搜档网
当前位置:搜档网 › VASP第一性原理计算与案例详解

VASP第一性原理计算与案例详解

VASP第一性原理计算与案例详解
VASP第一性原理计算与案例详解

V ASP第一性原理计算与案例详解

目录

第一章 LINUX命令 (3)

1.1 常用命令 (3)

1.1.1 浏览目录 (3)

1.1.2 浏览文件 (3)

1.1.3 目录操作 (3)

1.1.4 文件操作 (3)

1.1.5 系统信息 (3)

第二章 SSH软件使用 (4)

2.1 软件界面 (4)

2.2 SSH transfer的应用 (5)

2.2.1 文件传输 (5)

2.2.2 简单应用 (5)

第三章 VASP的四个输入文件 (5)

3.1 INCAR (5)

3.2 KPOINTS (6)

3.3 POSCAR (6)

3.4 POTCAR (7)

第四章 实例 (8)

4.1 模型的构建 (8)

4.2 VASP计算 (11)

4.2.1 参数测试(VASP)参数设置 (11)

4.2.2 晶胞优化(Cu) (18)

4.2.3 Cu(100)表面的能量 (20)

4.2.4 吸附分子CO、H、CHO的结构优化 (22)

4.2.5 CO吸附于Cu100表面H位 (24)

4.2.6 H吸附于Cu100表面H位 (25)

4.2.7 CHO吸附于Cu100表面B位 (26)

4.2.8 CO和H共吸附于Cu100表面 (28)

4.2.9 过渡态计算 (29)

第一章 Linux命令

1.1 常用命令

1.1.1 浏览目录

cd: 进入某个目录。如:cd /home/songluzhi/vasp/CH4

cd .. 上一层目录;cd / 根目录;

ls: 显示目录下的文件。

注:输入目录名时,可只输入前3个字母,按Tab键补全。1.1.2 浏览文件

cat:显示文件内容。如:cat INCAR

如果文件较大,可用:cat INCAR | more (可以按上下键查看) 合并文件:cat A B > C (A和B的内容合并,A在前,B在后) 1.1.3 目录操作

mkdir:建立目录;rmdir:删除目录。

如:mkdir T-CH3-Rh111

1.1.4 文件操作

rm:删除文件;vi:编辑文件;cp:拷贝文件

mv:移动文件;pwd:显示当前路径。

如:rm INCAR rm a* (删除以a开头的所有文件)

rm -rf abc (强制删除文件abc)

tar:解压缩文件。压缩文件??rar

1.1.5 系统信息

df:分区占用大小。如:df -h

du:各级目录的大小。

top:运行的任务。

ps ax:查看详细任务。

kill:杀死任务。如:kill 12058 (杀死PID为12058的任务)注:PID为top命令的第一列数字。

第二章 SSH软件使用

2.1 软件界面

SSH界面

SSH transfer

2.2 SSH transfer的应用

2.2.1 文件传输

从本地文件中,把所需的计算文件直接拖到服务器中。一般就是V ASP计算的四个文件INCAR,KPOINTS,POSCAR,POTCAR。

2.2.2 简单应用

在右侧文件夹中可以直接构建文件夹,删除文件,修改文件。

从SSH要cd到某个文件夹下时,可先从SSH transfer进入,直接复制路径栏,可快速进入。

第三章V ASP的四个输入文件

3.1 INCAR

SYSTEM = name

ENCUT = 400

PREC = Medium

EDIFF = 5E-4

EDIFFG = -0.1

GGA = 91

VOSKWN = 1 ! 磁性计算

ISYM = 0 ! 对称 0 无 1 有

LREAL = .FALSE. ! 倒空间

ISPIN = 2 ! 2 磁性计算 1 不进行

ISTART = 0 ! 0初次计算,1再次计算

ICHARG = 2 ! 2构造原子密度

ISMEAR = 2 ! -5 半导体;DOS 静态计算0;原胞较大,k点

小于4,单个原子,小分子;1 2金属体系。SIGMA = 0.1

IBRION = 2 ! 1 DIIS, 2 CG, 5 频率,3 过渡态ISIF = 2 ! 2 结构优化, 3 晶胞优化

NSW = 200 ! 离子运动步数

POTIM =0.05 ! 步长

NELMIN = 4 ! 最小迭代次数

NELM =200 ! 最多迭代次数

LWAVE = .FALSE. ! 不输出波函数

LCHARG = .FALSE. ! 不输出密度函数

3.2 KPOINTS

对于表面

surface

M

5 5 1

0 0 0

对于分子和原子

atom or molcular

1

Rec

0 0 0 1

3.3 POSCAR

CH4在Co100表面Top位的吸附!(名称)

1.0

5.0120000839 0.0000000000 0.0000000000 0.0000000000 5.0120000839 0.0000000000 0.0000000000 0.0000000000 15.3159999847

