搜档网
当前位置:搜档网 › Geological and isotopic evidence for magmatic-hydrothermal

Geological and isotopic evidence for magmatic-hydrothermal

Geological and isotopic evidence for magmatic-hydrothermal
Geological and isotopic evidence for magmatic-hydrothermal

ARTICLE

Geological and isotopic evidence for magmatic-hydrothermal origin of the Ag –Pb –Zn deposits in the Lengshuikeng District,east-central China

Changming Wang &Da Zhang &Ganguo Wu &

M.Santosh &Jing Zhang &Yigan Xu &Yaoyao Zhang

Received:7August 2012/Accepted:27March 2014/Published online:8April 2014#Springer-Verlag Berlin Heidelberg 2014

Abstract The Lengshuikeng ore district in east-central China has an ore reserve of ~43Mt with an average grade of 204.53g/t Ag and 4.63%Pb+Zn.Based on contrasting geological characteristics,the mineralization in the Lengshuikeng ore district can be divided into porphyry-hosted and stratabound types.The porphyry-hosted minerali-zation is distributed in and around the Lengshuikeng granite porphyry and shows a distinct alteration zoning including minor chloritization and sericitization in the proximal zone;sericitization,silicification,and carbonatization in the periph-eral zone;and sericitization and carbonatization in the distal zone.The stratabound mineralization occurs in volcano-sedimentary rocks at ~100–400m depth without obvious zoning of alterations and ore minerals.Porphyry-hosted and stratabound mineralization are both characterized by early-stage pyrite –chalcopyrite –sphalerite,middle-stage acanthite –native silver –galena –sphalerite,and late-stage pyrite –quartz –calcite.The δ34S values of pyrite,sphalerite,and galena in the ores range from ?3.8to +6.9‰with an average of +2.0‰.The C –O isotope values of siderite,calcite,and dolomite range from ?7.2to ?1.5‰with an average of ?4.4‰(V-PDB)and from +10.9to +19.5‰with an average of +14.8‰

(V-SMOW),respectively.Hydrogen,oxygen,and carbon iso-topes indicate that the hydrothermal fluids were derived main-ly from meteoric water,with addition of minor amounts of magmatic water.Geochronology employing LA –ICP –MS analyses of zircons from a quartz syenite porphyry yielded a weighted mean 206Pb/238U age of 136.3±0.8Ma considered as the emplacement age of the porphyry.Rb –Sr dating of sphalerite from the main ore stage yielded an age of 126.9±7.1Ma,marking the time of mineralization.The Lengshuikeng mineralization classifies as an epithermal Ag –Pb –Zn deposit.

Keywords Stable isotope .Geochemistry .Porphyry .Stratabound .Ag –Pb –Zn .Lengshuikeng

Introduction

The Lengshuikeng ore district,located in the Jiangxi Province of east-central China (Fig.1a ),contains more than 50ore bodies belonging to seven deposits hosted in granite porphyry,pyroclastic,and carbonate rocks.The ore reserves in Lengshuikeng have been estimated at ~43Mt with average grades of 2.11%Pb,2.61%Zn,204.53g/t Ag,0.08g/t Au,and 0.01%Cd.The ores can be grouped into two types:(1)porphyry-hosted (Yinluling,Baojia,and Yinzhushan)and (2)stratabound (Xiabao,Yinkeng,Yinglin,and Xiaoyuan).The porphyry-hosted mineralization is distributed within and around the Lengshuikeng granite porphyry,whereas the stratabound mineralization occurs in volcano-sedimentary rocks at ~100–400m depth.The spatial distribution of the porphyry-hosted and stratabound ore bodies,their mineral constituents,and the zoning of alteration assemblages are markedly different from those of typical porphyry deposits.

Editorial handling:T.Bissig and G.Beaudoin

C.Wang (*):

D.Zhang :G.Wu :M.Santosh :J.Zhang :Y .Xu :Y .Zhang

State Key Laboratory of Geological Processes and Mineral

Resources,China University of Geosciences,No.29,Xueyuan Road,Beijing 100083,People ’s Republic of China e-mail:wcm233@https://www.sodocs.net/doc/5111524502.html,

Y .Xu

No.912Geological Surveying Team,Bureau of Geology and Mineral Exploration and Development,Yingtan 334000,China

Miner Deposita (2014)49:733–749DOI 10.1007/s00126-014-0521-8

Over the past several decades,research in the Lengshuikeng ore district was focused on geological characteristics,mineral-ization,wall rock alteration,fluid inclusions,and geochemistry of the porphyry-hosted deposits (Deng 1991;Meng et al.2007;Wang et al.2010c ).Recently,stratabound Ag –Pb –Zn deposits have been found beneath the porphyry-hosted deposits,occur-ring in volcano-sedimentary rocks of the E ’huling Formation.This paper reports the geologic and isotopic characteristics of the porphyry-hosted and stratabound ores,in combination with those from Chinese literature.The regional and the

Lengshuikeng Ag –Pb –Zn ore district geologies,including the occurrence of ore bodies,and associated hydrothermal alter-ation are described,followed by a discussion of the origin of the Ag –Pb –Zn deposits.

Regional geological setting

The Lengshuikeng ore district is located in northeastern Jiangxi Province,east-central China,close to the Shaoxing

Fig.1a Location map for the Lengshuikeng District.b Sketch map showing the Late Mesozoic volcanic-intrusive complex belt in SE China.c Sketch map showing the regional geology of the Lengshuikeng ore district and Dexing ore field (modified after Jiang et al.2011).Major faults in the study area:Shi –Hang Shiwandashan –Hangzhou as collision-induced suture zone between the Cathaysia and Yangtze blocks,SJ Shaoxing –Jiangshan,ZD Zhenghe –Dapu

Jiangshan(SJ)fault between the Cathaysia and Yangtze blocks(Fig.1b).This fault represents the eastern part of the Shiwandashan–Hangzhou(Shi–Hang)fault zone and is con-sidered to mark the collisional suture zone in SE China(Yao et al.2011).Geophysical and remote sensing data suggest that the SJ fault extends deep into the lower crust and upper mantle (Fig.1c;Wang et al.2010c).The collisional amalgamation of the Cathaysia and Yangtze blocks into the proto“South China”Block(SCB)began in the early Qingbaikou period (~950±50Ma)and was completed by the end of the Jinning Orogeny at ca.850Ma(Shu and Charvet1996;Charvet et al. 1996;Li et al.2008,2010;Zhang and Zheng2013).During the Sinian(ca.850–600Ma),the Yangtze and Cathaysia blocks were rifted.In the Caledonian(600–405Ma),the Yangtze and Cathaysia blocks collided for a second time and reunited within the SCB(Zhou et al.2002;Wang et al.2010a, b).During the Variscan(405–270Ma),extension within the SCB resulted in Paleozoic intracontinental rifts.The Indosinian collision between the South China and North China blocks occurred from the Palaeozoic to Late Triassic(ca.270–208Ma;Wang et al.2013a,2014a). Magmatic activity during208to180Ma is documented by bimodal magmatism in southeastern Hunan Province and the A-type granitic magmatism in southern Jiangxi Province(Zhao et al.1998;Yu et al.2006,2010).From Triassic to Early Jurassic(180–145Ma),most areas of the Wuyi Mountains in the northeastern part of the Cathaysia Block(Fig.1b)were folded and uplifted before undergoing extensional collapse.The region ex-perienced Early Cretaceous granite magmatism(145–100Ma) and the formation of large-scale Late Cretaceous–Paleogene red bed sedimentary basins between100and70Ma(Jahn 1974;Jahn et al.1990;Zhou et al.2006;Shu et al.2009;Wang et al.2014b).

The Precambrian units include greenschist facies metamorphic rocks dated at1,000–800Ma(Fig.1c;Li et al.1996;Shu and Charvet1996;Zhou et al.2002; Shu et al.2009).The Cambrian and Ordovician rocks are mainly sandstone,mudstone,and carbonaceous mudstone. Silurian sedimentary rocks are absent.The Devonian, Carboniferous,and Permian strata comprise shallow marine to littoral facies clastic rocks,limestone,and dolomite.The Lower Triassic series consists of muddy limestone and shale. Middle Triassic strata are absent in most areas of the Wuyi Mountains.

The Wuyi Mountains are largely composed of Late Mesozoic volcanic rocks and associated clastic strata (Fig.1c).Lower Jurassic strata include conglomerate and coarse arkosic sandstone,quartz sandstone,and siltstone with carbonaceous mudstone and coal-bed intercalations.Middle Jurassic strata are composed of terrestrial clastic rocks and bimodal volcanic rocks.Upper Jurassic strata comprise andes-ite and rhyolitic tuffs and tuffaceous siltstone(Liu1985;Ye 1987).Lower Cretaceous strata include rhyolitic welded tuffs with basalt intercalations(Yu et al.2006).Upper Cretaceous siltstone and mudstone are intercalated with gypsum-bearing layers and basalt,the latter with an age of105–98Ma(Yu et al.2001).Paleogene strata include coarse clastic rocks,siltstone,and mudstone with inter-calated gypsum and oil-bearing shale.Neogene silt-stones locally overlie the Paleogene rocks.

Southeast China is characterized by extensive magmatism, which formed a belt of volcanic-intrusive complexes(Fig.1b). Two major tectono-magmatic periods have been recognized in the Wuyi Mountains:the Indosinian and the Yanshanian.The Indosinian magmatic period lasted from240to208Ma(Xie et al.2006).The Yanshanian igneous rocks formed during two main stages of Early Yanshanian(208–145Ma)and Late Yanshanian(145–90Ma)and are characterized by abundant rhyolitic volcanic rocks and highly aluminous granitoids(Jahn et al.1976;Chen1999;Li2000;Deng et al.2010,2011,2014; Zhou et al.2006;Zhao et al.2012).

Geology of the Lengshuikeng ore district

Deposit geology

The stratigraphic sequence in the Lengshuikeng District com-prises the Jurassic Daguding and E’huling Formations.The Daguding Formation is composed of andesite and rhyolitic tuffs and tuffaceous siltstone.The E’huling Formation is composed of tuffs,rhyolite,tuffaceous siltstone,sandstone, and manganese-and iron-rich carbonates,which are the main host of the stratabound ores.

The NE-striking F1fault dipping toward NW(Figs.2and 3a)comprises the northern segment of the Hushi fault.The most prominent structural feature in the Lengshuikeng District is F2reverse fault(Figs.2and3a).The stratabound fracture along the manganese-and iron-rich carbonate strata(Fig.3a) was cemented by later ore sulfide minerals and hydrothermal alteration minerals.

Middle Jurassic and Early Cretaceous magmatic rocks are exposed in the Lengshuikeng District(Fig.2).The Jurassic igneous rocks are mainly granitic including the Yinluling, Yinzhushan,Biaojia,and Yinglin porphyries.The Yinzhushan granite porphyry has been dated as162–159Ma (Meng et al.2007;Zuo et al.2010).The Early Cretaceous rocks include quartz syenite porphyry,rhyolite porphyry, alkali-feldspar granite porphyry,and mafic dykes(Fig.2). The quartz syenite porphyries crop out in the southeastern and northwestern parts of the Lengshikeng District(Fig.2),

with widely dispersed chloritization,sericitization,silicifica-tion,and carbonatization,with associated pyrite.Wang et al.(2010c )and Meng et al.(2007)reported that rhyolite porphyry and alkali-feldspar granite porphyry cut all the granite por-phyry and pyroclastic carbonate ore-hosted rocks (Fig.3)as well as the quartz syenite porphyry.

The least hydrothermally altered granite porphyries contain phenocrysts (15–35%)of quartz,plagioclase,K-feldspar,and biotite in a groundmass (65–85%)of subhedral K-feldspar,quartz,plagioclase,and minor biotite.Accessory minerals (~1%)are mainly magnetite,zircon,and apatite.Most quartz crystals are xenomorphic and exhibit undulose extinction.The quartz syenite porphyries contain phenocrysts (33–55%)of K-feldspar (~20%),biotite (~10%),and plagioclase (~8%)in a groundmass (45–67%)of subhedral K-feldspar,biotite,and quartz.K-feldspar phenocrysts are euhedral to subhedral,have a grain size of 2–5mm,and are locally replaced by sericite.Plagioclase phenocrysts are euhedral to subhedral,3–6mm in size,with evidence of weak silicification and sericitization.Biotite phenocrysts are 0.5–1.0mm in size and show alteration to chlorite and carbonate.

Ore bodies and wall rock alteration

Among the various ore deposits,the Baojia porphyry-hosted deposit is the most important,accounting for 52%of the total ore reserve in the Lengshuikeng District (Fig.2).

