搜档网
当前位置:搜档网 › 材料成形技术基础知识点总结

材料成形技术基础知识点总结

材料成形技术基础知识点总结
材料成形技术基础知识点总结

材料成形技术基础第一章

1-1

一、铸造的实质、特点与应用

铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺

方法。

1、铸造的实质

利用了液体的流动形成。

2、铸造的特点

A适应性大(铸件重量、合金种类、零件形状都不受限制);

B成本低

C工序多,质量不稳定,废品率高

D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀

3、铸造的应用

铸造毛胚主要用于受力较小,形状复杂(尤其是腔复杂)或简单、重量较大的零件毛胚。

二、铸造工艺基础

1、铸件的凝固

(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和

长大两部分组成。通常情况下,铸件的结晶有如下特点:

A以非均质形核为主

B以枝状晶方式生长为主。

结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。

(2 )铸件的凝固方式

逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固

2、合金的铸造性能

(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了

液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性

质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。

生产上改善合金的充型能力可以从一下各方面着手:

A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好;

B提高浇注温度,延长金属流动时间;

C提高充填能力

D设置出气冒口,减少型气体,降低金属液流动时阻力。

(2)收缩性

A缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集

中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位一一冒

口中去,而去除冒口后的铸件则是所要的致密铸件。

具有宽结晶温度围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断面,发达的枝状晶彼此相互交错而把尚未结晶的金属液分割成许多小而分散的封闭区域,当该区域的金属液凝固时,收缩得不到外

来金属液的补偿,而形成了分散的小缩孔, 即缩松。这类合金即采用顺序凝固加冒口的措施也无法彻底消除缩松缺陷。因此,对于气密性要求不高,而要求应力小的场合可采用同时凝固措施来满足要求。

B铸件应力主要是由于铸件在固态下的收缩受阻而英气的。这些阻碍包括机械阻碍和

热阻碍。

热应力与铸件结构有关。壁厚不均铸件,冷却过程中各部分冷速不一,薄壁部分有趣冷速快,率先从塑性变形阶段进入弹性变形阶段,此时,由于厚壁部分仍处于塑性变形收缩时,

由于这两部分为一整体,厚壁部分的弹性收缩必然收到薄壁部分对它的拉应力,而薄壁部分则收到相反的力一一压应力,。因此,必须尽力那个使铸件壁厚均匀,避免金属局部积聚,以减小热应力。

铸件的应力将导致铸件变形,甚至开裂。

1-2铸造方法

铸造按工艺方法分为砂型铸造和特种铸造砂型铸造

1、砂型铸造的特点:

(1)生产周期短,产品成本低;

(2 )产品批量、大小不受限制;

(3)劳动强度大,劳动条件较差;

(4 )铸件质量不稳定,易产生缺陷。

2、常用的造型方法

按使用的工具不同,分为手工造型和机器造型

(1)手工造型:指全部用手工或手动工具完成的造型工序

1)特点:操作灵活,适应性强,成本低,

生产准备时间短,铸件质量差,

劳动强度大,生产率低。

2)应用:单件、小批量生产,各种大、小型铸件

3)手工造型分类

按砂箱特征分

(2 )机器造型

指用机器完成全部或至少完成紧砂操作的造型工序。

1)特点:

①提高了生产率,铸件尺寸精度较高;

②节约金属,降低成本;

③改善了劳动条件;

④设备投资较大。

2)应用:成批、大量生产各类铸件。

3)机械造型方法

①震压造型:

先震击紧实,再用较低的比压(0.15 —0.4MPa )压实。紧实效

果好,噪音大,生产率不够高。

②微震压实造型:

对型砂压实的同时进行微震。紧实度高、均匀,生产率高,噪音仍较大。

③高压造型:用较高的比压(0.7 —1.5MPa)紧实型砂。

紧实度高,噪音小,灰尘少,生产率高,

但设备造价高。

④抛砂造型:

利用离心力抛出型砂,完成填砂和紧实。紧实度均匀,噪音小;但生产率低。

特种铸造

一?特种铸造:

是指与砂型铸造有显著区别的一些铸造方法。

例如:熔模铸造、金属型铸造、压力铸造、

离心铸造、低压铸造、陶瓷型铸造、壳型铸造和连续铸造等。

二?特点:

(1)不用砂或少用砂,改善了劳动条件,减轻了劳动强度。

(2)铸件精度较高、性能较好。

(3)生产率高,工艺简单。

(4)成本高,生产周期长,

在工艺上和应用上各有一定的局限性。

三?分类:

1、金属型铸造

(1)金属型铸造:将金属液浇入金属铸型获得铸件的方法

(2)特点:

1)铸件力学性能比砂型铸件高。

2)铸件精度和表面质量好。

3)可节约金属,生产率较高。

4)不用砂或少用砂,改善了劳动条件。

5)铸件成本高,易产生浇不足、开裂等缺陷。

6)铸造工艺要求严格。

(3)应用:

主要用于有色金属件的大批量生产。例如:铝活塞、汽缸体等。(4)金属型的结构:

1)整体型;2)水平分型;

3)垂直分型;4)综合分型。

(5)工艺特点:

1)金属型要预热

2)喷刷涂料

3)及时开型取件

2?压力铸造

(1)压力铸造:

指熔融金属在高压下快速压入型腔,并在压力下结晶,获得铸件的方法。(2)应用:

主要用于大量生产非铁合金中、小型铸件。

(铝合金、锌合金等)

例如:汽缸体、化油器、离合器等。

(3 )压力铸造的特点

1 )铸件尺寸精度高,表面质量好;

2)铸件力学性能好;

3)可压铸形状复杂的薄壁铸件;

4)可嵌铸其它材料,节省贵重材料;

5 )生产率高,易于实现机械化和自动化;

6)铸件料质受限制;

7)设备投资大,不宜小批量生产;

8 )压铸件不能进行大余量的机械加工和热处理。(压铸件易产生小气孔)

3?低压铸造

(1)低压铸造:

将合金液在压力下由铸型底部注入型腔,并在压力(60 - 150kPa)下结晶,

获得铸件的方法。

(2)应用:

铝、镁合金中、小型件的成批大量生产。

例如:汽缸体、缸盖、活塞等。

(3 )低压铸造的特点

1)充型压力和速度便于控制;

2)铸件组织致密,力学性能高;

3)铸件形状可较复杂,精度较高;

4)金属利用率高,一般在90%以上;

5)但升液管寿命较短,生产率低于压力铸造。

4?离心铸造

(1)离心铸造:

将金属液浇入高速旋转的铸型中,在离心力的作用下凝固成铸件的方法。

(2)应用:

主要用于大批量生产空心回转体铸件。

例如:铸铁管、汽缸套、铜套等。

(3 )离心铸造的特点

1)简化了套筒、管类铸件的生产过程;

2)离心铸件力学性能高,缺陷较少;

3)可生产流动性较差的薄壁及双金属铸件;

4)铸件的形状和尺寸受限制;

5)表面粗糙,易产生偏析;

6)设备投资大,不宜单件、小批量生产。

5?熔模铸造

(1)熔模铸造:即用易熔材料制成模样,用造型材料将其包覆,制成型壳,熔出模样,经高温焙

烧,浇注获得铸件的方法。

(2 )熔模铸造的特点

1)铸件精度和表面质量较高。

2)可以铸造形状复杂的薄壁铸件。

3)生产批量不受限制。

4)原材料价格贵,铸件成本高。

5)工艺过程繁杂,生产周期长。

6)铸件尺寸不能太大,质量一般小于25Kg。

(3)应用:

各种铸造合金,特别适于高熔点、难加工合金的小型铸件的成批、大量生产。

1-3铸造工艺设计

铸造工艺设计是根据铸件结构特点、技术要求、生产批量、生产条件等,确定铸造方案和工艺参数,绘制图样和标注符号,编制工艺卡和工艺规等。

一、铸件浇注位置和分型面的选择

1、浇注位置的选择

1)铸件的重要加工面应朝下或位于侧面

2)铸件宽大平面应朝下

3)面积较大的薄壁部分应置于铸型下部或垂直、倾斜位置

4)易形成缩孔的铸件,应将截面较厚的部分置于上部或侧面,便于安放冒口,使铸件自下而上定向凝固

5)应尽量减少型芯的数量,且便于安放、固定和排气

2、铸型分型面的选择

1 )便于起膜,使造型工艺简化

2)尽量将铸件重要加工面或大部分加工面、加工基准面放在同一个砂箱中

3)使型腔和主要芯位于下箱,便于下芯、合型和检查型腔尺寸

二、铸造工艺参数确定

包括:收缩余量、加工余量、起膜斜度、铸造圆角及芯头、芯座等。

三、铸造工艺简图绘制

1、铸造工艺符号及表示方法

2、典型零件工艺分析

1-4铸件结构工艺性

一:合金铸造性能对铸件结构的要求

铸件的结构如果不能满足合金铸造的性能要求,将可能产生浇不足、冷隔、缩孔、气孔、裂纹和变形等缺陷。

防止这些缺陷的方法包括设计合理的铸件壁厚、设计铸件加强筋、铸件结构尽量减小收缩受阻、铸件结构避免过大水平壁、注意不同铸造合金对铸件结构的要求。

设计合理壁厚:a,铸件壁厚应合理,每种铸造合金都有其适宜的铸件壁厚要求;b,

铸件壁厚应当均匀,防止壁厚相差过大凝固时产生缩孔、缩孔,此外冷却速度不均会产生热应力致使裂纹;c,铸件壁的,①结构圆角,壁间转角处设计出结构圆角②厚壁与薄壁间的连续要逐步过渡③避免十字交叉和锐角相连接

设计铸件加强筋:筋可以增加铸件的刚度和强度防止铸件变形,减小铸件壁厚,防止铸件产生缩孔和裂纹。

(注:铸件结构容比较重要,特别是P36-39的设计图,各种铸造合金的性能结构特点参照P30的表格)

二:铸造工艺对结构的要求

1铸件外形的设计a,避免外部的侧凹,减少分型面或外部型芯;b,分型面应

当平直;c,凸台和筋的设计应便于造型和起模;d,铸件的垂直壁上应当给出结构斜

2铸件腔的设计a,不用或者少用型芯;b,使型芯安放稳定、排气通畅、清理方便三:铸造方法对铸件结构的要求(了解)

1-5铸造技术的发展趋势

计算机的应用

1?计算机辅助工艺设计(CAPP):

(1 )模拟:充型过程流动场、温度场、应力场等。

(2)优化设计:浇注位置、浇冒口系统等。

2?铸造过程的自动控制于检测

监控:

(1)型砂性能及砂处理过程;(2 )炉料配比及熔炼质量;

(3)铸型性能及造型线工作状况等。

先进制造技术的应用

1?精密铸造技术

高压造型、气冲造型、自硬砂造型等高紧实度砂型铸造以及压铸、熔模铸造、实型铸造等特

种铸造技术。

压铸和实型铸造发展迅速,压住机正趋于大型化,轿车车门已能整体铸出。

实型铸造在生产近无余量、形状复杂的铸件以及绿色生产方面的优越性已逐步显现。

2.快速成形技术

即采用激光固化、激光烧结或熔化沉积等多种方式,将树脂、塑料、蜡或金属等材料快速叠加获得制品的成形技术。

该技术在铸造生产中已用于生产蜡模、铸型、型壳、型芯等。

金属熔炼

1?大型冲天炉:

向着热风、水冷、大吨位、连续熔炼的方向发展。

2?小型冲天炉:

向着进一步提高铁液质量的方向发展,主要是强化送风,加氧送风和脱湿送风等措施。

造型材料

1?中、小型铸件广泛采用粘土砂湿型铸造;

2?自硬砂取代干砂型;

3?树脂砂广泛用于制芯;

4?水玻璃砂应用于铸钢件生产正逐步扩大。

第—章锻压基础

锻压定义:锻压是锻造和冲压的合称,是利用锻压机械的锤头、砧块、冲头或通过模具对坯料施加压力,使之产生塑性变形,从而获得所需形状和尺寸的制件的成形加工方法

塑性定义:金属材料在外力作用下能稳定地改变自己的形状和尺寸二个质点间的联系不被破坏的性能。

变形抗力定义:塑性加工时,作用在工具表面单位面积上变形力的大小称为变形抗力。

影响塑性和变形抗力的因素:

1、化学成分及组织的影响;

2、变形温度;

3、变形速度;

4、应力状态;

相关主题