搜档网
当前位置:搜档网 › 二、导数在数列中的应用学生版

二、导数在数列中的应用学生版

二、导数在数列中的应用学生版
二、导数在数列中的应用学生版

专题二:导数与数列

一. 利用导数巧解数列求和问题

例1 1x ≠求下列数列之和:

(1)21123n x x nx -+++ ; (2)22221123n x x n x -+++ ; (3)222222234n n C C x C x C x -+++ .

例2 求下列数列的和

(1) 12323n n n n n C C C nC +++ ; (2) 12223223n n n n n

C C C n C +++ ; (3) 2122232234121111222

n n n n n n n C C C C C C C C +-+++ .

例3求下列数列的和

(1)sin 2sin 23sin 3sin x x x n nx ++++ (2)cos 2cos 23cos3cos x x x n nx ++++

例4:数列{}n a 中,10a =,112n n

a a +=-, (1)求数列{}n a 的通项公式; (2)数列前n 的和记为n s ,证明ln(1)n s n n <-+。

二.关于导数与数列型不等式的解法 例5设函数()ln(1)f x x =+,()'()g x xf x =,0x ≥,其中'()f x 是()f x 的导函数.

(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;

(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;

(3)设n N +∈,比较(1)(2)()g g g n +++ 与()n f n -的大小,并加以证明.

例6 已知函数kx x f =)(,x x x g ln )(=

, (1)求函数x

x x g ln )(=的单调区间; (2)若不等式)()(x g x f ≥在区间),0(+∞上恒成立,求实数k 的取值范围;

(3)求证:

e

n n 21ln 33ln 22ln 444<+++ .

例7已知函数x t tx x f ln )(--=.

(1)若函数)(x f 在),1[+∞上为增函数,求实数t 的取值范围;

(2)当2≥n 且*N n ∈时,证明:

n n

ln ln 13ln 12ln 1>+++ .

例8.已知函数3ln )(--=ax x a x f )(R a ∈.

(1)求函数)(x f 的单调区间;

(2)求证:

)2(1ln 44ln .33ln .22ln ≥*∈

例9.已知函数.)(x e x f x -=

(1)求函数)(x f 的最小值;

(2)设不等式ax x f >)(的解集为P ,且P ?]2,0[,求实数a 的取值范围; (3)设*∈N n ,证明:1321-

n n n .

【课后练习】

1.已知)0()1ln()(2≤++=a ax x x f .

(1) 讨论)(x f 的单调性;(2)证明:)(4211+)(4311+)(411n

+ e <(*N n ∈,2≥n ).

2.(1)已知),0(+∞∈x ,求证:x

x x x 11ln 11<+<+; (2)求证:)2(1

131211ln 1413121≥*∈-++++<<++++n N n n n n , .

3.如右图,过曲线C :x

y e =上一点0(0,1)P 作曲线C 的切线0l 交x 轴于点11(,0)Q x ,又过1Q 作 x 轴的垂线交曲线C 于点111(,)P

x y ,然后再过111(,)P

x y 作曲线C 的切线1l 交x 轴于点 22(,0)Q x ,又过2Q 作x 轴的垂线交曲线C 于点222(,)P x y , ,以此类推,过点n P 的切线n l ,与x 轴相交于点11(,0)n n Q x ++,再过点1n Q +作x 轴的垂线交曲线C 于点111(,)n n n P x y +++(n ∈N *).

(1) 求1x 、2x 及数列{}n x 的通项公式;

(2) 设曲线C 与切线n l 及直线11n n P Q ++所围成的图形面积为n S ,求n S 的表达式;

(3) 在满足(2)的条件下, 若数列{}n S 的前n 项和为n T ,求证:11n n n n T x T x ++<(n ∈N *).

导数在实际生活中的应用

导数在实际生活中的应用 导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,是研究函数性质、证明不等式、探求函数的极值最值、求曲线的斜率和解决一些物理问题等等的有力工具。 导数知识是学习高等数学的基础,它是从生产技术和自然科学的需要中产生的,同时,又促进了生产技术和自然科学的发展,它不仅在天文、物理、工程领域有着广泛的应用。而且在工农业生产及实际生活中,也经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决。接下来就导数在实际生活中的应用略微讨论。 1.导数与函数的极值、最值解读 函数的极值是在局部范围内讨论的问题,是一个局部概念,函数的极值可能不止一个,也可能没有极值。 函数()y f x =在点0x 处可导,则'0()0F x =是0x 是极值点的必要不充分条件,但导数不存在的点也有可能是极值点。 最大值、最小值是函数对整个定义域而言的,是整体范围内讨论的问题,是一个整体性的概念,函数的最大值、最小值最多各有一个。函数最值在极值点处或区间的断点处取得。 2.导数在实际生活中的应用解读 生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。 例1:在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少? 思路:设箱底边长为x cm ,则箱高602 x h -=cm ,得箱子容积V 是箱底边长x 的函数:23 2 60()(060)2x x r x x h x -==<<,从求得的结果发现,箱子的高恰好是原正方形边长的