The porphyry-hosted ore bodies (Fig.3a )are associated with NNE-striking F 2reverse faults or comprise of fracture fillings in veins and breccias.Associated with the porphyry-hosted ore bodies is a distinct zoning of alteration and ore minerals,both vertically and laterally (Fig.3b,c ).An inner (or proximal)zone in the granite porphyry is characterized by enrichments in lead,zinc (with grade Pb+Zn >5%)with minor disseminated chalcopyrite and pyrite,and with minor chlorite and sericite alteration.The intermediate zone surrounds the inner zone near the contact between the granite porphyry and country rocks.This intermediate zone exhibits strong sericitization,carbonatization,and silicification,and in some cases,high-grade native silver mineralization (Ag >200g/t),with minor galena –sphalerite vein mineralization (Fig.4a ).The outer peripheral (or distal)zone is hosted by volcano-sedimentary country rocks to the granite porphyry and is de-fined by weakly developed silver,galena,sphalerite veins (Ag <100g/t;Pb+Zn <2%),and vein sericite and carbonate.Stratabound mineralization is hosted by manganese –iron carbonate layers of the E ’huling Formation (~5.0–33.1-m thickness)between tuffaceous sandstone and rhyolitic crystal tuff (Jiangxi Bureau of Geology and Mineral Exploration and Development (JBGMED)1982;Meng et al.2007).These rocks are characterized by high-grade native silver minerali-zation (Ag >200g/t),lead,zinc (with grade Pb+Zn >5%)as veins and breccias,with minor vein chlorite,sericite,and carbonate (Fig.4b,c ).Ore mineralogy and paragenesis

The mineralization in stratabound and porphyry-hosted ores can be divided into three stages (Fig.5):stage 1,pyrite –chalcopyrite –sphalerite;stage 2,silver minerals –galena –sphalerite;and stage 3,pyrite –quartz –calcite.The mineral assemblage of stage 1is dominantly pyrite and Fe-rich sphal-erite,with small amounts of chalcopyrite,cubanite,galena,arsenopyrite,pyrrhotite,and minor quartz (Fig.6a –c ).Stage 1mineralization was accompanied by chloritization and sericitization,replacing K-feldspar and plagioclase crystals in rhyolitic crystal tuff and granite porphyry.Siderite is intergrown with sphalerite but occurs mostly as overgrowths on sphalerite or as monomineralic cement in breccias and thin veinlets.Stage 2was the principal stage of silver –lead –zinc mineralization.This stage is characterized by sericitization and carbonatization,and minor chloritization.The silver –lead –zinc minerals of stage 2fill the manganese –

iron

Fig.2Geological map of the Lengshuikeng Ag –Pb –Zn ore district (after JBGMED 1982).Sections a and b are shown in Fig.3a –c

carbonate stratabound fractures.The dominant silver minerals are acanthite (Ag 2S)and native silver,which occur in fissures within manganese –iron carbonate or in the intergranular space between manganese –iron carbonate and early sulfides.In ad-dition,fine-grained canfieldite (Ag 8SnS 6),proustite (Ag 3AsS 3),aerosite (Ag 3SbS 3),Ag-bearing tetrahedrite (Cu 12Sb 4S 13),and kustelite (Ag,Au)occur in the intergranular pores of manganese –iron carbonate or as inclusions in galena,sphalerite,and other sulfides.The galena is euhedral and coarse-grained (Fig.6e ).V eins,veinlets,or disseminated silver minerals –gale-na –sphalerite are disseminated in the intergranular pores of manganese –iron carbonate (Fig.6f –h ).Stage 1pyrite is cut by galena and sphalerite vein (Fig.6b ),sphalerite surrounded by galena (Fig.4d ),and sphalerite cut by ankerite –galena vein.

In

Fig.3Geological features along sections a and b of the Baojiao deposit in the Lengshuikeng ore district (after JBGMED 1982):a relationship of ore bodies,b alteration zoning,and c mineralized zone

stage 3,ore minerals are dominated by pyrite,with lesser galena,pyrrhotite,and arsenopyrite.Calcite,quartz,and quartz –pyrite are characterized by open-space filling textures such as comb,veins,and veinlets and cut the stage 2galena or sphalerite veins (Figs.4e,f and 6d ).

Sampling and analytical procedure for stable and radiogenic isotopes

Samples were collected from ore materials at the ?80,?120,?152,and ?160m levels of underground workings,

outcrops

Fig.4Macroscopic features of samples selected for ore mineralogy and paragenesis studies.a Porphyry-hosted ore with vein galena and with chloritization and sericitization.b Brecciated stratabound-type ore.c Stratabound-type ore with vein sphalerite and galena and with chloritization,sericitization,and carbonation (Lu et al.2012).d Sphalerite phase (stage 1)surrounded by galena (stage 2)(Lu et al.2012).e Pyrite (stage 1)intersected by quartz vein (stage 3).g Disseminated ore intersected by pyrite vein (stage 3).Sp sphalerite,Gn galena,Py pyrite,Chl chloritization,Ser sericitization,Cbn carbonation,and Qz quartz

(Fig.2)at ~160m.s.l.elevations,and two drill holes in the Lengshuikeng ore district.Pure mineral concentrates from the porphyry-hosted and stratabound ores and wallrocks were prepared using a combination of heavy liquid and magnetic-and hand-picking techniques,and these were then checked by X-ray diffraction to ensure mineral purity.

Sulfur isotope analyses of sphalerite,galena,and pyrite were carried out at the Resource and Environment Analysis Centre of the Geochemistry Institute,Chinese Academy of Sciences.Pyrite,galena,and sphalerite were combusted with CuO at 1,000°C,and the sulfur isotopic compositions was determined on a MAT-253mass spectrometer.The sulfur isotopic compositions were reported relative to the Canyon Diablo Triolite (VCDT)standard.Routine analytical precision for standards material was ±0.2‰.

Rhodochrosite,siderite,calcite,and ankerite were handpicked under a stereomicroscope and washed with dis-tilled water.Carbon and oxygen isotopic measurements were made in the Environmental Isotope Geochemistry Laboratory of the Institute of Geology and Geophysics,Chinese Academy of Science.About 150μg was reacted with phosphoric acid at 72°C for 6h using a GasBench II (Thermo-Finnigan).The

CO 2produced was analyzed for carbon and oxygen isotope ratios using a MAT-253isotope ratio mass spectrometer.The carbon and oxygen isotope measurements have a precision better than 0.1‰.Accuracy and precision were routinely checked by running the carbonate standard NBS-19after every six measurements of the samples.Carbon isotope ratios are reported relative to Peedee belemnite (V-PDB),and oxy-gen isotope ratios are reported relative to standard mean ocean water (V-SMOW).

Rb –Sr analyses were performed at the Laboratory for Radiogenic Isotope Geochemistry (LRIG),Institute of Geology and Geophysics,Chinese Academy of Sciences (Li et al.2006).Sphalerite grains in Teflon?vessels,washed ultrasonically in analysis-grade alcohol and millipore water,were dissolved using 0.3ml 3N HNO 3and 0.1ml HF at 120°C.Rb and Sr were separated using ion exchange col-umns.Rb and Sr concentrations were measured by isotope dilution,and a mixed 87Rb/84Sr spike solution was used.Isotopic ratios of Rb and Sr were measured on an IsoProbe-T mass spectrometer at the LRIG.Correction of mass frac-tionation for Sr isotopic ratios was based on an 88Sr/86Sr value of 8.37521.Repeated measurements of NBS987Sr standard solution gave an average value of 87Sr/86Sr ratio of 0.710250±31(2σ).

One quartz syenite porphyry sample in the Lengshuikeng District (Fig.2)was selected for U –Pb zircon dating by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA –(MC)–ICP –MS)at the Tianjin Institute of Geology and Mineral Resources,Tianjin,China (Li et al.2009).The zircon was ablated with a NUP193-FX ArF Excimer laser using a spot diameter of 35μm,with constant 13–14J/cm 2energy density and a frequency of 8–10Hz.The ablated material was carried in He into the plasma source of a GVI.All measurements were made in static mode,using Faraday cups for 238U,232Th,208Pb,206Pb,207Pb,and an ion-counting channel for 204Pb.A common Pb correction is achieved by using the measured 204Pb and assuming an initial Pb composition from Stacey and Kramers (1975).

Analytical results Sulfur isotope data

The δ34S values determined from 20sulfide samples collected in this study and δ34S data from previous works in the same area (Meng et al.2007;Xu et al.2001;No 912Geological Surveying Team (NGST)1997)are listed in Table 1and plotted in Fig.7.The δ34S values of sulfides in ores range from ?3.8to 6.9‰with an average of 2.0‰.However,the majority of sulfide minerals have δ34S values between ?1

and

Fig.5Mineral paragenesis of the porphyry-hosted and stratabound ores in the Lengshuikeng ore district showing mineral assemblages

4‰.The ranges of δ34S values of sulfides in the porphyry-hosted and stratabound ores from ?3.8to 6.9‰(average 2.3‰)and ?2.4to 4.9‰(average 1.7‰),respectively.The δ34S values of pyrite in the porphyry-hosted ores in pyrite –chalcopyrite –sphalerite (stage 1)range from 2.2to 4.9‰(average 3.9‰).However,the δ34S values of pyrite,sphaler-ite,and galena in the porphyry-hosted ores in silver minerals –

galena –sphalerite (stage 2)range from ?0.4to 3.1‰(average 2.0‰),0.9to 4.3‰(average 2.8‰),and ?2.4to 2.8‰(average ?0.4‰),respectively.The δ34S values of pyrite,sphalerite,and galena in the stratabound ores in pyrite –chal-copyrite –sphalerite (stage 1)range from 2.3to 4.0‰(average 3.3‰),3.5to 6.9‰(average 5.0‰),and 3.2‰,respectively.However,the δ34S values of pyrite,sphalerite,and galena

in

Fig.6Photomicrographs

showing the salient mineralogical and textural aspects.a Pyrite disseminated in porphyry-hosted ore and replacing K-feldspar crystals.b Granite porphyry fragments cemented by sulfide minerals with brecciated vein structure and pyrite breccias intersected by galena and sphalerite vein (Su 2013).c Chalcopyrite,galena,and

sphalerite in rhyolitic crystal tuff,with chloritization and

sericitization.d Galena with “crumpled ”texture and galena and sphalerite intersected by quartz vein.e Dolomite replaced by sphalerite and sphalerite surrounded by galena.f

Aggregate of acanthite in the intergranular pores of ferromanganese carbonate (Lu et al.2012).g Subhedral native silver occurring in the intergranular pores of ferromanganese carbonate

(Lu et al.2012).h Native silver vein in ferromanganese carbonate (Lu et al.2012).Aca acanthite,Cpy chalcopyrite,Dol dolomite,Fer ferromanganese carbonate,Gn galena,Ksp K-feldspar,Py pyrite,Qz quartz,Slv native silver,and Sp sphalerite

the stratabound ores in silver minerals–galena–sphalerite (stage2)range from2.3to2.8‰(average2.5‰),0.9to 3.8‰(average2.2‰),and?3.8to2.4‰(average0.1‰), respectively.

Carbon and oxygen isotope data

The carbon and oxygen isotope values of carbonate minerals were determined for nine hydrothermal siderite samples col-lected from the stratabound ores and crystal tuffs with weak alteration,two calcite vein samples,five ankerite vein sam-ples,and eight manganese–iron carbonate samples(rhodo-chrosite and siderite)from the volcano-sedimentary strata. Carbon and oxygen isotopic compositions are listed in Table2and plotted in Fig.8.

Theδ13C PDB values in rhodochrosite and siderite samples from the volcano-sedimentary strata vary from?7.0to?2.4‰(Table2).Theδ13C PDB values of hydrothermal carbonates in siderite,calcite,and ankerite samples vary from?7.2to ?2.2‰,from?3.3to?1.5‰,and from?3.9to?2.0‰,

Table1Sulfur isotopic compositions of sulfide minerals from the Lengshuikeng Ag–Pb–Zn ore district

Sample no.Mineral Stageδ34S(‰)Sample no.Mineral Stageδ34S(‰)Sample no.Mineral Stageδ34S(‰)

Stratabound ores Stratabound ores Porphyry-hosted ores

ZK504Py1 3.7PD152-4Gn2 1.1ZK10412-1b Py2 1.9

Zk13Py1 4.0ZK136-1Gn2?1.4L14c Py2 2.0

ZK410-2Py1 3.0LSK-74a Gn2 1.8L15c Py2 1.7

No12Py1 2.3N4-8-102b Gn20.1L16c Py2 2.4

ZK515Py1 3.2S4-0-28b Gn20.2L26c Py2 1.5 LSK-9a Py1 3.5LSK-101a Gn2 2.0126-2-1a Py2?0.4 LSK-9-1a Py1 3.6LSK-102a Gn2 2.4130N-4a Sp2 4.3 LSK-41a Py1 2.7So-8-11b Gn2?1.7130S-1a Sp2 2.9 LSK-42a Py1 3.6N4-8-77b Gn2?0.1L17c Sp2 3.2

ZK136-1Sp1 4.3N4-8-13b Gn2 1.1L18c Sp2 2.9

PD160-6Sp1 5.8N4-8-96b Gn2?0.9L19c Sp2 2.6

PD80-10Sp1 5.1N8-4-20b Gn20.2L20c Sp2 1.9

Zk197Sp1 3.5So-12-23b Gn2?3.8LSK-77a Sp2 4.6

No7Sp1 5.2N4-8-102b Py2 2.7LSK-78a Sp2 3.6

PD152-4Sp1 4.6N8-8-26b Py2 2.3L27c Sp2 1.5

ZK515Sp1 6.9So-8-11b Py2 2.3L28c Sp20.9 LSK-101a Sp1 4.6Porphyry-hosted ores130N-4a Gn2 1.2

PD80-13Sp1 5.0L1c Py1 4.9130S-1a Gn20.1 LSK-74a Sp1 4.8L2c Py1 4.9LSK-77a Gn2 1.6

ZK515Gn1 3.2L3c Py1 4.1L21c Gn2 2.8

N4-8-77b Py1 3.0L4c Py1 4.1L22c Gn2?0.3

N8-0-150b Py1 4.0L5c Py1 3.6L23c Gn2?0.9

ZK136-1Py2 2.8L6c Py1 3.6L24c Gn2?1.7

So-8-11b Sp2 2.3L7c Py1 2.2L25c Gn2?2.3

N4-8-77b Sp2 2.8L8c Py2 3.1L29c Gn2?0.1

N4-8-102b Sp2 1.0L9c Py2 3.0L30c Gn2?0.2 LSK-102a Sp2 3.8L10c Py2 2.6L31c Gn2?0.4