Co H C

16 4 1

S

Direct

0.000000000 0.000000000 0.108070001 T T T

0.000000000 0.000000000 0.333149999 T T T

0.250000000 0.250000000 0.000000000 F F F

0.250010014 0.250000000 0.225119993 T T T

0.500000000 0.000000000 0.108060002 T T T

0.500000000 0.000000000 0.333149999 T T T

0.750000000 0.250000000 0.000000000 F F F

0.749989986 0.250000000 0.225119993 T T T

0.000000000 0.500000000 0.108070001 T T T

0.000000000 0.500000000 0.333139986 T T T

0.250000000 0.750000000 0.000000000 F F F

0.250010014 0.750000000 0.225130007 T T T

0.500000000 0.500000000 0.108070001 T T T

0.500000000 0.500000000 0.333149999 T T T

0.750000000 0.750000000 0.000000000 F F F

0.749989986 0.750000000 0.225119993 T T T

0.500079989 0.501429975 0.451510012 T T T

0.292820007 0.502219975 0.546630025 T T T

0.601890028 0.680920005 0.546850026 T T T

0.602090001 0.323870003 0.547209978 T T T

0.499240011 0.502129972 0.523060024 T T T

3.4 POTCAR

从赝势库中找到所需元素的赝势文件,命名规则为:POTCAR-C(元素)。把这几个文件放到一个文件夹下,按照前面POSCAR中的元素顺序合并在一起。

命令为:cat POTCAR-Co POTCAR-H POTCAR-C > POTCAR

第四章实例

CO+H-CHO Cu(100)

4.1 模型的构建

过程:首先通过MS构建好所需模型,导出为*.cif格式;导入到Vesta程序中,输出为*.vasp。根据前面所讲的POSCAR格式修改,得到所需文件。

图解:

1.创建MS文件:

2. 导入Cu晶胞

3. 导出为Cif格式

打开File---export,保存类型为*.cif,保存在指定位置。

4. 通过Vesta导出为*.vasp

直接把Cu.cif拖到vesta程序中,打开File---Export Data...,保存类型为*.vasp,保存在指定位置。

5. 用写字板打开Cu.vasp

根据所需要求修改Cu.vasp,这里不需要修改。在吸附表面时则需要固定,见3.3。

CIF file

1.0

3.6147000790 0.0000000000 0.0000000000

0.0000000000 3.6147000790 0.0000000000

0.0000000000 0.0000000000 3.6147000790

Cu

4

Direct

0.000000000 0.000000000 0.000000000

0.000000000 0.500000000 0.500000000

0.500000000 0.000000000 0.500000000

0.500000000 0.500000000 0.000000000

4.2 V ASP计算

4.2.1 参数测试(V ASP)参数设置

这里给出了赝势、ENCUF、K点、SIMGA一共四个参数。是都要验证吗?还是只要验证其中一些?

一、检验赝势的好坏:赝势的好坏这里是特意举例铜原子的吧?还是算铜的晶胞时只用算一下一个铜原子的就行?

(一)方法:对单个原子进行计算;

(二)要求:1、对称性和自旋极化均采用默认值;

2、ENCUT要足够大;

3、原胞的大小要足够大,一般设置为15 ?足矣,对某些元

素还可以取得更小一些。

(三)以计算单个Cu原子为例:

1、INCAR文件:

SYSTEM = Cu atom

ENCUT = 450.00 eV

NELMDL = 5

ISMEAR = 0

SIGMA = 0.1

2、POSCAR文件:

atom

10.00

1.00 0.00 0.00

0.00 1.00 0.00

0.00 0.00 1.00

Cu

1

Direct

0.5 0.5 0.5

3、KPOINTS文件:

Automatic

Gamma

1 1 1

0 0 0

4、POTCAR文件:(略)

(四)计算任务执行方法:

输入:mpirun -np 4 vasp > log &

(五)赝势好的判断标准:计算得到的OUTCAR文件中的“energy without

entropy”能量值在-0.001~-0.01 eV之间。

命令:grep 'energy without entropy' OUTCAR | tail -1

计算结果为:

二、筛选合适的ENCUT大小:

(一)输入文件:

1、用脚本程序optencut.sh代替INCAR文件:

rm WAVECAR

for i in 300 350 400 450 500

do

cat > INCAR <

SYSTEM = Cu

ENCUT = $i

GGA = 91

ISTART = 0 ; ICHARG = 2

ISMEAR = -5

PREC = Accurate

!

echo "ENCUT = $i eV"; time mpirun -np 2 vasp > log &

E=$(grep "TOTEN" OUTCAR | tail -1 | awk '{printf "%12.6f \n", $5}')

echo $i $E >> comment

done

注:每个任务2核,5个截断能,共要10核。

2、POSCAR文件:

Cu cell

1.0

3.6147000790 0.0000000000 0.0000000000

0.0000000000 3.6147000790 0.0000000000

0.0000000000 0.0000000000 3.6147000790

Cu

4

Direct

0.000000000 0.000000000 0.000000000

0.000000000 0.500000000 0.500000000

0.500000000 0.000000000 0.500000000

0.500000000 0.500000000 0.000000000

3、KPOINTS文件:

A

M

8 8 8

0.0 0.0 0.0

4、POTCAR文件:(略)

(二)计算任务执行方法:

输入:dos2unix optencut.sh

bash optencut.sh

(三)判别标准:计算完成后得到comment文件,它列出了在每个ENCUT

时计算得到的相应的总能,只要总能变化在0.001 eV左右

就足够了。

三、选择合适的k点数目:

(一)输入文件:

1、INCAR文件:

SYSTEM = Cu

ENCUT = 450.00 eV

ISTART = 0; ICHARG = 2

ISMEAR = -5

PREC = Accurate

2、POSCAR文件:

