链环,为了方便表述,对系统内部由上到下的构件进行标记:表1 各构件编号 1力学方程与模型的建立 1.1对浮标的力学分析[1] 漂浮在水面上的浮标,受到来自水平方向的风力、海水对它的浮力、其余组件对它作用力以及自身的重力,与夹角为 。已知浮标的高为,质量为,直径为,海水的密度为,设浮标的吃水深度为,根据重力、浮力公式,以及近海风荷载的近似计 算公式,可得。此时,浮标受到速度为的海风作用在海面上达到平衡,受力分解后,其在水平方向和垂直方向的受力均平衡。于是整理可得关于浮标的完整的刚性力学方程组[2]。其中,其在竖直面的投影高度即为浮标的吃水深度。 1.2对钢管的力学分析没入水中的钢管,由于海水静止,因此忽略水流力水平方向的作用。以与浮标相接的第一节钢管为例,其受到浮标对它的反作用力 、其余组件对它的作用力、海水对它的浮力以及自身的重力。为保持力矩平衡,钢管不发生旋转的现象,浮标对它的反作用力应相对于它的中心轴更偏向竖直方向。 此时有相对于竖直方向的夹角与和的夹角相等,即:,根据牛顿第三定律:。此时,钢管在这些力的共同作用下保持平衡。已知每节钢管的长度为 ,直径为,质量为,根据受力平衡、力矩平衡和重力、浮力公式,可得到相应的刚性力学方程组。其中,其在竖直面的投影高度为。 对于余下的三节钢管,依次进行同样的力学分析。得到对应的完整的刚性力学方程组,以及各钢管在竖直面的投影高度为、 、。 1.3对钢桶和重物球的力学分析没入水中的钢桶和重物球,由于海水静止,则忽略水流力水平方向的作用。对于重物球,其受到钢桶对其的作用力、海水对它的浮 力以及自身的重力。对于钢桶,其受到重物球对其的作用力(方向竖直向下)、其余部件对它的作用力(与竖直方向夹角为 )和(与夹角为)、海水对它的浮力以及自身的重力.根据牛顿第三定律有。此时,钢桶在这些力的共同作用下保持平衡。已知钢桶的长度为,重物球的质量,设备和钢桶的总质量为,且外径为,根据受力平衡、力矩平衡(注意判断力矩方向)、牛顿第三定律则和阿基米德定律可得到对应的完整的刚性力学方程组。 此时,其在竖直面的投影高度为。 1.4对锚链的力学分析选取编号为的链环,联系该链环以及其上的其余部件构成一个新的整体,对该整体进行受力平衡的分析,其受到海风给它的风力、余下部分给它的拉力、海水给它的浮力以及自身所受的总重力,与水平方向夹角为。通过对整体的分析,简化了作用力与反作用力不断迭代的过程,更加直观的得到受力平衡时的状态。锚链密度为,每节链环的长度和单位长度的质量,再根据前式得到整体所受的总重力,受到海水的总浮力,整理后,可得到关于这个整体的完整的刚性力学方程组。 此时,各链环与竖直方向的夹角即可描述出锚链的形状。各节链环在竖直面的投影高度分别为: 1.5建立系泊系统状态模型 已知水深为,则有

相关主题