So-12-23b Sp20.9L11c Py2 2.5L32c Gn2?0.9

N4-8-77b Gn2?0.8L12c Py2 2.3L33c Gn2?1.1

Zk29Gn2 1.6L13c Py2 2.3L34c Gn2?1.2

Zk311Gn2?0.1ZK10010-718b Py2 2.3L35c Gn2?2.4

Zk198-1Gn20.2ZK10010-719b Py2 1.4

Sp sphalerite,Gn galena,Py pyrite

a Meng et al.(2007)

b Xu et al.(2001)

c NGST(1997)

isotopic composition of sulfide

minerals in the Lengshuikeng ore

district.a All sulfide minerals.b

Sulfide minerals in porphyry-

hosted ore.c Sulfide minerals in

stratabound ore

Table2Carbon and oxygen isotopic compositions of carbonate minerals from the Lengshuikeng Ag–Pb–Zn ore district.Theδ18O SMOW values were calculated fromδ18O PDB values using the formula:δ18O SMOW=1.03091×δ18O+30.91(González and Lohmann1985)

Sampling location Sample no.Lithology Mineralδ13C PDBδ18O SMOW ~152m elev.PD152-3Manganese–iron carbonate Rhodochrosite?3.311.6

~160m elev.160-4Manganese–iron carbonate Rhodochrosite?2.418.0

~120m elev.PD120-9Manganese–iron carbonate Siderite?3.914.6

~152m elev.PD152-11Manganese–iron carbonate Siderite?5.313.0 13703drill hole Zk315Manganese–iron carbonate Siderite?2.716.8 15150drill hole Zk18Manganese–iron carbonate Siderite?5.914.9

~152m elev.PD152-10Manganese–iron carbonate Siderite?5.513.4 13704drill hole Zk198-1Manganese–iron carbonate Siderite?7.019.5

~160m elev.160-3Crystal tuff Hydrothermal siderite?2.217.9 13213drill hole ZK513-1Crystal tuff Hydrothermal siderite?3.917.5 15150drill hole Zk32Crystal tuff Hydrothermal siderite?4.213.5

~120m elev.PD120-5Crystal tuff Hydrothermal siderite?5.917.5

~160m elev.160-6Stratabound ore Hydrothermal siderite?3.816.8

~120m elev.No5Stratabound ore Hydrothermal siderite?5.413.6

~120m elev.PD120-6Stratabound ore Hydrothermal siderite?5.913.5

~152m elev.PD152-4Stratabound ore Hydrothermal siderite?3.613.7 13213drill hole ZK509Stratabound ore Hydrothermal siderite?7.212.8 15150drill hole Zk33Ankerite vein Ankerite?3.313.1 15150drill hole Zk34Ankerite vein Ankerite?2.013.5 15151drill hole ZK136Ankerite vein Ankerite?3.313.9 15151drill hole Zk138-2Ankerite vein Ankerite?3.911.0 13703drill hole Zk309Ankerite vein Ankerite?3.012.4 15151drill hole ZK138-3Calcite vein Calcite?1.510.9 13703drill hole Zk313Calcite vein Calcite?3.311.9 Surface a83Carboniferous Limestone0.619.6

a NGST(1997)

respectively (Table 2).The δ18O SMOW values in rhodochrosite and siderite samples from the volcano-sedimentary strata vary from 11.6to 19.5‰and from 10.9to 11.9‰,respectively (Table 2).The δ18O SMOW values of hydrothermal carbonates in siderite,calcite,and ankerite samples vary from 12.9to 17.9‰,from 10.9to 11.9‰,and from 11.0to 13.9‰.One Carboniferous limestone sample is isotopically heavy (19.6‰;NGST 1997).

Rubidium and strontium isotope data

The Rb –Sr analytical data of sphalerite are given in Table 3.The sphalerite was separated from the manganese –iron car-bonate ores in the silver minerals –galena –sphalerite stage.Data regression for isochron ages and weighted mean values were performed using the ISOPLOT software (Ludwig 2001),with 2%error for 87Rb/86Sr ratios and 0.05%error for 87

Sr/86Sr at the 95%confidence level.The analytical data for sphalerite yielded an age of 126.9±7.1Ma (Fig.9)with an initial 87Rb/86Sr ratio of 0.71490(mean square weighted deviation (MSWD)=0.94).

Zircon U –Pb geochronology

Measured 206Pb/238U ages from individual zircons are shown in Fig.10,and the analytical results of LA –ICP –MS U –Pb dating are listed in Table 4.For the quartz syenite porphyry (sample T10),analyses from 20spots cluster close to the concordia,yielding a weighted mean 206Pb/238U age of 136.31±0.81Ma (2σ,MSWD=1.3;Fig.10).

Discussion

Ages of magmatism and mineralization

The results presented in this study together with those from previous investigations suggest multistage magmatism in the Lengshuikeng and adjacent regions.The magmatic activity took place principally during three periods,in the Jurassic,earlier Early Cretaceous,and later Early Cretaceous.

The Jurassic magmatism in the Lengshuikeng District is represented by the emplacement age of the granite

porphyry,

Fig.8Plots of calculated δ18O SMOW versus δ13C PDB from various samples in the Lengshuikeng ore district.Carbonate fields are from previous studies.The data are from four different materials including marine carbonate (Baker and Fallick 1989;Hoefs 1997),continental carbonate (Hoefs 1997),sedimentary organic matter carbon (Hodson 1977;Hoefs 1997),and magma-mantle carbonate (Taylor et al.1967;Valley 1986;Ray et al.1999).This plot offers information about various processes of CO 2and carbonate ions including meteoric water influence,

sea water penetration,sediment contamination,and high temperature influence,low temperature alteration (Deines 1989;Demrny and Harangi 1996;Demeny et al.1998;Hoernle et al.2002),decarboxylation and oxidation (Hofmann and Bernasconi 1998),decarbonate and carbon-ate dissolution (Lorrain et al.2003),crystallization differentiation with no significantly influence on the oxygen,and carbon isotopic composition (Santos and Clayton 1995;Bindeman 2008)

Table 3Rb –Sr isotopic

compositions of sphalerite in the Lengshuikeng Ag –Pb –Zn ore district

Sample no.Mineral Rb (μg/g)Sr (μg/g)87

Rb/86Sr

87

Sr/86Sr(±2σ)

I sr PD152-7Sphalerite 1.390 4.0800.98910.716557±340.71435ZK205Sphalerite 0.0960.9720.28660.715641±380.71500ZK513-1Sphalerite 2.060 1.820 3.27260.720846±220.71354No4

Sphalerite

0.960

3.960

0.70190.716056±18

0.71449

from the whole-rock Rb –Sr age of 159Ma (Meng et al.2007),LA –ICP –MS U –Pb zircon age of 154.3±3.0Ma to 163.6±2.1(Qiu et al.2013)and 155.1±0.97Ma (Wang et al.2013b ),and SHRIMP zircon U –Pb age of 162.0±2Ma (Zuo et al.2010).Previous studies reported the ages of the Daguding Formation volcanic rocks in the Lengshuikeng District,such as LA –ICP –MS zircon U –Pb ages of 161.0±1.0Ma for the rhyolite tuff (Wang et al.2013b )and 160.8±1.9Ma for the ignimbrite (Qiu et al.2013),and a SHRIMP zircon U –Pb age of 157.6±3.2Ma for the tuff (Di et al.2013).These age data coincide with the major magmatic event that took place during ca.164–154Ma in SE China as documented in other studies (Peng et al.2006;Yuan et al.2008;Li et al.2008).

The Early Cretaceous zircon U –Pb age of 136.3±0.8Ma obtained for the quartz syenite porphyry likely represents the crystallization age of the magma.Ages for the E ’huling Formation volcanic rocks in the Lengshuikeng District in previous studies include the LA –ICP –MS zircon U –Pb ages of 144±1Ma for the tuff,140±1for the rhyolite,137±1Ma for the rhyolite tuff,and 129±1Ma for the tuffite (Su 2013).

The second phase of Early Cretaceous magmatism in the Lengshuikeng District is represented by rhyolite porphyry,alkali-feldspar granite porphyry,and mafic dykes.The rhyo-lite porphyry and alkali-feldspar granite porphyry yielded ages of 110and 109.6Ma,respectively,based on whole rock K –Ar dating (JBGMED 1982;NGST 2003).

Dating of hydrothermal mineral deposits is often difficult to achieve,although the ages are critical for understanding the relationship between the timing of mineralization and other geological events.Rb –Sr dating of sphalerite has been suc-cessfully used to directly determine the age of sulfide miner-alization and to constrain models of large-scale migration of mineralizing fluids (e.g.,Brannon et al.1992;Nakai et al.1990,1993;Christensen and Halliday 1995;Christensen et al.1995;Walshaw and Menuge 1998;Yin et al.2009).Although sphalerite appears to yield meaningful Rb –Sr ages,the site of Rb and Sr and the factors controlling Rb/Sr fractionation in sphalerite remain uncertain (Nakai et al.1990;Schneider et al.2008).A Rb –Sr age of 126.9±7.1Ma was obtained from stage 2sphalerite in the stratabound ore,which is similar to the age of the volcano-sedimentary rocks of the E ’huling Formation (129±1Ma;Su 2013).The sphalerite residues display no correlation between 1/Sr and 87Sr /86Sr (Table 3),suggesting that the sphalerite Rb –Sr isochron age is not a pseudoisochron and has actual geological significance (e.g.,Nakai et al.1993).Chen (2011)has reported the mineralogical characteristics of sphalerite of the stratabound ore in the Lengshuikeng District,indicating no clay minerals in sphal-erite.Therefore,this age is interpreted to reflect the timing of the Pb –Zn mineralization.Available geochronological data for the Lengshuikeng District are summarized in Fig.11.The K –Ar ages of 138Ma for sericite in porphyry-hosted ore (JBGMED 1982;NGST 2003)and sphalerite Rb –Sr age of 127Ma in stratabound ore suggest that the hydrothermal alteration and mineralization do not overlap with any of the Jurassic magmatic ages.The ages for mineralization do,how-ever,overlap with the ages for the first phase of Early Cretaceous magmatism (ca.144to 129Ma;Su 2013).These relationships suggest that stage 2is not genetically related to the Jurassic magmatism,although it is still possible that heat from cooling intrusions associated with the formation of the E ’huling Formation (ca.144to 129Ma;Su 2013)drove the hydrothermal system.

Sources of metals and ore-forming fluids

The δ18O H2O values of ore fluids were calculated using the quartz –water equilibrium fractionation of Clayton et al.(1972)using the final homogenization temperatures of prima-ry fluid inclusions.The fluids of stage 1quartz had a δ18O H2O value of about +5.3‰(Zuo et al.2009;Lu 2012),

slightly

Fig.9Rb –Sr isochron of sphalerites from the Lengshuikeng Ag –Pb –Zn ore

district

Fig.10Zircon U –Pb concordia plots and calculated weighted mean 206

Pb/238U ages for sample T13quartz syenite porphyry from the Lengshuikeng ore district.Data are from Table 4

lower than the values of the primary magmatic water (δ18O H2O =+5.5to +9.0‰;Taylor 1974).As the δ18O H2O values in stage 1are close to the range of primary magmatic waters,a contribution of magmatic water cannot be ruled out during this stage.The δ18O H2O values of the stage 2fluids range from +1.2to +4.5‰(average=+4.0‰),whereas the δD values range from ?78to ?63‰,with an average of ?70‰(Zuo et al.2009;Lu 2012).Compared to the stage 1fluids,the stage 2fluids clearly shift toward the composition of meteoric water.The δ18O H2O values of stage 3quartz are between ?3.1and +4.4‰(average ?0.6‰;Zuo et al.2009;Lu 2012),indicating that the fluids were dominated by meteoric water.The δD values in stage 3fluids have a narrow range from ?84to ?53‰(Zuo et al.2009;Lu 2012),which are close to that of Mesozoic meteoric water in Jiangxi Province,east-central China (?60‰;Zhang 1989).

The range of δ34S values for sulfides in the Lengshuikeng ore district is close to the range (mainly ?3to 3‰)of δ34S values for magmatic sources (Ohmoto and Rye 1979;Wang et al.2014a ).The δ34S values of sulfides in the porphyry-hosted and stratabound ores are similar,which support a common hydrothermal fluid forming both ore types (Fig.7).In some samples,pyrite has high δ34S,suggesting that part of the sulfur was derived from the regional Precambrian base-ment rocks (δ34S average value of 5.5‰)through dissolution and leaching,similar to the scenario reported from the Jinshan deposit,Jiangxi Province (Zeng et al.2002).The δ34S values in Lengshuikeng permit the inference that the sulfur was derived mainly from magmatic sources,with minor contribu-tions of heavy sulfur from the country rocks.

The Lengshuikeng hydrothermal carbonates are character-ized by a wide variation of δ18O SMOW from 10.9to 17.9‰.