Cu

1.0

3.6147000790 0.0000000000

0.0000000000

0.0000000000 3.6147000790

0.0000000000

0.0000000000 0.0000000000

3.6147000790

Cu

4

Direct

0.000000000 0.000000000 0.000000000

0.000000000 0.500000000 0.500000000

0.500000000 0.000000000 0.500000000

0.500000000 0.500000000 0.000000000

3、用脚本程序optkpoints.sh代替KPOINTS文件:

rm WAVECAR

for i in 6 7 8 9 10

do

cat > KPOINTS <

Automatic generation

Monkhorst-pack

$i $i $i

0.0 0.0 0.0

!

echo " k mesh = $i x $i x $i"; time mpirun -np 8 vasp > log &

E=$(grep "TOTEN" OUTCAR | tail -1| awk '{printf "%12.6f \n", $5}')

KP=$(grep "irreducible" OUTCAR | tail -1| awk '{printf "%5i \n",

$2}')

echo $i $KP $E >> comment

done

4、POTCAR文件:(略)

(二)计算任务执行方法:

输入:dos2unix optkpoints.sh

bash optkpoints.sh

(三)判别标准:计算完成后得到comment文件,它列出了在k点数目与总

能的对应值,只要总能变化在0.001 eV左右就非常足够了。

四、优化选择合适的SIGMA值(展宽σ值):

(一)为什么要优化SIGMA值?

若展宽σ太小,则计算难以收敛;若展宽σ太大,则会产生多余的

熵(entropy),因此必须选择合适的σ值。(Too large

smearing-parameters might result in a wrong total energy, small

smearing parameters require a large k-point mesh.)

(二)ISMEAR和SIGMA:

1、ISMEAR和SIGMA这两个关键词要联合起来使用,前者用来指定

smearing的方法,后者用来指定smearing的展宽——σ值。

2、ISMEAR和SIGMA的默认值分别为1和0.2。

3、ISMEAR可能的取值为-5,-4,-3,-2,-1,0,N (N表示正整数):

ISM ISM ISM ISM ISM 4、σ5、IS (ISM (度计(并选a s SIG (ISM insu or I (择一(三)当采1、用MEAR =-5MEAR =-4MEAR =-1MEAR =0,MEAR =N 值一般在0SMEAR 取值1)一般说MEAR =0并2)在进行静计算且k 点3)当原胞较选择一个合single or tw GMA=0.05)4)对半导MEAR =-5ulators, sin ISMEAR=-5)对金属体一个合适的采用ISMEAR 用脚本程序rm WAVEC for i in 0.10do

cat > INCA 5,表示采用4,表示采用,表示采用,表示采用,表示采用表示是In simil 0.1~0.3 eV 值的一些经说来,无论是并选择一个静态计算(点数目大于较大而k 点合适的SIGM wo k-points )

导体或绝缘。(Mind: A ce it might -5.)

体系(for rel 的SIGMA 值R =0或N 序optsigma.s CAR

0 0.12 0.14 AR <

用Blochl 修用四面体方用Fermi-Di 用Gaussian 用Methfesse 此方法中的n most case ar results 。V 范围内。经验:

是对何种体个合适的SI (能量单点计4时,取I 点数目较小MA 值。(If ) use ISME 缘体,不论Avoid to use cause prob axations in 值。

时,如何优sh 代替INC 0.16 0.18 0修正的四面体方法,但是没irac smearin smearing 方el-Paxton s 的阶数,一es a

体系,进行GMA 值,计算, no rel SMEAR =-(小于4个the cell is to EAR=0 in 是静态还e ISMEAR>blems. For metals ),优化选择合CAR 文件:

0.20 0.22 0.2体方法;

没有Blochl ng 方法; 方法;

mearing 方般情况下N and 行何种性质都能得到合axation in m -5。

个)时,取oo large (or combinatio 是结构优化>0 for semi insulators u 取ISMEAR 合适的SIGM

24 0.26 0.28l 修正; 方法,其中取1或2 leads to 的计算,采合理的结果metals )或态取ISMEAR r if you use on with a s 化计算,都iconductors use ISMEA =1或2,并MA 值?

8 0.30 N 是

2, 但very

采用果。 态密=0,only mall 都取s and AR=0 并选

SYSTEM = bcc Fe

ENCUT = 450

GGA = 91

ISTART = 0 ; ICHARG = 2

ISMEAR = 0 ; SIGMA = $i

PREC = Accurate

!

echo " SIGMA = $i eV "; time vasp

TS=$(grep "EENTRO" OUTCAR | tail -1 | awk '{printf "%12.6f \n", $5}')

echo $i $TS >> comment

done

2、POSCAR文件:

Cu

1.0

3.6147000790 0.0000000000

0.0000000000

0.0000000000 3.6147000790

0.0000000000

0.0000000000 0.0000000000

3.6147000790

Cu

4

Direct

0.000000000 0.000000000 0.000000000

0.000000000 0.500000000 0.500000000

0.500000000 0.000000000 0.500000000

0.500000000 0.500000000 0.000000000 3、KPOINTS文件:

A

M

9 9 9

0.0 0.0 0.0

4、POTCAR文件:(略)

(四)计算任务执行方法:

输入:dos2unix optsigma.sh

bash optsigma.sh

(五)判断标准:熵(entropy)越小越好,选择entropy T*S EENTRO值中最小的那个所对应的SIGMA。( SIGMA should be as large as possible keeping the difference between the free energy and the total energy (i.e. the term 'entropy T*S') in the OUTCAR file negligible (1 meV/atom).)