Table 4LA –ICP –MS zircon U –Pb analytical data for the quartz syenite porphyry in the Lengshuikeng ore district Spot number Content (ppm)

Ratios

Age (Ma)

Pb U

207

Pb/206Pb 1σ207

Pb/235U 1σ

206

Pb/238U 1σ

208

Pb/232Th 1σ

232

Th/238U 1σ

206

Pb/238U 1σ

T10.1124980.02130.00010.14080.00500.04780.00170.00580.00010.890.01581361T10.282790.02160.00020.14690.00880.04920.00290.00600.0001 1.500.03201381T10.4793,1600.02200.00010.15100.00180.04970.00060.00590.00000.990.01091401T10.5461,9680.02160.00010.14730.00220.04940.00070.00680.00010.610.00581381T10.6712,9300.02130.00010.14330.00180.04870.00060.00610.00000.890.00801361T10.793900.02110.00020.14450.00740.04960.00250.00600.00010.810.00831351T10.10321,3360.02250.00010.15350.00230.04940.00070.00690.00000.600.00511441T10.11261,1100.02140.00010.13940.00250.04730.00080.00720.00010.580.00501361T10.12481,9540.02220.00010.16180.00220.05280.00070.00620.00000.840.00741421T10.14612,3490.02240.00010.14610.00200.04740.00060.00620.0000 1.000.00891431T10.18

40

1,606

0.0213

0.0001

0.1403

0.0021

0.0479

0.0007

0.0052

0.0000

1.22

0.0105

136

1

Fig.11Summary of

geochronological data for the Lengshuikeng District.All data noted in the text

The wide variation of the oxygen isotope composition of the Lengshuikeng carbonates are considered to be related to wa-ter–rock interaction combined with the temperature depen-dence on mineral-fluid oxygen isotope fractionation(Santos and Clayton1995;Biondi and Santos2013).Theδ18O SMOW versusδ13C PDB plot illustrates the various processes affecting CO2and carbonate ions in the Lengshuikeng District(Fig.8). Except for the Carboniferous limestone sample,all the other samples from the Lengshuikeng District plot within or near the fields of continental carbonates(Fig.8).As the homoge-nization temperatures of fluid inclusions in dolomites from primary ores are relatively low(from150to270°C;Lu2012), the variation of carbon and oxygen isotopic composition of the Lengshuikeng hydrothermal carbonates are similar with those of the manganese–iron carbonate sedimentary country rocks.This feature indicates that the carbonate from the Lengshuikeng is dissolved from the local car-bonate country rocks.

Evolution of the Lengshuikeng District

Since the Middle Jurassic,possibly from170to155Ma,the paleo-Pacific plate subducted underneath the SCB generating I-type magmas(Wang et al.2013b)along the NE-trending compressive faults and thrust nappe structures,especially in the Lengshuikeng ore district(Jahn et al.1976;Chen1999; Jiang et al.2011).However,the paleo-Pacific plate did not subduct successively toward to the northwest but instead slab rollback occurred at the beginning of Late Jurassic,possibly lasting until Early Cretaceous.This was followed by the formation of an intra-arc rift along the Shihang-Hang zone. Injection of anomalously high-temperature magma into the crustal regions may have induced partial melting of the crustal rocks,generating A-type magmas(Wang et al.2013b). Therefore,it is likely that the southern Hunan to northern Guangxi region is part of an intra-arc rift or back-arc exten-sional zone induced by the subduction of paleo-Pacific plate. Thus,the Lengshuikeng ore district is considered to be related to the tectonic transition regime from a shallow-dipping com-pressional stress regime to a steep-dipping extensional stress regime during the Early Cretaceous(Mao et al.2013).

The Lengshuikeng granite porphyry was emplaced along NNE-striking faults at shallow depths,and subsequent hydro-thermal fluid activity led to strata-and fracture-controlled Pb, Zn,and Ag mineralization.The stratabound Ag–Pb–Zn ore bodies are associated with stratabound fractures,whereas the porphyry-hosted Ag–Pb–Zn ore bodies are associated with NNE-striking F2reverse faults.The Lengshuikeng ores are similar to the structurally controlled epithermal deposits such as the Swayaerdun gold deposit in the southwestern Chinese Tianshan metallogenic belt(Chen et al.2012a).Some of the features of the Lengshuikeng Ag–Pb–Zn deposits are similar to epithermal deposits,such as those in the Cerro de Pasco and Colquijirca carbonate replacement epithermal deposits, Peru(Bendezúet al.2003,2007;Baumgartner and Fontboté2008;Baumgartner et al.2009),carbonate replacement epithermal deposits in the Kamariza ore district,Lavrion,Greece(Voudouris et al.2008),and other epithermal deposits(Thiersch et al.1997;Aramburu 2008;Tassinari et al.2008;Duuring et al.2009a,b;Chen et al.2012b).

The average Au/Ag ratios of pyrite–chalcopyrite(early-stage)and silver minerals–galena–sphalerite(middle-stage) assemblages in the porphyry-hosted ores are0.02and 0.0008,respectively(Meng et al.2007).The Au/Ag average ratios of pyrite–chalcopyrite–sphalerite(early-stage)and silver minerals–galena–sphalerite(middle-stage)assem-blages in the stratabound ores are0.001and0.0004, respectively(Meng et al.2007).The low Au/Ag ratios in ores in Lengshuikeng Ag–Pb–Zn deposits are similar to those of epithermal deposits,such as the range from 0.0001to1in the Lake City II,Summitville,Red Mountain(USA),Julcani(Peru),Lepanto(Philippines), Kushikino and Hishikari(Japan),Ametistovoe and Balei (Russia)(Charoy and Gonzalez-Partida1984;Berger and Bonham1990;Izawa et al.1990;Nekrasova et al.1997; Pal'yanova2008).

Conclusions

The mineralization in the Lengshuikeng ore district is mainly fracture-controlled epithermal type of Ag–Pb–Zn deposits. The mineralization age of126.9±7.1Ma is close to that of the volcano-sedimentary rocks of the E’huling Formation,and therefore it is possible that heat from cooling magmas associ-ated with the formation of the E’huling Formation drove the hydrothermal system.Hydrogen,oxygen,and carbon isotope data from porphyry-hosted and stratabound ores at Lengshuikeng indicate that the ore-forming fluids were de-rived from meteoric water,whereas sulfur isotopes do not preclude the possibility that a magmatic fluid contribution also existed.

Acknowledgments This research is jointly supported by China Bureau of Geological Survey project(Nos.1212011085472,1212010533105, 1212010981048),Fundamental Research Funds for the Central Universities(No.2652013034),and the111Project(No.B07011).This study also contributes to the1000Talents Award to M.Santosh from the Chinese Government.We thank Emmanuel John M.Carranza(James Cook University,Australia)and Gregory A.Davis(University of Southern California,USA)for their valuable time,suggestions,and comments to improve the various versions of the manuscript.We thank Paul Duuring,University of Western Australia,Australia,and Huayong Chen,Guangzhou Institute of Geochemistry,CAS,China,for their crit-ical reviews and constructive comments.The authors also thank Drs. Georges Beaudoin,Patrick Williams,Rolf Romer,and Thomas Bissig for their great contributions to this paper.

References

Aramburu ADE(2008)Pattern of distal alteration zonation around Antamina Cu-Zn skarn and Uchucchacua Ag–base metal vein de-posits,Peru:Mineralogical,chemical and isotopic evidence for fluid composition,and infiltration,and implications for mineral explora-tion.Ph.D.dissertation,University of British Columbia,Vancouver, pp1–817

Baker AJ,Fallick AG(1989)Evidence from Lewisian limestones for isotopically heavy carbon in ten-thousand-million-year-old seawa-ter.Nature337:352–354

Baumgartner R,FontbotéL(2008)Mineral zoning and geochemistry of epithermal polymetallic Zn–Pb–Ag–Cu–Bi mineralization at Cerro de Pasco,Peru.Econ Geol103:493–537

Baumgartner R,FontbotéL,Spikings R,Ovtcharova M,Schaltegger U, Schneider J,Page L,Gutjahr M(2009)Bracketing the age of magmatic–hydrothermal activity at the Cerro de Pasco epithermal polymetallic deposit,Central Peru:a U-Pb and40Ar/39Ar study.

Econ Geol104:479–504

BendezúR,FontbotéL,Cosca M(2003)Relative age of Cordilleran base metal lode and replacement deposits,and high sulfidation Au–(Ag) epithermal mineralization in the Colquijirca mining district,central Peru.Miner Deposita38:683–694

BendezúR,Page L,Spikings R,Pecskay Z,FontbotéL(2007)New 40Ar/39Ar alunite ages from the Colquijirca District,Peru.Evidence of long period of magmatic SO2degassing during formation of epithermal Au-Ag and Cordilleran polymetallic ores.Miner Deposita43:777–789

Berger BR,Bonham HF(1990)Epithermal gold–silver deposits in the western United States:time–space products of evolving plutonic, volcanic and tectonic environments.J Geochem Explor36:103–142 Bindeman I(2008)Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis.Rev Miner Geochem69:445–478

Biondi JA,Santos CLF(2013)The Paleoproterozoic Aripuan?Zn-Pb-Ag (Au,Cu)volcanogenic massive sulfide deposit,Mato Grosso, Brazil:geology,geochemistry of alteration,carbon and ooxygen isotope modeling,and implications for genesis.Econ Geol108: 781–811

Brannon JC,Pldosek FA,Mclimans RK(1992)Alleghenian age of the Upper Mississippi Valley zinc–lead deposit determined by Rb–Sr dating of sphalerite.Nature356:509–511

Charoy B,Gonzalez-Partida E(1984)Analyse des phases fluides ascciees a la genese des amas sulphures et des filons Au–Ag de la province de Taxco–Guanajuato(Mexique).Bull Miner 107(2):285–305

Charvet J,Shu LS,Shi YS,Guo LZ,Faure M(1996)The building of South China:collision of Yangtze and Cathaysia blocks,problems and tentative answers.J S Am Earth Sci 13:223–235

Chen A(1999)Mirror-image thrusting in the South China orogenic belt: tectonic evidence from western Fujian,southeastern China.

Tectonophysics305:497–519

Chen S(2011)The mineralogical study of sphalerite of the Xiabao deposit in the Lengshuikeng Ag–Pb–Zn ore field, Jiangxi Province.Master dissertation,China University of Geosciences(Beijing),Beijing,p177,in Chinese with English abstract

Chen HY,Chen YJ,Baker M(2012a)Evolution of ore-forming fluids in the Sawayaerdun gold deposit in the Southwestern Chinese Tianshan metallogenic belt,northwest China.J Asian Earth Sci49: 131–144

Chen HY,Yang JT,Baker M(2012b)Mineralization and fluid evolution of the Jiyuan polymetallic Cu–Ag–Pb–Zn–Au deposit,eastern Tianshan,NW China.Inter Geol Rev54:816–832Christensen JN,Halliday AN(1995)Direct dating of sulfides by Rb–Sr:a critical test using the Polaris Mississippi Valley-type Zn–Pb deposit.

Geochim Cosmochim Acta59:5191–5197

Christensen JN,Halliday AN,Vearncombe JR,Kesler SE(1995)Testing models of large-scale crustal fluid flow using direct dating of sul-fides:Rb–Sr evidence for early dewatering and formation of Mississippi Valley-type deposits,Canning Basin,Australia.Econ Geol90:877–884

Clayton RN,O’Neil JR,Mayeda TK(1972)Oxygen isotope exchange between quartz and water.J Geophys Res77:3057–3067

Deines P(1989)Stable isotope variations in carbonatites.In:Bell K(ed) Carbonatites:genesis and evolution.Unwin Hyman,London Demeny A,Ahijado A,Casillas R,Vennemann TW(1998)Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura(Canary Islands,Spain):C,O,H isotope study.

Lithos44:101–115

Demrny A,Harangi SZ(1996)Stable isotope studies on carbonate formations in alkaline basalt and lamprophyre series:evolution of magmatic fluids and magma-sediment interactions.Lithos37:335–349

Deng SM(1991)Cryptoexplosive breccia dyke in the paleovolcanic rock zone in Lengshuikeng,Guixi,Jiangxi Province and its metallogeny.

Geol Sci Technol Jiangxi18:28–32,in Chinese with English abstract

Deng J,Wang QF,Yang SJ,Liu XF,Zhang QZ,Yang LQ,Yang YH (2010)Genetic relationship between the E’meishan plume and the bauxite deposits in Western Guangxi,China:constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores.J Asian Earth Sci37:412–424

Deng J,Wang QF,Xiao CH,Yang LQ,Liu H,Gong QJ,Zhang J(2011)Tectonic–magmatic–metallogenic system,Tongling ore cluster region,Anhui Province,China.Int Geol Rev53: 449–476

Deng J,Wang QF,Li GJ,Li CS,Wang CM(2014)Tethys evolution and spatial-temporal distribution of ore deposits in the Sanjiang region, Southwestern China.Gondwana Res.doi:10.1016/j.gr.2013.08.002 Di YJ,Xu YG,Wu GG,Zhang D,Xiao MZ,Lai SH,Yu XQ,Qin ST,Yan PC,Gong Y,Qin XF(2013)The formation era of nappe structure in Lengshuikeng Ag-Pb-Zn ore field,Jiangxi:constraints from geo-chronology.Earth Sci Frontiers20:340–349

Duuring P,Rowins SM,Dickinson JM,McKinley BSM,Diakow LJ, Kim YS,Creaser RA(2009a)Examining potential genetic links between Jurassic porphyry Cu–Au±Mo and epithermal Au±Ag mineralization in the Toodoggone district of north-central British Columbia,Canada.Miner Deposita44:463–496

Duuring P,Rowins SM,McKinley BSM,Dickinson JM,Diakow LJ, Kim YS,Creaser RA(2009b)Magmatic and structural controls on porphyry-style Cu–Au–Mo mineralization at Kemess South, Toodoggone District of British Columbia,Canada.Miner Deposita 44:435–462

González LA,Lohmann KC(1985)Carbon and oxygen isotopic compo-sition of Holocene reefal carbonates.Geol13:811–814

Hodson JD(1977)Stable isotopes and limestone lithification.J Geol Soc Lond133:637–660

Hoefs J(1997)Stable isotope geochemistry.Springer,Heidelberg,pp1–214

Hoernle K,Tilton G,Bas MJL,Duggen S,Garbe-Schonberg D(2002) Geochemistry of oceanic carbonatites compared with continental carbonatites:mantle recycling of oceanic crustal carbonate.

Contrib Mineral Petrol142:520–542

Hofmann BA,Bernasconi SM(1998)Review of occurrences and carbon isotope geochemistry of oxalate minerals:implications for the origin and fate of oxalate in diagenetic and hydrothermal fluids.Chem Geol149:127–146

Izawa E,Urashima Y,Ibaraki K,Suzuki R,Yokoyama T,Kawazaki K, Koga A,Taguchi S(1990)The Hishikari gold deposit:high-grade

epithermal veins in Quarternary volcanics of southern Kyushi, Japan.J Geochem Explor36:1–56

Jahn BM(1974)Mesozoic thermal events in Southeast China.Nature 248:480–483

Jahn B,Chen PY,Yen TP(1976)Rb–Sr ages of granite rocks in south-eastern China and their tectonic significance.Geol Soc Am Bull86: 763–766

Jahn BM,Zhou XH,Li JL(1990)Formation and tectonic evolution of southeastern China and Taiwan.Isotopic and geochemical con-straints.Tectonophysics183:145–160

JBGMED(1982)Geological history of Jiangxi Province.Jiangxi Bureau of Geology and Mineral Exploration and Development.Geological Publishing House,Beijing,p120,in Chinese

Jiang YH,Zhao P,Zhou Q,Liao SY,Jin GD(2011)Petrogenesis and tectonic implications of Early Cretaceous S and A-type granites in the northwest of the Gan–Hang rift,SE China.Lithos121:55–73 Li XH(2000)Cretaceous magmatism and lihospheric extension in south-east China.J Asian Earth Sci18:293–305

Li ZX,Zhang L,Powell CM(1996)Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia.Aust J Earth Sci43: 593–604

Li QL,Chen FK,Wang LX,Li XH,Li CF(2006)Chemical procedure of ultra-low background and Rb–Sr dating of single mica.Chin Sci Bull51:321–325,in Chinese with English abstract

Li XH,Li WX,Li ZX,Liu Y(2008)850–790Ma bimodal volcanic and intrusive rocks in northern Zhejiang,south China:a major episode of continental rift magmatism during the breakup of Rodinia.Lithos 102:341–357

Li HK,Geng JZ,Hao S,Zhang YQ,Li HM(2009)Zircon U-Pb dating using laser ablation multi-collector inductively coupled plasma mass spectrometry(LA-MC-ICPMS).Bull Miner Petrol Geochem29:77, in Chinese with English abstract

Li XF,Wang CZ,Hua RM,Wei XL(2010)Fluid origin and structural enhancement during mineralization of the Jinshan orogenic gold deposit,south China.Miner Deposita45:583–597

Liu JY(1985)Xiangshan igneous pluton—a granite hypabyssal intrusive volcanic complex.Geochimica2:142–149,in Chinese with English abstract

Lorrain A,Savoye N,Chauvaud L,Paulet YM,Naulet N(2003) Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material.Anal Chim Acta 491:125–133

Lu R(2012)Characteristics of mineralogy and metallogenesis of the Xiabao Ag–Pb–Zn deposit,Jiangxi Province.Master dissertation, China University of Geosciences(Beijing),Beijing,p177,in Chinese with English abstract

Lu R,Mao JW,Gao JJ,Su HM,Zhen JH(2012)Geological character-istics and occurrence of silver in Xiabao Ag–Pb–Zn deposit, Lengshuikeng ore field,Jiangxi Province,east China.Acta Petrol Sin28:105–121,in Chinese with English Abstract

Ludwig KR(2001)User’s manual for isoplot/Exversion2.49:a geochro-nological toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication,Berkeley,p55

Mao JW,Cheng YB,Chen MH,Franco P(2013)Major types and time–space distribution of Mesozoic ore deposits in south China and their geodynamic settings.Miner Deposita48:267–294

Meng XJ,Dong GY,Liu JG(2007)Lengshuikeng porphyry Pb–Zn–Ag deposit in Jiangxi Province.Geological Publishing House,Beijing, p184,in Chinese

Nakai S,Halliday AN,Kesler SE,Jones HD(1990)Rb–Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley type ore deposits.Nature346:354–357

Nakai S,Halliday AN,Kesler SE,Jones HD,Kyle JR,Lanes TE(1993) Rb–Sr dating of sphalerite from Mississippi Valley-type(MVT)ore deposits.Geochim Cosmochim Acta57:417–427Nekrasova AN,Oreshin VY,Chizhova IA(1997)Classification of gold–silver deposits on the base of logical-informational analysis.Rudy I Metally5:33–43(in Russian)

NGST(1997)Geological characteristics of the Lengshuikeng Ag deposit, Guixi County,Jiangxi Province(internal report).No912Geological Surveying Team,Jiangxi Bureau of Geology and Mineral Exploration and Development,Jiangxi,p234,in Chinese

NGST(2003)Geological characteristics of the Baojia deposit,Guixi County,Jiangxi Province(internal report).No912Geological Surveying Team,Jiangxi Bureau of Geology and Mineral Exploration and Development,Jiangxi,p117,in Chinese Ohmoto H,Rye RO(1979)Isotopes of sulfur and carbon.In:Barnes HL (ed)Geochemistry of hydrothermal ore deposits.Wiley,New York, pp509–567

Pal'yanova GA(2008)Physicochemical modeling of the coupled behav-ior of gold and silver in hydrothermal processes:gold fineness,Au/ Ag ratios and their possible implications.Chem Geol255:399–413 Peng JT,Zhou MF,Hu RZ,Shen NP,Yuan SD,Bi XW,Du AD,Qu WJ (2006)Precise molybdenite Re–Os and mica Ar–Ar dating of the Mesozoic Yaogangxian tungsten deposit,central Nanling District, south China.Miner Deposita41:661–669

Qiu JT,Yu XQ,Wu GG,Liu JG,Xiao MZ(2013)Geochronology of igneous rocks and nappe structures in Lengshuikeng deposit,Jiangxi Province,China.Acta Petrol Sin29:812–826,in Chinese with English abstract

Ray JS,Ramesh R,Pande K(1999)Carbon isotopes in Kerguelen plume-derived carbonatites:evidence for recycled inorganic carbon.Earth Planet Sci Lett170:205–214

Santos RV,Clayton RN(1995)Variations of oxygen and carbon isotopes in carbonatites:a study of Brazilian alkaline complexes.Geochim Cosmochim Acta59:1339–1352

Schneider J,Boni M,Laukamp C,Bechst?dt T,Petzel V(2008)Willemite (Zn2SiO4)as a possible Rb–Sr geochronometer for dating nonsulfide Zn–Pb mineralization:examples from the Otavi Mountainland(Namibia).Ore Geol Rev33:152–167

Shu LS,Charvet J(1996)Kinematic and geochronology of the Proterozoic Dongxiang–Shexian ductile shear zone(Jiangnan Region,south China).Tectonophysics267:291–302

Shu LS,Zhou XM,Deng P,Wang B,Jiang SY,Yu JH,Zhao XX(2009) Mesozoic tectonic evolution of the Southeast China Block:new insights from basin analysis.J Asian Earth Sci34:376–391 Stacey JS,Kramers JD(1975)Approximation of terrestrial lead isotope evolution by a two-stage model.Earth Planet Sci Lett26:207–221 Su HM(2013)Petrogenesis of Late Mesozoic volcanic-intrusive rocks in the Tianhuashan Basin in the north Wuyishan area and relation to Pb-Zn-Cu mineralization.Ph.D.dissertation,China University of Geosciences(Beijing),Beijing,p144,in Chinese with English abstract

Tassinari CCG,Pinzon FD,Ventura JB(2008)Age and sources of gold mineralization in the Marmato mining district,NW Colombia:a Miocene–Pliocene epizonal gold deposit.Ore Geol Rev33:505–518 Taylor HP Jr(1974)The Application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition.

Econ Geol69:843–883

Taylor HE,Frechen J,Degens ET(1967)Oxygen and carbon isotope studies of carbonatites from the Laacher See District,West Germany and the Alno District Sweden.Geochim Cosmochim Acta31:407–430

Thiersch PC,Williams-Jones AE,Clark JR(1997)Epithermal minerali-zation and ore controls of the Shasta Au–Ag deposit,Toodoggone District,British Columbia,Canada.Miner Deposita32:44–57 Valley JW(1986)Stable isotope geochemistry of metamorphic rocks.In: Walley JW,Taylor HP,O’Neil JR(eds)Stable isotopes on high temperature geological processes.Rev Miner16:445–489

V oudouris P,Melfos V,Spry PG,Bonsall TA,Tarkian M,Solomos C (2008)Carbonate-replacement Pb–Zn–Ag±Au mineralization in

the Kamariza area,Lavrion,Greece:mineralogy and thermochem-ical conditions of formation.Miner Petrol l94:85–106

Walshaw RD,Menuge JF(1998)Dating of crustal fluid flow by the Rb-Sr isotopic analysis of sphalerite:a review.Geol Soc Spec Publ144: 137–143

Wang CM,Deng J,Zhang ST,Xue CJ,Yang LQ,Wang QF,Sun X (2010a)Sediment-hosted Pb–Zn deposits in Southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton.Acta Geol Sin-Engl84:1428–1438

Wang CM,Deng J,Zhang ST,Yang LQ(2010b)Metallogenic province and large scale mineralization of VMS deposits in China.Resour Geol60:404–413

Wang CM,Wu GG,Zhang D,Luo P,Di YJ,Yu XQ(2010c)The regional metallogeny and mineralizing pedigree of northeastern Jiangxi re-gain,China.Glob Geol29:88–600,in Chinese with English abstract Wang CM,Carranza EJM,Zhang ST,Zhang J,Liu XJ,Zhang D,Sun X, Duan CJ(2013a)Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit,China.J Geochem Explor124:40–58

Wang CM,Zhang D,Wu GG,Xu YG,Carranza EJM,Zhang YY,Li HK, Geng JZ(2013b)Zircon U-Pb geochronology and geochemistry of rhyolitic tuff,granite porphyry and syenogranite in the Lengshuikeng ore district,SE China:implications for a continental arc to intra-arc rift setting.J Earth Syst Sci122:809–830

Wang CM,Deng J,Carranza EJM,Lai XR(2014a)Nature,diversity and temporal-spatial distributions of sediment-hosted Pb–Zn deposits in China.Ore Geol Rev56:327–351

Wang CM,Deng J,Carranza EJM,Santosh M(2014b)Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:nature,deposit types,and tectonic set-ting.Gondwana Res.doi:10.1016/j.gr.2013.05.005

Xie X,Xu XS,Zou HB,Jiang SY,Zhang M,Qiu JS(2006)Early J2 basalts in SE China:incipience of large-scale late Mesozoic magmatism.Sci China Ser D49:796–815

Xu WX,Xiao MH,Chen MY(2001)Stable isotope characteristics of minerals in the Lengshuikeng porphyry Ag-Pb-Zn deposit in Jiangxi Province.Bull.Miner Petrol Geochem20:370–372,in Chinese with English abstract

Yao JL,Shu LS,Santosh M(2011)Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—new clues for the Precambrian crustal evolution of Cathaysia Block,south China.Gondwana Res 20:553–567

Ye QT(1987)Metallogenetic series and mechanism of lead–zinc ore deposits in northeast Jiangxi.Beijing Science and Technology Press Publishing House,Beijing,p114,in Chinese

Yin MD,Li WB,Sun XW(2009)Rb-Sr isotopic dating of sphalerite from the giant Huize Zn-Pb ore field,Yunnan province,southwestern China.Chin J Geochem28:70–75Yu YW,Xu BT,Chen JF,Dong CW(2001)Nd isotopic systematics of the Cretaceous volcanic rocks from southeastern Zhejiang Province, China:implications for stratigraphic study.J China Univ Geosci7: 62–69,in Chinese with English abstract

Yu XQ,Wu GG,Zhang D,Yan TZ,Di YJ,Wang LW(2006)Cretaceous extension of the Ganhang Tectonic Belt,southeastern China.

Constraints from geochemistry of volcanic rocks.Cretac Res27: 663–672

Yu XQ,Wu GG,Zhao XX,Gao JF,Di YJ,Zheng Y,Dai YP,Li CL,Qiu JT(2010)The Early Jurassic tectono-magmatic events in southern Jiangxi and northern Guangdong provinces,SE China.Constraints from the SHRIMP zircon U–Pb dating.J Asian Earth Sci39:408–422

Yuan SD,Peng JT,Hu RZ,Li HM,Shen NP,Zhang DL(2008)A precise U–Pb age on cassiterite from the Xianghualing tin-polymetallic deposit(Hunan,south China).Miner Deposita43:375–382

Zeng JN,Fan YX,Lin WB(2002)The lead and sulfur isotopic tracing of the source of ore-forming material in Jinshan gold deposit,Jiangxi Province.Geoscience16:170–176,in Chinese with English abstract

Zhang LG(1989)Petrogenic and minerogenic theories and prospecting.