(五)注意:

1、当k点的数目发生变化后,要重新优化选择SIGMA值。

4.2.2 晶胞优化(Cu)

INCAR

SYSTEM = name ENCUT = 400 PREC = Medium EDIFF =5E-6 EDIFFG = -0.01 GGA = 91

ISYM = 1 LREAL = .FALSE. ISTART = 0

ICHARG = 2

INIWAV = 1

ISMEAR = 2

SIGMA = 0.1

IBRION = 2

ISIF = 3

NSW = 200

POTIM = 0.5

NELMIN = 4

NELM = 200

NELMDL = -5

ALGO = F

LWAVE = .FALSE.

LCHARG = .FALSE.

POSCAR

Cu

1.0

3.6147000790 0.0000000000 0.0000000000

0.0000000000 3.6147000790 0.0000000000

0.0000000000 0.0000000000 3.6147000790

Cu

4

Direct

0.000000000 0.000000000 0.000000000

0.000000000 0.500000000 0.500000000

0.500000000 0.000000000 0.500000000

0.500000000 0.500000000 0.000000000 KPOINTS

Cu cell

M

8 8 8

0 0 0

POTCAR (略)

命令:mpirun –np 8 vasp > log &

计算结果:查看CONTCAR,获取晶胞参数a=b=c=3.629 误差=0.4%

注:优化后的结构为CONTCAR,导出保存为***.vasp,通过Vesta打开输出为.cif 格式的文件,可用MS打开。

4.2.3 Cu(100)表面的能量

从MS 构建模型,直到获得POSCAR 。 INCAR

SYSTEM = Cu100 ENCUT = 400 PREC = Medium EDIFF = 5E-6 EDIFFG = -0.01 GGA = 91

LREAL = .FALSE. ISTART = 0 ICHARG = 2 ISMEAR = 2 SIGMA = 0.1 IBRION = 2 ISIF = 2 NSW = 200

POTIM = 0.5 NELMIN = 4 NELM = 200 LWAVE = .FALSE. LCHARG = .FALSE.

POSCAR

CIF file 1.0

5.1119999886 0.0000000000 0.0000000000 0.0000000000 5.1119999886 0.0000000000 0.0000000000 0.0000000000 15.4221000671 Cu 16 S Direct

0.000000000 0.000000000 0.117190003 T T T 0.000000000 0.000000000 0.351579994 T T T 0.250000000 0.250000000 0.000000000 F F F 0.250000000 0.250000000 0.234390005 T T T 0.500000000 0.000000000 0.117190003 T T T 0.500000000 0.000000000 0.351579994 T T

T

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质就是旧键的断裂与新建的形成,参与成键原子的电子壳层重新组合就是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似与关于分子波函数的方程形成计算量子化学的数学基础。 2、1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)就是各种计算方法的理论基础与核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。 2、1、1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献与教材中对这些方程已有系统的推导与阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构与性质,在非相对论近似下,须求解 R AB =R 图2-1分子体系的坐标

定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2、1) 其中分子波函数依赖于电子与原子核的坐标,Hamilton 算符包含了电子p 的动能与电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2、2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2、3) 与电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2、4) 式中Z A 与M A 就是原子核A 的电荷与质量,r pq =|r p -r q |,r pA =|r p -R A |与R AB =|R A -R B |分别就是电子p 与q 、核A 与电子p 及核A 与B 间的距离(均以原子单位表示之)。上述分子坐标系如图2、1所示。可以用V(R,r)代表(2、2)-(2、4)式中所有位能项之与 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2、5) 原子单位 上述的Schrodinger 方程与Hamilton 算符就是以原子单位表示的,这样表示的优点在于简化书写型式与避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位就是Bohr 半径

第一性原理简介

第一性原理是什么 第一性原理怎么用 1什么是第一性原理 根据原子核和电子互相作用的原理及其基本运动规律,运用,从具体要求出发,经过一些近似处理后直接求解的算法,称为第一性原理。广义 的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的从头算和 (DFT计算。 从定义可以看出第一性原理涉及到量子力学、、Hartree-Fock自洽场、等许多对我来说很陌生的物理化学定义。因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。 2第一性原理的作用 以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的

物理现象和物理规律。密度泛函计算的一些结果能够与实验直接进行比较一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第 一原理计算方法的广泛应用。 密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT及其计算已经快速发展成 为材料建模模拟的一种“标准工具”。 密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS、光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用 目前我所学到的利用第一性原理的软件为Material Studio 、VASP软件。其中Materials Studio (简称MS是专门为材料科学领域研究者幵发的一款可运行在PC上的模拟软件。使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 模块简介 Materials Studio 采用了大家非常熟悉的Microsoft标准用户界面, 允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。 目前,Materials Studio 软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio 的其他产品。是Materials Studio 产品系列的核心模块。 Discover: Materials Studio 的分子力学计算引擎。使用多种分子力学和动力学 方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。