Beijing University of Technology Press,Beijing,p200,in Chinese with English abstract

Zhang SB,Zheng YF(2013)Formation and evolution of Precambrian continental lithosphere in south China.Gondwana Res23:1241–1260

Zhao ZH,Bao ZW,Zhang BY(1998)Geochemical features of Mesozoic basalts in south Hunan.Sci China Ser D28:102–112,in Chinese Zhao KD,Jiang SY,Yang SY,Dai BZ,Lu JJ(2012)Mineral chemistry, trace elements and Sr-Nd Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone,south China.Gondwana Res22:310–324

Zhou MF,Yan DP,Kennedy AK,Li Y,Ding J(2002)SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze block,south China.Earth Planet Sci Lett196:51–67 Zhou XM,Sun T,Shen WZ,Shu LS,Niu YL(2006)Petrogenesis of Mesozoic granitoids and volcanic rocks in south China:a response to tectonic evolution.Episodes29:26–33

Zuo LY,Hou ZQ,Song YC,Meng XJ,Yang ZS(2009)A study of the ore-forming fluid in the Lengshuikeng Ag–Pb–Zn porphyry deposit.

Acta Geosci Sin30:616–626,in Chinese with English abstract Zuo LY,Hou ZQ,Meng XJ,Yang ZM,Yong YC,Li Z(2010) SHRIMP U–Pb zircon geochronology of the ore-bearing rock in the Lengshuikeng porphyry type Ag–Pb–Zn deposit,geol-ogy in China.Geol China37:1450–1456,in Chinese with English abstract

学习活动2-5:性格测试(向性指数)

学习活动2-5 性格测验(1) 指导语:请你在回答下列问题时认真地加以完成,凭你的第一感觉选择最符合你实际情况的选项。对下列问题,若认为符合你的情况,请打“√”,若不符合请打“×”,若难以判断请打“△”: 1.你很介意细节吗? 2.你能立即下决心吗? 3.你能慎重地花时间去做一些实际的事情吗? 4.你会事后改变决心吗? 5.与思考相比,你更喜欢行动吗? 6.你忧郁吗? 7.你能从失败中吸取教训吗? 8.你无忧无虑吗? 9.你寡言少语吗? 10.你感情外露吗? 11.你经常欢笑吗? 12.你情绪经常起伏不定吗? 13.你对待事物专心致志吗? 14.你有忍耐心吗? 15.你喜欢讲理和追根究底吗? 16.你议论时易激动吗? 17.你十分谨慎小心吗? 18.你动作麻利吗? 19.你的工作表详尽吗? 20.你喜欢令人注目、抛头露面的工作吗? 21.你对工作有热情吗? 22.你总是异想天开吗? 23.你清高吗? 24.你对身边的物品漫不关心吗?

25.你乱花钱吗? 26.你喜欢发言吗? 27.你挑剔吗? 28.你爱开玩笑吗? 29.你易被教唆吗? 30.你固执倔强吗? 31.你牢骚满腹吗? 32.你很介意他人对自己的看法吗? 33.你想得到他人的批评吗? 34.你把自己的事情委托给别人吗? 35.你不愿意被别人指挥、命令吗? 36.你能管理好他人吗? 37.你能直率地听进别人的意见吗? 38.你机灵吗? 39.你隐瞒什么吗? 40.你能立即同情他人吗? 41.你过于相信他人吗? 42.你难以忘记仇恨吗? 43.你腼腆、害羞吗? 44.你喜欢独处吗? 45.你愿意花精力去交朋友吗? 46.你在众人面前能平静地讲话吗? 47.你经常避开众人的焦点吗? 48.你能轻松爽快地与意见不同的人交往吗? 49.你好帮助别人吗? 50.你毫不吝惜地把东西送给他人吗? 每个问题画好“√”或“×”或“△”后,填入下面表格的“转记栏”中,然后与“对照栏”中的“√”或“×”对照。在“V标记栏”中把仅与“对照栏”中的“√”或“×”相同的画上“○”标记。

证据法简答题(很全面的)

证据制度与诉讼制度的关系。 答:(1)控诉式诉讼制度与神示证据制度的关系;(2)纠问式诉讼与法定证据制度关系;(3)混合式诉讼与自由心证的关系。 2.简述我国证据制度的基本原则及其要求。 答:我国证据制度所坚持的客观真实的原则,是证据制度的基本原则。这种客观真实的证据制度,要求重证据、重调查研究、不轻信口供,要求查明案件事实真相,以便正确地据实处理。我国的证据制度为充分确实的证据制度,案件对证据的具体要求,在质上就是要求确实可靠,在量上就是要求全面细致、充分,达到了两个方面的统一,案件的真实性就可以保证。 3.简述证据学的具体研究方法。 答:1)借鉴和创新的研究方法;2)定性和定量的分析研究方法;3)系统、全面研究的方法;4)比较研究方法;5)实证研究的方法。 4.简述证据内容与证据形式的关系。 答:司法公正是核心,证据的内容和形式应为之服务。因此,在证据的内容与关系上应有的观点是:(1)坚持有真实内容的证据,原则上应使其有合法的证据形式,这有利于查明案件事实直相,从而保证案件正确处理。(2)重视对人权的保护,对于证据收集采用过程中的违法行为,一律依法严处;坚持按程序办案,坚持惩治违法行为,以实现诉讼程序公正。(3)对严重违法收集的证据,基于可靠性程序差,必须限制采用。 5.简述法定证据制度产生的历史条件。 答:法定证据制度是对神示证据制度的否定,是历史上一大进步。它的出现是人类文化科学的发展对司法经验总结的结果;同时又是和当时的政治斗争形势联系在一起的,是中央集权君主制的产物。为了结束地方封建割据的分裂状态,加强中央集权的统治,封建君主实行这项法律制度,有利于把司法权掌握在自己手中,从而打击封建割据势力。 6.简述自由心证证据制度产生的历史条件。 答:自由心证制度的形成有其特定的历史过程。为了与诉讼制度的变革相适应,1791年法国宪法会议正式废除法定证据制度,建立了自由心证制度。首先,资产阶级思想家崇尚人的理性的良心,指出“人生而自由”的观点。 7.简述自由心证理论的主要内容。 答:自由心证理论的主要内容有两点:一是法官的理论性和良心;二是心证达到确信的程度。两根支柱,一是抽象的理性;一是抽象的良心。其中心则是“自由”,即法官根据理性和良心自由地判断,在内心达到真诚确信的程度。自由心证制度的核心内容,就是对于各种证据的真伪、证明力的大小以及案件事实如何认定,法律并不作具体规定,完全听凭法官根据理性和良心的指示,自由地判断。 8.我国奴隶制度时期证据制度的特点。 答:奴隶制度的证据制度特点是:1)法官认定案件主要依据审判时间经验的总结;2)神示证据制度消失的较早。我国古代奴隶制各个王朝的证据制度,主要是根据审判实践经验形成的,比较重视与案情有拳客观材料,要求法官据证推断;3)除重视采用当事人的证词外,还重视其他证据的作用。 9.我国封建制度时期证据制度的特点。 答:封建制度时期证据特点是:1)坚持口供至上的原则,定罪必须取得被告人认罪的供词。2)审讯是可以依法刑讯。刑讯的程度,违法刑讯应否负刑事责任和负什么刑事责任,历代封建王朝的法律则有不同的规定。3)诬告者反坐,伪证者罚。4)疑罪惟轻兼从赎,实行有罪推定。5)重视勘验检查。6)据众证定罪的制度。7)集成和发展了“以五声听狱讼,求民情”的主观臆断的审判方法。 10.简述新中国证据制度发展的四个阶段。 答:第一阶段是从1931年至1949年的创建期,属于新民主主义时期,属于新民主主义时期。在革命根据地的法律中,已经建立起了先进的证据原则和制度。第二阶段是从1949年至1966年的发展期。中华人民共和国成立之后,人民政府在废除国民党伪法统和总结革命根据地司法工作经验的基础上建立了新

名词(可数名词和不可数名词)

专题一名词 主要考查三个方面: 1、联系上下文,考查同义词、近义词辨析; 2、可数名词的单复数、不可数名词、抽象名词、名词词 组的意义和用法; 3、名词的固定搭配和习惯用语。 ◆名词的数 规则名词的复数形式

可数名词复数形式的不规则变化

常见的不可数名词

不可数名词的量化 a block of一块; a bottle of一瓶 a group of一群; a pile of一堆 a pair of一组/双/对; a piece of一片/张/块既可作可数名词又可作不可数名词的词

【2016 广东】 The broken ______may cut into your hand if you touch it, you should be careful. A. glass B. glasses C. candle D. candles 【2016广西来宾】

—There are many ____ about this farm. —Yes, lots of ____ are planted on it. A. photo; potato B. photos; potatos C. photos; potatoes D. photoes; potatoes 1. Help yourself to some_______. There are lots of vitamins in them. A. tomato B. tomatoes C. tomatos D. potatos you take a plane, you cannot take ______ onto the plane with you. A. knife B. knifes C. knives D. a knives 3. The _______ have caught the two_______ already. A. policeman; thief B. policemen; thiefs C. policemen; thieves D. policeman; thieves 【2016重庆】It’s sports time. Most students in Class 1 are playing football on the playground. A. boy B. boys C. boy’s D. boys’ 【2015攀枝花】All the are from . A. men doctors; Germany B. men doctors; German C. man doctors; Germany D. man doctor; German 【2015广安】 —How many can you see in the picture —Two. A. dog B. child C. sheeps D. sheep 【2015天河】

我的性格测试

不知道自己前面的路该怎么走,这是给自己列的一些计划,不知道自己是否可以走下去。 1.科班出生,电气自动化方面的发展,女生适合设计(CAD,protel,C语言学的比较好),营销(自动化相关产品的营销,销售助理其实是没有前途的职业),管理。 2凭证上岗,考取一些相应的证书,凭这些证书找到合适的工作。例如,会计证,报关报检证, 单证员等。 3去一些大型商场工作,混两年估计也是什么楼层主任,或是什么的啦。。(这个得牺牲自己的法定节假日)家人团聚的机会。 但是我自己的性格适合什么工作呢? 回忆一下从小到大,哪些事情让自己有成就感?找出10个。 确定1,他是什么? 2.为什么会让自己有成就感? 3.我的感受是什么? 4.它对我意味着什么? 归纳共性 对未来职业的了解,-------------方式,人物访谈。 1,这个职业具体是做什么的? 2,对从业者有什么能力要求?时间安排,晋升途径,收入状况,

3,这个职业你喜欢它什么? 4以我目前的状况来看,如果从事该职业,你有什么建议? 把自己的特质与目标工作匹配起来, 确定哪些可以降, 哪些要坚持。。。 ESTJ 管家型——掌控当下,让各种事务有条不紊地进行 报告接收人: 才储成员677110 日期: 2012-09-07 一、你的MBTI图形

MBTI倾向示意图(类型:ESTJ 总倾向:45.9) 外向(E) (I)内向 实感(S) (N)直觉 思考(T) (F)情感 判断(J) (P)知觉 倾向示意图表示四个维度分别的倾向程度。从中间往两侧看,绿色指示条对应下面坐标的哪个区间。 本报告地址不会长期有效,请复制报告内容到本地或自己的博客。

证据法教学大纲

《证据法》教学大纲 课程编号:T06054 课程名称:证据法 evidence law 课程类型:专业课 先修课程:法理学、民法学、刑法学、诉讼法学 面向对象:本科 开课单位:文学与新闻传播学系 总学时数:36 理论学时:36 其他教学学时:0 学分:2 一、课程教学目标及学生能力培养要求 课程教学目标:通过讲授证据法学基本理论知识和前沿学术成果,使学生理解证据法学科的基本概念和基本理论,系统掌握证据法学以及三大诉讼法所规定的证据相关原理,做到能够正确区分各种证据的不同特点,并能运用所学的知识解决司法个案及相关法律问题。同时在教学中强化对学生实践能力的训练,通过案例研讨、课堂辩论等方式,提升学生的法学运用能力。 能力培养要求:法律事实的判断和法律逻辑推理能力;法律思辨和语言表达能力;独立分析和处理各种诉讼案件证据的能力;较强的社会交往、沟通与协作能力。 二、课程的教学内容与学习目标 第1章证据法学概述 学时:2课时 主要内容: 证据法的性质、渊源和立法模式 证据法学的学科定位及研究对象

证据法学的研究方法 教学要求:本章内容是学生的入门课,要求学生对我国证据法学的基本框架和体系有清晰的认识,对证据法的基本概念和原理有所把握,认识我国证据法的学科定位、研究对象和研究方法。 重点、难点:证据法的概念、证据法的学科定位、研究对象。 其它教学环节:无 第2章证据法的历史沿革 学时:2课时 主要内容: 世界证据法的历史沿革 我国证据法的历史沿革 教学要求:要求学生了解我国和世界证据法的历史沿革,理解世界主要国家的古代和近现代证据立法,掌握我国古今证据立法的历史脉络与主要内容。 重点、难点:国外证据立法的特点与自由心证制度、亲亲相隐在我国证据法中的体现与作用;我国三大诉讼法的修改与完善。 其它教学环节:讨论三大诉讼法的修改的意义。 第3章证据法的历史发展 学时:2课时 主要内容: 外国证据法学的历史发展 中国证据法学的历史发展 教学要求:要求学生了解外国证据法学的历史发展,理解并掌握外国证据法学的历史发展。 重点、难点:我国古代证据法学研究的思想与历史意义;我国证据法学研究的最新成果与趋势。 其它教学环节:讨论我国证据法学研究的主要特点。 第4章证据法的基本理论 学时:2课时 主要内容: 认识论

可数名词和不可数名词英文讲解

Countable Nouns Countable nouns are easy to recognize. They are things that we can count. For example: "pen". We can count pens. We can have one, two, three or more pens. Here are some more countable nouns: ?dog, cat, animal, man, person ?bottle, box, litre ?coin, note, dollar ?cup, plate, fork ?table, chair, suitcase, bag Countable nouns can be singular or plural: ?My dog is playing. ?My dogs are hungry. We can use the indefinite article a/an with countable nouns: ?A dog is an animal. When a countable noun is singular, we must use a word like a/the/my/this with it: ?I want an orange. (not I want orange.) ?Where is my bottle? (not Where is bottle?) When a countable noun is plural, we can use it alone: ?I like oranges. ?Bottles can break. We can use some and any with countable nouns: ?I've got some dollars. ?Have you got any pens? We can use a few and many with countable nouns: ?I've got a few dollars. ?I haven't got many pens.

性格倾向测试

性格倾向测试 (一) 假设今晚是你的生日晚会,在你的客人当中,有下面5位重要嘉宾,你选谁坐在你身边? A.运动选手 B.作家 C.掌相专家 D.流行歌手 E.你的班主任 A运动选手 你的性格是开朗的,善于社交生活,也是一位领导人物,在朋友,同学的小圈子之中,很受欢迎,而别人也很愿意以你的主意为主意。在团体生活中,很受到异性朋友的欢迎。 B作家 你是个细心的人。不但留意事物,连很琐碎的事也特别留心,别人有问题说也喜欢跟你商量,因为你很愿意聆听别人的倾诉,又常常能给对方一些很好的意见。而你也是个情绪很易波动,易受环境影响的人。 C掌相专家 你有乐天性格,为人处事非常大方,又有率真可爱的个性,如果你不喜欢,你会很明确的告诉对方你不喜欢,是那种喜怒均于无色的人,这种性格可能令你开罪别人而不自知,但也是你交得好知己的原因。 D流行歌手 你的个性会比较神经质,假若碰到不愉快的事情就会表现得不高兴,经常黑口黑脸,令人不敢跟你有所接触,因此你的朋友也不会很多,而且很少有好朋友,建议你不妨多控制一下自己的情绪。 E你的班主任 你这个人颇多孤独,经常情愿独自一人留在家中,也不愿意到外面去玩,更不愿意去交朋友朋友,不过你却是一个心地很好的人 性格倾向测试

(二) 假如你正在汪洋中乘船巡游,四面八方尽是一望无际的蓝色海洋,从水平面上,突然有东西映如你的眼帘。你想,那该是什么? A.陆地 B.另一艘船 C.朝阳 D.鲸鱼

A 陆地 墨守成规,不善于标新立异,更不敢自我主张,因为你无法打破传统的思想观念,所以限制你战士你的个性。 B另一艘船 对战士自我有心劳日拙之叹,水平面上的船,该是你的向导,如果没有旁人的协助,很可能你的才能会被忽视。 C朝阳 你是个善于将自己的个性发挥得淋漓尽致的人。你的折中个性也为你开辟出一条成功的达到,虽然你在刚开始时候不太得人缘,但你的个性注定会让你出人头地。 D鲸鱼 你生性好妄想,常好高骛远,不切实际,你常因自己不自量力而陷入困境 性格倾向测试 (三) 下面有几种不同的沐浴方式,请凭你的直觉来选择,可以占卜出你的性格呢! A.泉水洗澡 B.花瓣泡澡 C.用熏衣草和柠檬片泡澡 D.牛奶泡澡

可数名词和不可数名词讲解及练习

可数名词和不可数名词讲解 (一)定义:1可数名词是指能以数目来计算,可以分成个体的人或东西;因此它有复数 形式,当它的复数形式在句子中作主语时,句子的谓语也应用复数形式。 2.不可数名词是指不能以数目来计算,不可以分成个体的概念、状态、品质、感情 或表示物质材料的东西;它一般没有复数形式,只有单数形式,它的前面不能用不定冠词a / an 。 可数名词用法讲解: 可数名词有单复数之分。㈠单数可数名词 1.单数可数名词一般不会单独出现,前面通常要有限定词。 例如:She is friend(friend 前面加上my.) I have pen.(pen前面加上a) I like boy.(boy前面加上this) 限定词通常有三类。⑴冠词。经常用不定冠词 a、an。⑵形容词性物主代词。⑶指 示代词this、that 。this、that可用the代替。 2.单数可数名词做主语看作第三人称单数,谓语动词使用三单(单数)形式。 My father is (be) very tall. His brother likes (like) playing basketball.㈡可数名词的复数形式。 1.单数变复数规则变化 a. 一般情况下,直接加-s.如:book-books, bag-bags, cat-cats, bed-beds b.以s、x、ch、sh和部分0结尾的加es c. 以“辅音字母+y”结尾,变y为i, 再加-es,如:family-families, strawberry-strawberries d. 以“f或fe”结尾,变f或fe为v, 再加-es,如:knife-knives e. 以o结尾,通常 加 s.初中范围只有这四个词Negro hero potato potato 这四个词加es 如tomato -potatoes. tomato-tomatoes巧记黑人英雄爱吃西红柿和马铃薯这四个词加es 不规则变化:man-men, woman-women, policeman-policemen, policewoman-policewomen, mouse-mice child-children, foot-feet,. tooth-teeth, fish-fish, sheep-sheep people-people, Chinese-Chinese, Japanese-Japanese. 3.什么时候使用可数名词的复数形式? a.数词大于1,可数名词用复数。 b.可数名词前有Some/any、these/those 、a lot of/lots of、 many、How many、 a few 修饰时,可数名词用复数。 Some/any+可复 a lot of/lots of+可复 Many+可复 How many+ 可复 A few+可复 c.复数名词表示泛指是可数名词使用复数形式。 I like apples Grapes are my favourite fruit. 4.对可数名词数量提问使用how many ㈢不可数名词 1. 不可数没有复数。不可数名词不能直接和a/an、数词连用。若要表 示它的个体意义时,一般要与一个名词短语连用,即a/an /数词 +量词单数/复数+of+不可 数名词。 A cup of tea two cups of tea 注意数词大于一,量词用复数。 a/an / 数词+量词单数/复数+of+不可数名词做主语时,它的数由量词的数决定。如 The cup of tea is (be) hot. Two cups of tea are (be) on the table. 2. 单个的不可数名词做 主语看作第三人称单数,谓语动词使用三单形式。 The meat smells (smell) delicious. The water is on the table. 3. 常用来修饰不可数名词的词 Some/any、 a lot of/lots

性格倾向性自测量表

性格倾向性自测量表 向性指数的计算及分数解释: 外向性反映总数为第2、4、7、9、11、14、16、18、19、20、21、23、24、27、29、30、32、34、36、39、40、42、45、47、49、50回答“是” 及第1、3、5、6、8、10、12、13、15、17、22、25、26、28、31、33、35、37、38、41、43、44、46、48回答“否”的总数。 向性指数=(外向性反映总数+没有回答的题目的总数/2)/25*100 一般来说,向性指数为70以上者为外向性格,分值越大越外向。向性指数在前70以下为内向,分值越小越典型。 1.典型外向者的一般表现:善交际,喜欢聚会,有许多朋友,喜欢交谈而不愿独自读书。易激动,行动常碰运气,凭一时冲动而不假思索,易惹麻烦。粗心大意,随便而乐哈哈。爱开玩笑,什么场合都有话可说,对一切问题都有现成答案。喜欢变化,闲不住,爱活动,常不停地做些事。富有冲动性,有攻击倾向,爱发脾气也容易忘掉。总之,这种人情感不易控制,表现得不像一个可靠的人。 2.典型内向者的一般表现:安静,退居,自省,喜欢读书而不喜欢与人交往。除密友外,与他人保持距离,朋友甚少。做事想在前,有周密的计划,常深思熟虑,极少冒失妄动。不爱激动,以适宜的谨慎、态度严肃处理日常生活与事物,喜欢整齐有序的生活方式。能控制自己的情感,很少以攻击性方式行事,极少发脾气。他是一个可靠的人,虽有点悲观色彩,但十分尊重伦理标准价值。 指导语: 下面是内曼和科尔施特设计的性格倾向性测量表,一共50个题目,25个属于外向,25个属于内向。如果提问的内容符合自己的情况,就答“是”;如果不符合就答“否”;如果你不能确定,可以不回答。回答问题时不要想怎样回答好或怎样回答不好,你实际上怎样就怎样回答。 项目A.是B.不是 1.能独断独行。 2.快乐的人生观。 3.喜欢安闲。 4.对人十分信任。 5.筹五年以后的事。 6.遇集体活动愿在家不愿参加。 7.能在大庭广众中工作。 11.不愿别人提示,而愿自出主意。 8.常做同样的工作。 9.觉得集会乐趣与个别交际无异。 10.三思而后决定。 11.不愿别人提示,而愿自出主意。

16秋西交《证据法学》在线作业满分答案

16秋西交《证据法学》在线作业满分答案 一、单选题(共40道试题,共80分。) 1.按照最佳证据规则,属于最佳证据的是() A. 合同副本 B. 结婚证书的复印件 C. 原始借款收据 D. 凶器的照片 满分:2分 2.在运用间接证据时,不正确的做法是() A. 只用一个间接证据 B. 每个间接证据都查证属实 C. 各个间接证据之间不存在着矛盾 D. 得出的结论必须是肯定的、唯一的 满分:2分 3.诉讼中未经当事人质证的证据材料() A. 都可以作为定案的根据 B. 在明确告知当事人的情况下可以作为定案的根据 C. 由法院依职权决定是否可以作为定案的根据 D. 一律不得作为定案的根据 满分:2分 4.下列有关证据保全的说法中,错误的是() A. 证据保全是以证据可能灭失或者以后难以取得为前提条件 B. 证据保全可应申请采取,法院也可依职权主动采取 C. 证据保全可分为诉讼前的证据保全和诉讼中的证据保全 D. 法院可依职权主动采取诉讼前的证据保全

满分:2分 5.询问多个被害人的方法是() A. 坚持个别询问 B. 坚持同时一并询问 C. 以座谈会形式询问 D. 可单独、也可集中询问 满分:2分 6.将当事人陈述分为确认性陈述、否定性陈述和承认性陈述的标准是() A. 陈述的形式 B. 陈述的内容 C. 陈述的方法 D. 陈述的性质 满分:2分 7.讯问犯罪嫌疑人、被告人时,不正确的说法是() A. 讯问人员不得少于二人 B. 认真听取、正确对待犯罪嫌疑人、被告人的辩解 C. 讯问犯罪嫌疑人、被告人不应当个别进行 D. 不得以刑讯逼供的方法讯问犯罪嫌疑人、被告人 满分:2分 8.根据《刑事诉讼法》第l08条的规定,下列人员中,有权批准进行侦查实验的是() A. 政法委书记 B. 公安局长 C. 法院院长 D. 检察院检察长 满分:2分 9.下列有关公诉案件被害人的诉讼权利的说法不正确的是() A. 被害人有参加法庭调查权

可数名词和不可数名词(含练习、答案)

不可数名词和可数名词 不能按照个数计算的普通名词叫不可数名词;如:juice, milk, water, beef, chicken 等。 能按照个数计算的普通名词叫可数名词。可数名词有单复数两种形式。指一个人或一件事用单数形式a/an ;指两个人及多个人或事物时用复数形式。可数名词由单数形式变为复数形式的规则如下: ①一般情况,加-s。 女口:books, dogs, days, trees 等。 ②单词以s, x, ch, sh 结尾的,加-es。 女口:classes, watches ,boxes, brushes 等。 ③单词以“辅音字母+y”结尾,将y变i,加-es。 女口:stories, cities, families, babies 等。 ④以o结尾有生命的名词加-es ;无生命的名词加-s。 女口:有生命:heroes, potatoes, tomatoes, man goes 等。 无生命:photos, pia nos, radios, zoos 等。 ⑤一些以f或fe结尾的单词,把f、fe变成ve加-s。 女口:life-lives, knife-knives 等。 ⑥不规则变化。 女口:man-men, woman-women, child-children, foot-feet, tooth-teeth 等。 ⑦单复数同形。 女口:deer, sheep, fish, Chinese, Japanese 等。 一、根据句意填空。 1. Look at those ______ ild) 2.1 can see a ___________ ding n ear the door. (policema n) 3. Do you want some ________ f or dinner? (potato) 4. In autu mn, you can see a lot of ______ ound. (leaf) 5. He has two ______ ne is blue, the other is yellow. (box) 6. Two ________ live in this build ing. ( family )

自我认识的性格测试题以及答案资料

自我认识的性格测试题以及答案资料 对于美好的事物人们都会格外青睐,看脸的时代,自我认识是一个很重要的事情,以下是为您准备的自我认识性格测试题,希望对您有所帮助。 自我认识性格测试题一测测你的颜控指数有多高?测试开始:题目:你是百货销售人员,最讨厌遇到哪种客人呢?A、嫌东嫌西不满意B、不停地换货C、摆臭脸又懒得理你D、根本不买只找你聊天自我认识性格测试题结果分析A、颜值控指数90%。 你是名副其实的外貌协会,特别喜欢特别帅或者特别美的那种异性,你会在很多人中,一眼就挑选出你觉得非常非常好看的,也是大众眼光中公认是好看的。 你只要跟帅哥或美女在一起了,自己的态度也会有所改变,变得非常和蔼可亲。 B、颜值控指数70%。 只要你觉得对方长得不错,你们相处的就会不错,并不一定要挑剔对方是极品帅、极品美丽,你会用欣赏的眼光跟他们相处。 比起会随时间衰败的外貌,你比较相信对方的个性、能力、气质等才是长长久久,愈陈愈香的魅力所在。 C、颜值控指数50%。 你对于美好的事情总是有自己的见解,例如大家都觉得丑的人,你可能会觉得不会,你会用你的角度,你的眼光去欣赏特别独特的东