如何用VASP计算单个原子的能量和能级

氢原子的能量为-13.6eV在这一节中,我们用V ASP计算H原子的能量。 对于原子计算,我们可以采用如下的INCAR文件 PREC=ACCURATE NELMDL = 5 make five delays till charge mixing ISMEAR = 0; SIGMA=0.05 use smearing method 采用如下的KPOINTS文件。由于增加K点的数目只能改进描述原子间的相互作用,而在单原子计算中并不需要。所以我们只需要一个K点。 Monkhorst Pack Monkhorst Pack 1 1 1 0 0 0 采用如下的POSCAR文件 atom 1 15.00000 .00000 .00000 .00000 15.00000 .00000 .00000 .00000 15.00000 1 cart 0 0 0 采用标准的H的POTCAR 得到结果如下: k-point 1 : 0.0000 0.0000 0.0000 band No. band energies occupation 1 -6.3145 1.00000 2 -0.0527 0.00000 3 0.4829 0.00000 4 0.4829 0.00000 我们可以看到,电子的能级不为-13.6eV。 Free energy of the ion-electron system (eV) ---------------------------------------------------

alpha Z PSCENC = 0.00060791 Ewald energy TEWEN = -1.36188267 -1/2 Hartree DENC = -6.27429270 -V(xc)+E(xc) XCENC = 1.90099128 PAW double counting = 0.00000000 0.00000000 entropy T*S EENTRO = -0.02820948 eigenvalues EBANDS = -6.31447362 atomic energy EATOM = 12.04670449 --------------------------------------------------- free energy TOTEN = -0.03055478 eV energy without entropy = -0.00234530 energy(sigma->0) = -0.01645004 我们可以看到TOTEN-EA TOM也不等于-13.6eV。 在上面的计算中有个问题,就是H原子有spin,而在上面的计算中我们并没有考虑到spin。所以如果我们改用LSDA近似,在INCAR中用ISPIN=2的tag,则得到如下结果: k-point 1 : 0.0000 0.0000 0.0000 band No. band energies occupation 1 -7.2736 1.00000 2 -0.1229 0.00000 3 0.4562 0.00000 4 0.4562 0.00000 5 0.4562 0.00000 spin component 2 k-point 1 : 0.0000 0.0000 0.0000 band No. band energies occupation 1 -2.4140 0.00000 2 -0.0701 0.00000 3 0.5179 0.00000 4 0.5179 0.00000 5 0.5179 0.00000 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 0.00060791 Ewald energy TEWEN = -1.36188267 -1/2 Hartree DENC = -6.68322940 -V(xc)+E(xc) XCENC = 2.38615430 PAW double counting = 0.00000000 0.00000000

vasp计算参数设置

软件主要功能: 采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体 l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型 l 计算材料的状态方程和力学性质(体弹性模量和弹性常数) l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF) l 计算材料的光学性质 l 计算材料的磁学性质 l 计算材料的晶格动力学性质(声子谱等) l 表面体系的模拟(重构、表面态和STM模拟) l 从头分子动力学模拟 l 计算材料的激发态(GW准粒子修正) 计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册 INCAR文件: 该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类: l 对所计算的体系进行注释:SYSTEM l 定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA V l 定义电子的优化 –平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG –电子部分优化的方法:ALGO,IALGO,LDIAG –电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX –自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF l 定义离子或原子的优化 –原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS –离子弛豫收敛标准:EDIFFG l 定义态密度积分的方法和参数 –smearing方法和参数:ISMEAR,SIGMA –计算态密度时能量范围和点数:EMIN,EMAX,NEDOS –计算分波态密度的参数:RWIGS,LORBIT l 其它 –计算精度控制:PREC –磁性计算:ISPIN,MAGMOM,NUPDOWN –交换关联函数:GGA,VOSKOWN –计算ELF和总的局域势:LELF,LVTOT –结构优化参数:ISIF –等等。 主要参数说明如下: ? SYSTEM:该输入文件所要执行的任务的名字。取值:字符串,缺省值:SYSTEM

第一性原理计算原理和方法精编

第一性原理计算原理和 方法精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似和关于分子波函数的方程形成计算量子化学的数学基础。 SCF-MO 方法的基本原理 分子轨道的自洽场计算方 法(SCF-MO)是各种计算方法的理论基础和核心部分,因此在介绍本文计算工作所用方法之 前,有必要对其关键的部分作 一简要阐述。 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本 R AB =R 图2-1分子体系的坐标

近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ () 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 以及原子核的动能 ∑?-=A A A N M H 2121? 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图所示。可以用V(R,r)代表-式中所有位能项之和 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,12121),( 原子单位

如何分析能带图及第一性原理的计算

分析能带图 能带结构是目前采用第一性原理(从头abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,倒带和价带之间的空隙称为能隙,基本概念如图所示: 如何能隙很小或为0 ,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传倒带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料距能导电。 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valence band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量范围高于价带,而所有在传导带中的电子均可经由外在的电

场加速而形成电流。对与半导体以及绝缘体而言,价带的上方有一个能隙(band gap),能隙上方的能带则是传导带,电子进入传导带后才能在固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 费米能级(fermi level)是绝对零度下的最高能级。根据泡利不相容原理,一个量 子态不能容纳两个或两个以上的费米子(电子),所以在绝度零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子态的“费米海”。“费米海” 中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。 能量色散(dispersion of energy)。同一个能带内之所以会有不同能量的量子态, 原因是能带的电子具有不同波向量(wave vector),或是k-向量。在量子力学中, k-向量即为粒子的动量,不同的材料会有不同的能量-动量关系(E-K relationship)。能量色散决定了半导体材料的能隙是直接能隙还是间接能隙。如导带最低点与价带最高点的K值相同,则为直接能隙,否则为间接能隙。 能带的宽度。能带的宽度或三度,即能带最高和最低能级之间的能量差,是一个非常重要的特征,它是由相互作用的轨道之间的重叠来决定的,因而反应出轨道之间的重叠情况,相邻的轨道之间重叠越大,带宽就越大。

用vasp计算硅的能带结构

用vasp计算硅的能带结构 在最此次仿真之前,因为从未用过vasp软件,所以必须得学习此软件及一些能带的知识。vasp是使用赝势和平面波基组,进行从头量子力学分子动力学计算的软件包。用vasp计算硅的能带结构首先要了解晶体硅的结构,它是两个嵌套在一起的FCC布拉菲晶格,相对的位置为 (a/4,a/4,a/4), 其中a=5.4A是大的正方晶格的晶格常数。在计算中,我们采用FCC的原胞,每个原胞里有两个硅原子。 VASP计算需要以下的四个文件:INCAR(控制参数), KPOINTS(倒空间撒点), POSCAR(原子坐标), POTCAR(赝势文件) 为了计算能带结构,我们首先要进行一次自洽计算,得到体系正确的基态电子密度。然后固定此电荷分布,对于选定的特殊的K点进一步进行非自洽的能带计算。有了需要的K点的能量本征值,也就得到了我们所需要的能带。 步骤一.—自洽计算产生正确的基态电子密度: 以下是用到的各个文件样本: INCAR 文件: SYSTEM = Si Startparameter for this run: NWRITE = 2; LPETIM=F write-flag & timer PREC = medium medium, high low ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? Electronic Relaxation 1 NELM = 90; NELMIN= 8; NELMDL= 10 # of ELM steps EDIFF = 0.1E-03 stopping-criterion for ELM LREAL = .FALSE. real-space projection Ionic relaxation EDIFFG = 0.1E-02 stopping-criterion for IOM NSW = 0 number of steps for IOM IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG ISIF = 2 stress and relaxation POTIM = 0.10 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run

VASP几个计算实例

用VASP计算H原子的能量 氢原子的能量为。在这一节中,我们用VASP计算H原子的能量。对于原子计算,我们可以采用如下的INCAR文件 PREC=ACCURATE NELMDL=5make five delays till charge mixing ISMEAR=0;SIGMA=0.05use smearing method 采用如下的KPOINTS文件。由于增加K点的数目只能改进描述原子间的相互作用,而在单原子计算中并不需要。所以我们只需要一个K点。 Monkhorst Pack0Monkhorst Pack 111 000 采用如下的POSCAR文件 atom1 15.00000.00000.00000 .0000015.00000.00000 .00000.0000015.00000 1 cart 000 采用标准的H的POTCAR 得到结果如下: k-point1:0.00000.00000.0000 band No.band energies occupation 1-6.3145 1.00000 2-0.05270.00000 30.48290.00000 40.48290.00000 我们可以看到,电子的能级不为。 Free energy of the ion-electron system(eV) --------------------------------------------------- alpha Z PSCENC=0.00060791 Ewald energy TEWEN=-1.36188267 -1/2Hartree DENC=-6.27429270 -V(xc)+E(xc)XCENC= 1.90099128 PAW double counting=0.000000000.00000000 entropy T*S EENTRO=-0.02820948 eigenvalues EBANDS=-6.31447362 atomic energy EATOM=12.04670449 ---------------------------------------------------

第一性原理计算

实验一、第一性原理计算 1. 实验目的 (1) 掌握第一性原理和密度泛涵的计算方法; (2) 学会使用Visualizer 的各种建模和可视化工具; (3) 熟悉CASTEP 模块的功能。 2. 实验原理 CASTEP 是基于密度泛涵理论平面波赝势基础上的量子力学计算。 密度泛涵理论的基本思想是原子、分子和固体的基本物理性质可以用粒子密度函数进行描述。可以归纳为两个基本定理: 定理1:粒子数密度函数是一个决定系统基态物理性质的基本参量。 定理2:在粒子数不变的条件下能量对密度函数变分得到系统基态的能量。不计自旋的全同费米子的哈密顿量为:H T U V =++ 其中动能项为:()()T dr r r ψψ+=??? 库仑作用项为:11'()(')()(')2 ' U drdr r r r r r r ψψψψ++=-? V 为对所有粒子均相同的局域势u(r)表示的外场影响:()()()V dru r r r ψψ+=?粒子数密度函数为: ()()()r r r ρψψ+=ΦΦ 对于给定的()r υ,能量泛函[]E ρ定义为: []()()E dr r r T U ρυρ=+Φ+Φ ?;[]F T U ρ=Φ+Φ系统基态的能量: ' ''''[]''''[][]()()[][]()()[] E T U V G E F dr r r E G G F dr r r E G ρρυρφρυρρΦ=Φ+Φ+ΦΦ==+>?=+=? 3. 实验内容 材料的电子结构计算; 4. 实验设备和仪器 (1) 硬件:多台PC 机和一台高性能计算服务器。 软件:主要利用Materials studio 软件包里的Materials Visualizer 和CASTEP 模块 5. 实验步骤

VASP计算前的各种测试

BatchDoc Word文档批量处理工具 (计算前的)验证 一、检验赝势的好坏: (一)方法:对单个原子进行计算; (二)要求:1、对称性和自旋极化均采用默认值; 2、ENCUT要足够大; 3、原胞的大小要足够大,一般设置为15 ?足矣,对某些元素还可以取得更小一些。 (三)以计算单个Fe原子为例: 1、INCAR文件: SYSTEM = Fe atom ENCUT = 450.00 eV NELMDL = 5 ! make five delays till charge mixing,详细意义见注释一 ISMEAR = 0 SIGMA=0.1 2、POSCAR文件: atom 15.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1 Direct 0 0 0 3、KPOINTS文件:(详细解释见注释二。) Automatic Gamma 1 1 1 0 0 0 4、POTCAR文件:(略) 注释一:关键词“NELMDL”: A)此关键词的用途:指定计算开始时电子非自洽迭代的步数(即