西。 你会以貌取人,但是标准跟普通人可能会有不一样的地方。 D、颜值控指数100%。 你是追求完美的人,以貌取人的指数百分百,对于恋爱也希望是完美的,但是一旦你爱不到或者你喜欢的人不喜欢你,你就会讲酸话,说对方其实并不怎么样等等。 建议你要在心态上调整一下哦,太追求完美并不是一件好事,要永远相信人无完人。 (完) )1、你是否对自己的外貌很有信心?A.是的B.不太自信2、你喜欢看肥皂类偶像剧吗?A. 不喜欢B. 是的3、你觉得自己是个很有胆略的人吗?A.是的B.不是4、有流星雨时,你会对流星雨许愿吗?A. 不会B. 会的5、坐车或开车的时候你喜欢听点节奏感强的音乐吗?A.是的B.不喜欢6、你觉得自己的防范意识够强吗?A. 不是很强,有点粗心大意B. 比较强7、你喜欢高层建筑吗?A.是的B.不是8、你觉得早起是件很辛苦的事情吗?A.是的B.不是9、你会因一件小失误而悲伤好多天吗?A. 不会B. 是的10、你觉得自己目前从事的工作繁琐吗?A.是的,够繁琐B.还行11、每接个电话你能在三分钟之内就结束谈话吗?A.能B.很难12、你每天总能将自己的工作安排得井井有条吗?A.是的B.不能,总有点焦头烂额的感觉13、你经常有被动的加班吗?A. 很少B. 是的14、你是否经常担心被炒鱿鱼?A. 不会担心,就算炒了又何妨B. 是的15、谁惹

性格测评之九型人格测试问卷及答案解析

性格测试之九型性格问卷 说明:圈出你认为对的句子并记录下来 1. 你觉得许多人倚赖你的帮忙和慷慨。 2. 你很努力纠正自己的缺失。 3. 你是一个不断朝向目标生活的外向人。 4. 你认为大多数人都不懂得欣赏生命的内在美。 5. 你倾向于收藏自己的感情是个多接受少付出的人。 6. 你是一个切头切尾、站在路中心的人,你最大的敌人是自己的恐惧。 7. 你喜欢让事情呈现得轻松、幽默。 8. 你是个易于满足的人,极少感到忧虑,几乎常是心平气和的。 9. 你很善于挺身而出,为自己的需要争持到底。 10. 你常为事情未能按意想中的方向发展而烦燥不乐。 11. 你需要在别人生活上占重要席位,你喜欢别人需要你。 12. 你处事精确及具备专业精神。 13. 你不善于小组讨论或作简短谈话,你需要很多私人时间和空间。 14. 你对过去的事有着一份近乎执着的怀念。 15. 你很重视对某一团体的忠贞。 16. 你善于计划却不善于施行。 17. 你很容易觉察别人的弱点,假如你遇到不平的待遇,你会攻击这弱点。 18. 你觉得生命中许多事情不值得人为它们过份操劳而情绪低落。 19. 你对现存的总觉不满。 20. 人们说你是个好的推销员。 21. 许多人感到和你很接近。 22. 你常被有象征性的事物吸引。 23. 当你感到窘促或被人询问实时感受时,你脑里常是一片空白的。 24. 你很难违抗有权位者的意见。 25. 你对于人和他们做事的动机从不抱很大的怀疑态度。 26. 你不害怕面对别人,事实上,你经常面对不同类型的人。 27. 你喜欢享有完全不用工作的时间。 28. 你常为许多事情忧虑。 29. 你经常尽全力,为成全别人。 30. 你似具有策划,组织工作的本能而且能使工作顺利完成。 31. 别人常欠缺那份深度去了解你的感受。 32. 你讨厌自己貌似愚笨也憎恶被人视为愚笨。 33. 你似乎比大多数人更懂得享受生命。 34. 你在作任何抉择前必先搜集多方面资料,确保准确充足。 35. 你喜欢唱反调,你对很多事情都很抗拒,尤其在开会的时候。 36. 你是很容易说话的人,凡事都有商量余地。 37. 你讨厌浪费时间。 38. 你喜欢把别人从困难或尴尬的境况下解救出來。 39. 你做事能干、称职、效率极高。 40. 你对生命抱有悲观的感觉,有某些事是早已注定了的。 41. 你常靠边站,你喜欢从旁观看别人怎样做而自己却不参与。 42. 你需要较长时间才能作出决定,一般来说,你喜欢行事谨慎。

可数名词和不可数名词

初中英语——可数名词和不可数名词 一、可数名词与不可数名词的区别 普通名词所表示的人或事物是可以按个数计算的,这类名词叫可数名词。可数名词分为个体名词(表示某类人或事物中的个体,如worker, farmer, desk, factory等)和集体名词(表示作为一个整体来看的一群人或一些事物,如people,family 等)。如果普通名词所表示的事物是不能按个数来计算的,这类名词就叫不可数名词。不可数名词分为物质名词(表示无法分为个体的物质,如meat, rice, water, milk, orange 等)和抽象名词(表示动作、状态、情况、品质等抽象概念,如work, homework, time, health, friendship等)。 二、关于可数名词 可数名词有单数和复数两种形式。指一个人或一件事物时,用单数形式;指两个或多个人或事物时用复数形式。名词由单数形式变成复数形式的规则如下: 1. 一般的名词词尾直接加-s 。如: book → books room → rooms house → houses day → days 2. 以s,ss, ch,sh, x 结尾的名词,在词尾加-es 。如: bus → buses glass → glasses watch → watches dish → dishes box → boxes 3. 以"辅音字母+y"结尾的名词,要先将y改为i再加-es。如: city → cities body → bodies factory → factories等等。 4. 以f 或fe 结尾的名词,要将f或fe改为v再加-es。如: half → halves leaf → leaves knife → knives wife → wives 5. 特例[悄悄话:特例常常考,要记住。] ①child → children ②man → men woman → women policeman → policemen (规律:man → men)

性格倾向性测试题

性格倾向性测试题 请根据自己的实际情况回答测验题目。每个答案无所谓正确与错误,不要在每道题上有太多思索。凡符合自身情况的就在“是”字上打“√”;凡不符合自身情况的就在“否”字上打“√”;如果有些题目确实感到不好确定,也可以不作回答。 性格倾向性测验题目(1) 1.能独断独行。是(否) 2.快乐主义的人生观。是(否) 3.喜静安闲。是(否) 4.对人十分信任。是(否) 5.筹思五年以后的事。是(否) 6.遇有集体活动不愿参加,呆在家里。是(否) 7.能在大庭广众之下工作。是(否) 8.常做同样的工作。是(否) 9.觉得集会乐趣与个别交际没有什么两样。是(否) 10.三思而后决定。是(否) 11.不愿别人提示,而愿自出心裁。是(否) 12.喜欢安静而非热烈的娱乐。是(否) 13.工作时不喜欢别人在旁观看。是(否) 14.厌弃呆板的职业。是(否) 15.宁愿节省不愿耗费。是(否) 16.不常分析自己的思想和动机。是(否) 17.好做冥思幻想。是(否) 18.自己擅长的工作,喜欢别人在旁观看。是(否)

19.怒时,不加抑制。是(否) 20.为取得别人赞赏而改善工作。是(否) 21.喜欢兴奋而紧张的劳动。是(否) 22.常回想自己的过去。是(否) 23.愿意做群众运动的领袖。是(否) 24.喜欢公开演说。是(否) 25.使梦想变为事实。是(否) 26.很讲究写应酬信。是(否) 27.做事粗糙。是(否) 28.深思熟虑。是(否) 29.能将强烈的情绪(喜、怒)表现出来。是(否)30.不拘小节。是(否) 31.对人十分关心。是(否) 32.与观点不同的人和睦相处。是(否) 33.喜欢猜疑。是(否) 34.轻信人言,不假思索。是(否) 35.愿意谈书本道理,不愿做实际工作。是(否)36.读书不求甚解。是(否) 37.常写日记。是(否) 38.在人群活动中肃静无哗。是(否) 39.不得已而动作。是(否) 40.不愿回想自己的过去。是(否)

可数名词和不可数名词知识点及练习题

名词的用法 可数名词 (一) 定义:能以数目来计算,可以分成个体的人或东西。可数名词变成复数形式规则变化 一般情况下,直接在词尾+s: book→books, pencil→pencils. man — men 男人woman — women 妇女tooth — teeth 牙齿foot — feet 脚 有些名词的单复数形式相同 deer — deer 鹿sheep — sheep绵羊 Chinese — Chinese 中国人Japanese — Japanese 日本人 (四) 特殊的复数形式的名词 由两部分构成的东西的名词,总以复数形式出现,如:glasses眼镜,trousers裤子,socks 袜子,clothes衣服等。若表达具体数目,要借助量词pair对/双,suit套等。 a pair of glasses, two pairs of socks (五)可数名词的特点 (1) 有单复数:one desk, two chairs, many birds。 (2) 可以用不定冠词a/an、数词、many, some, any, a lot of, lots of等词修饰:an apple, three pictures, some students。 (3) 单数名词做主语,谓语动词用单数形式;复数名词做主语,谓语动词要用复数形式。 ①There is a pen on the desk. 桌子上有一支笔。 ②There are some students in the classroom. 教室里有一些学生。

(4) 在特殊疑问句中,用how many修饰可数名词 There are three pens on the desk. (对划线部分提问) →How many pens are there on the desk? 不可数名词 (一)定义:不能以数目计算,不可以分成个体的概念、状态、品质、感情或表示物质材料的 东西,如water, tea, bread等。它没有复数概念,它的前面不能用补丁冠词a/an. 表特指时可用定冠词the修饰。 ①Water is very important to life. 水对生命来说十分重要。 ②The bread on the table is Mark’s. 桌子上的面包师Mark的。 (二)特点 (1) 不可数名词前面可以有much, a little, a lot of等修饰词:much bread, a little tea (2) 不可数名词不能用数词修饰,需要借助单位词来表示数量: a piece of paper 一张纸,a piece of bread一片面包,a cup of tea一杯茶 (3) 不可数名词变复数:量词变复数形式,作主语时谓语动词用复数 two pieces of bread 两片面包,three cups of tea 三杯茶 (4) 对不可数名词的修饰词提问,疑问词用how much. There is some milk in the glass. (对划线部分提问) →How much milk is there in the glass? 练习: 一、根据句意及所给单词填空。 1. ________(this) are my English books. 2. My aunt Jane and my mother are ___________(sister). 3. I have two ___________(watch). They are on the desk. 4. I have some __________(photo) of my family. 5. Do you like these ____________(dictionary)? 6. Those are _________(bus). 7. I have lots of________(tomato) here. 8. The________(leaf) on the tree turn-yellow. 二、选择填空: 1. —Mom, I want___. ——Here you are. A. a bread B. a piece of bread C. some breads D.breads 2. The _____ has two ______. A. boys, watches B. boy, watch C. boy, watches D. boys, watch 3. There are lots of _____ in the basket on the table. A. tomatos B. tomato C. tomatoes D. tomatoss 4. —_____apples do we need to make fruit salad? —Let me think...We need three apples. A. How long B. How often C. How much D. How many 5. "Lily, Let's make vegetable salad. How many _____ do we need?" "One is enough." A. oranges B. potato C. tomatoes. 6. Would you like _____ to eat now? A. some B. anything C. something D. thing 7. I'm so hungry. Please give me _____ to eat.

证据法的概述

专题一证据法的概述 一、政治法学的概念与其研究的基本内容 证据法学形成的时间是十九世纪的中期,在英国 已经形成了一个专门政治法学体系。这个体系是专门研究如何运用诉讼证据,和与诉讼证据有关的法律规范的学科。它的具体内容包括以下五个方面: (一)三大诉讼。特别是刑事诉讼、民事诉讼当中运用证据的经验。 (二)和证据有关的各种理论基础。 (三)法律规范当中有关证据的规定。 (四)研究古今中外的证据历史、理论和实践。 (五)研究在司法和执法的过程中调产证据,运用证据认定案件事实的证据规则。 二、证据制度的概念与内容 一般情况下国家的政治制度要解决五个问题: (一)首先要明确证据的概念 (二)什么样的事实才能作为最后定案的根据 (三)调查证据的程序 (四)审查、判断证据的真实性 (五)要规定如何进行证明 三、证据法证据制度形成的背景 研究一个国家的整治制度要考虑以下几个因素形成背景:

(一)要考虑其政治经济背景 (二)要考虑文化传统的背景 (三)要考虑诉讼制度的背景 四、证据法学的科学体系和内容 当今世界有两个有关证据法科学体系和内容的代表性的著作。一个是由美国著名的证据法学家华尔兹教授所著的刑事证据大全。这本书主要是讲究适用,从应用的角度来安排证据法律体系。这本书的证据法学的体系共有十九章。 第一章,证据法的渊源。 第二章,审判程序和证据的种类 第三章,审判的记录,包括审判笔录的功能、内容和制作。特别是在法庭上对各种人证的调查、讯问的方法和规则。 第四章,关于证据的相关性 第五章,排除传闻证据的规则 第六章,排除传闻证据的例外 第七章,证人可靠性的质疑 第九章,用不恰当的方法所收集到的证据,特别是辨认证据的排除。 第十章,武力搜查,没有理由的搜查、扣押以及意思权证据的保护。 第十一章,供述证据 第十二章,面证权 第十三章,证明责任和特定的规则 第十四章,司法认知 第十五章,证人能力 第十六章,各种文字材料和文字证据

相关主题