NELMDL gives the number of non-selfconsistent steps at the beginning), 文档批量处理工具BatchDoc Word 文档批量处理工具BatchDoc Word densitycharge fastermake calculations 。目的是“非自洽”指的是保持“非自Charge density is used to set up the Hamiltonian, 所以不变,由于洽”也指保持初始的哈密顿量不变。: B)默认值(default value)(时) 当ISTART=0, INIWANELMDL = -5 V=1, and IALGO=8 ) ISTART=0, INIWA V=1, and IALGO=48( NELMDL = -12 时当 ) 其他情况下NELMDL = 0 ( NELMDL might be positive or negative. ionic each applied means A positive number that after a delay is (movement -- in general not a convenient option. )在每次核运动之后(只在A negative value results in a delay only for the start-configuration. 第一步核运动之前)NELMDL”为什么可以减少计算所需的时间?C)关键词“ the the is Charge density used Hamiltonian, to set then up wavefunctions are optimized iteratively so that they get closer to the exact a optimized wavefunctions wavefunctions of Hamiltonian. this From the old with density charge is calculated, the which is then mixed new Manual P105input-charge density. A brief flowchart is given below.(参自页) 是比较离谱的,在前一般情况下,the initial guessed wavefunctions 不变、保持初始的density次非自洽迭代过程中保持NELMDLcharge

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似, 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122 ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??? ?????-++?-?-∑∑∑∑∑∑≠≠ (2.1) 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p

与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2.2) 以及原子核的动能 ∑?-=A A A M H 2? (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)-(2.4)式中所有位能项之和 ∑∑∑-+= ≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2.5) 原子单位 上述的Schrodinger 方程和Hamilton 算符是以原子单位表示的,这样表示的优点在于简化书写型式和避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr 半径 能量是以Hartree 为单位,它定义为相距1Bohr 的两个电子间的库仑排斥作用能 质量则以电子制单位表示之,即定义m e =1 。

用VASP进行Partial Charge分析实例

用VASP进行Partial Charge分析实例 VASP Version : 4.6 在这篇文章中,我将首先介绍Partial Charge的概念,以及如何用VASP具体的计算Partial Charge。首先,所谓的Partial Charge是针对与Total Charge来说的,指的是某个能量范围、某个K点或者某个特定的态所对应的电荷密度。在文献中最常见的是价带顶部,导带底部,表面态或者局域态所对应的Partial Charge。通过分析这些态所对应的Partial Charge,可以得到体系的一些性质,比如局域态具体的是局域在哪个原子上等。我将通过具体的例子说明如何用VASP进行Partial Charge Analysis。 进行Partial Charge Analysis的第一步是进行自洽的计算,得到体系的电子结构。这一步的计算采用通常的INCAR和KPOINTS文件。在自洽计算结束后,我们需要保存WAVECAR文件。(通过在INCAR文件中设置LWAVE=TRUE实现)在这个例子中,假设我们需要计算一个硅纳米线的导带和价带的Partial Charge。硅纳米线的结构如下: 第二步是画出能带结构,以决定你需要画哪条能带的那个K点的态所对应的Partial Charge。关于具体如何用VASP画能带,请参见用VASP4.6计算晶体硅能带实例一文。我们得到硅纳米线的能带结构如下: 画能带时有些小技巧。你可以用一些支持列模块的编辑器,如UltraEdit,将OUTCAR里的各个K点所对应的本征值粘贴到Origin中。这一步完成后,在Origin中做一个矩阵转置,然后将K点坐标贴到第一列,并将其设为X坐标。如此画出来的基本上就是能带图了。在Origin 中可以通过设置纵轴范围来更加清楚的区分费米能级附近的各条能带。如上的硅纳米线所对应的能带结构图如下: 决定画哪条能带,或者那些感兴趣的K点之后,有如下几种方法计算不同的Partial Charge。如果你希望计算价带顶端的Partial Charge,则需要首先通过能带结构图确定价带的能带标号。需要注意,进行Partial Charge分析必须要保留有自洽计算的WAVECAR才可以。 第一种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 1 charge: 1-file 2-atom 10-const LPARD=.TRUE. IBAND= 20 21 22 23 KPUSE= 1 2 3 4 LSEPB=.TRUE. LSEPK=.TRUE. 这样的INCAR给出的是指定能带,指定K点所对应的Partial Charge。分析导带、价带等的Partial Charge特性,通常采用的都是这种模式。 第二种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 1 charge: 1-file 2-atom 10-const LPARD=.TRUE. EINT = -10.3 -5.1 LSEPB=.FALSE. LSEPK=.FALSE. 这样的INCAR给出的是在能量之间的Partial Charge。这种模式适合于分析某个能量区间内的波函数的性质。 第三种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut

第一性原理计算方法讲义

第一性原理计算方法 引言 前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。 量子力学是反映微观粒子运动规律的理论。量子力学的出现,使得人们对于物质微观结构的认识日益深入。原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。 但是固体是具有?1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。绝热近似(Born-Oppenheimei 近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。Hartree-Fock 近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。1964年,Hohenberg和Kohn提出了严格的 密度泛函理论(Density Functional Theory, DFT )。它建立在非均匀电子气理论基础之上,以粒子数密度(『)作为基本变量。1965年,Kohn和Sham提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。将精确的密度泛函理 论应用到实际,需要对电子间的交换关联作用进行近似。局域密度近似(LDA、广义梯度近似(GGA 等的提出,以及以密度泛函理论为基础的计算方法(赝势方法、全电子线形缀加平面波方法(FLAPW)等、的提出,使得密度泛函理论在化学和固体物理中的电子结构计算取得了广泛的应用,从而使得固体材料的研究取得长足的进步。 第一性原理计算方法的应用 1、体系的能量

vasp在计算磁性的实例和讨论

兄弟,问3个问题 1,vasp在计算磁性的时候,oszicar中得到的磁矩和outcar中得到各原子磁矩之和不一致,在投稿的是否曾碰到有审稿人质疑,对于这个不一致你们一般是怎么解释的了? 2,另外,磁性计算应该比较负责。你应该还使用别的程序计算过磁性,与vasp结果比较是否一致,对磁性计算采用的程序有什么推荐。 ps:由于曾使用vasp和dmol算过非周期体系磁性,结构对磁性影响非常大,因此使用这两个程序计算的磁性要一致很麻烦。还不敢确定到底是哪个程序可能不可靠。 3,如果采用vasp计算磁性,对采用的方法和设置有什么推荐。 1,OSZICAR中得到的磁矩是OUTCAR中最后一步得到的总磁矩是相等的。总磁矩和各原子的磁矩(RMT球内的磁矩)之和之差就是间隙区的磁矩。因为有间隙区存在,不一致是正常的。 2,如果算磁性,全电子的结果更精确,我的一些计算结果显示磁性原子对在最近邻的位置时,PAW与FPLAW给出的能量差不一致,在长程时符合的很好。虽然并没有改变定性结论。感觉PAW似乎不能很好地描述较强耦合。我试图在找出原因,主要使用exciting和vasp做比较。计算磁性推荐使用FP-LAPW, FP-LMTO, FPLO很吸引人(不过是商业的),后者是O(N)算法。 3,使用vasp计算磁性,注意不同的初始磁矩是否收敛为同一个磁矩。倒没有特别要注意的地方,个人认为。 归根结底,需要一个优秀的交换关联形式出现 VASP计算是否也是像计算DOS和能带一样要进行三步(结构优化,静态自洽计算,非自洽计算),然后看最后一步的出的磁矩呢? 一直想计算固体中某个原子的磁矩,根据OUTCAR的结果似乎不能分析,因为它里面总磁矩跟OSZICAR的值有一定的差别,据说是OUTCAR中只考虑WS半径内磁矩造成的。最近看到一个帖子说是可以用bader电荷分析方法分析原子磁矩。如法炮制之后发现给出的总磁矩与OSZICAR的结果符合的甚好,可是觉得没有根据,有谁知道这样做的依据吗,欢迎讨论! 设置ISPIN=2计算得到的态密度成为自旋态密度。 设置ISPIN=2就可以计算磁性,铁磁和反铁磁在MAG里设置。最后得到的DOS是分up和down的。 磁性计算 (2006-12-03 21:02) 标签: - 分类:Vasp ·磁性计算

第一节第一性原理计算方法综述

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT 软件包。 1.1第一性原理 第一性原理计算(简称从头计算,the abinitio calculation),指从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。【1】第一性原理计算就只需要用到五个最基本的物理常量即(b o k c h e m ....)和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。

第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。 以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT 。 1.2量子力学与Born-Oppenheimer 近似 固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式: ),(),(R r E R r H H ψψ= (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子(原子核和电子)的动能和粒子之间的相互作用能,即 N e N e H H H H -++= (1-2) 其中,以是电子部分的哈密顿量,形式为:

第一性原理计算

钙钛矿型PbZrO3电子能带结构的第一性原理计算 班级:s1467 姓名:学号:201421801014 锆酸铅(PbZrO3)是最早发现的反铁电体之一,在工业上的一个重要应用是其固溶物Pb(Zr,Ti)O3。由于反铁电材料在相开关、电荷存储、电流源、电容、微电子及微型机电设备等方面有重要应用,其电子结构和物理特性一直为人们所关注。PbZrO3的有三个不同的相,在233℃以上为立方顺电相,具有钙钛矿结构,所属的空间群为Pm3m;当晶体处于233℃以下,将发生氧八面体的扭曲畸变和阳离子相对于O的移动,形成结构相变;230~233℃为正交铁电相,而230℃以下的基态为正交晶系,空间群为Pbam。基态正交相中离子移动主要由Pb、O之间的相对位移提供,由于相邻晶格之间Pb-O的位移相反,因此其为反铁电体。 1、原理及计算 采用第一性原理局域密度近似下的投影缀加平面波方法精确计算并比较了钙钛矿材料PbZrO3低温正交相(反铁电相)、高温立方相(顺电相)的电子能带结构,计算了PbZrO3材料正交相、立方相的电子结构。PbZrO3立方相的空间群为Pm3m,计算采用实验得到的晶格常量为a=4.11nm,Wyckoff坐标为Pb:(0,0,0),Zr:(0.5,0.5,0.5),O:(0.5,0.5,0)。正交相的空间群为Pmam,采用的晶格常数a=5.9411nm,b=11.8024nm,c=8.2564nm,各原子坐标见表1。正交相和立方相的多面体结构模型如图1所示。平面波截断能取为500eV,布里渊区积分分别采用5×5×5及7×3×5的K点网格,高斯展宽因子为0.1eV。 表1 正交相PbZrO3原胞内的原子位置

相关主题