利用导数证明数列不等式(含解析)

利用导数证明数列不等式 利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型: (1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源: (1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式. (2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式: (1) 对数→多项式 (2) 指数→多项式 4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种: (1)倒序相加:通项公式具备第项与第项的和为常数的特点. (2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减). (3)等比数列求和公式 (4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑. 5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式. 6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向. 7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等). ln 1x x <-1x e x >+n n k 1n k -+?2n n a n =?n a

导数大题精析1——放缩思想在高考函数中的应用

放缩思想在高考数学中的应用 高中阶段,在数列那一章节的学习中,我们曾接触过放缩思想。其实在高考函数中,尤其是导数大题中,放缩思想起着举足轻重的作用。 例如,让我们证明x^2-2x+1≥0,这个题目对大家来说根本算不上问题。但是如果让我们证明x^2-3x+e^x ≥0。这个式子我们看起来非常陌生,我们对e^x 并不熟悉,我们不喜欢e^x 或者lnx,因此,我们可以把他们转化为x 的形式。 这道题目,我们可以先证明e^x ≥x+1,这里构造辅助函数f(x)=e^x-x-1即可证明, 证明后,我们可以得到x^2-3x+e^x ≥x^2-2x+1≥0当x=1时两等号成立。 在此,我给出以下4个常考的辅助函数供大家参考。 ① e^x ≥x+1当x=0时等号成立 ② lnx ≤x-1当x=1时等号成立 ③ sinx ≤x 当x=0时等号成立 ④ cosx ≤x+1当x=0时等号成立 接下来我们不妨来试一道高考题,2012年山东高考压轴题。 22(本小题满分13分) 已知函数f(x) = x e k x +ln (k 为常数,e=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x 轴平行。 (Ⅰ)求k 的值; (Ⅱ)求f(x)的单调区间; (Ⅲ)设g(x)=(x 2+x) '()f x ,其中'()f x 为f(x)的导函数,证明:对任意x >0,21)(-+

上面本题的标准答案,前两问在此不做解释。 在第三问中,我们可以看出关键步骤就是把g(x)分成1+x/e^x和1-x-xlnx两部分,但是我们如何想到这一步呢?为什么他要把函数分成这两部分呢?看完上面的文章,我想各位读者已经有了初步的思考,下面,让我们再重新看一遍第三问。 g(x)= (1-x-xlnx)(x+1)/e^x 看到这个函数,我们的第一反应应该是:这个函数不好做,e^x和lnx 太烦了,我们把它放缩一下。把lnx换成x-1,把e^x换成x+1。 原式g(x)<1-x-xlnx ① ①式≤1-x^2 ② 看到②式,很多人就会认为,呀!这么简单就做出来了?细心的朋友可能会发现,其实①式的推导存在着一定的问题。 已知lnx≤x-1 ③ 那么-lnx应当≥1-x所以①式≥1-x^2 ④ 如果我把x放缩成lnx-1行不行?利用-(x)≤-(lnx+1) 把①式化为1-x(lnx+1)≤1-(lnx+1)^2 但我们来仔细推敲一下,我们已知的是-x≤-(lnx+1)③ 那么我们能不能通过③式得到-x(lnx+1)≤-(lnx+1)(lnx+1)呢? 显然这是不行的,因为lnx+1的符号未知。 当lnx+1≥0时是成立的 而当lnx+1≤0时 -x(lnx+1)≥-(lnx+1)(lnx+1)

高三数学一轮复习第2课时导数的应用(一)单调性学案

高三数学一轮复习第2课时导数的应用(一)单调性学案 【课本导读】 函数的单调性 (1)设函数y=f(x)在某个区间内,若f′(x) 0,则f(x)为增函数;若f′(x) 0,则f(x)为减函数. (2)求可导函数f(x)单调区间的步骤: ①确定f(x)的; ②求导数f′(x); ③令f′(x) 0(或f′(x) 0),解出相应的x的范围; ④当时,f(x)在相应区间上是增函数,当时,f(x)在相应区间上是减函数.【教材回归】 1.(2012·辽宁)函数y=1 2 x2-ln x的单调减区间为( ) A.(-1,1] B.(0,1] C.[1,+∞)D.(0,+∞) 2.已知函数f(x)=x2(x-a). (1)若f(x)在(2,3)上单调,则实数a的取值范围是________; (2)若f(x)在(2,3)上不单调,则实数a的取值范围是________. 3.已知f(x)=sin x+2x,x∈R,且f(1-a)+f(2a)<0,则a的取值范围是________. 4.若f(x)=-1 2 x2+b ln(x+2)在(-1,+∞)上是减函数,则b的取值范围是( ) A.[-1,+∞)B.(-1,+∞) C.(-∞,-1] D.(-∞,-1) 【授人以渔】 题型一求函数的单调区间 例1 (1)求函数f(x)=x2+1 x-1 的单调区间. (2)求函数f(x)=x+21-x的单调区间. (3)求函数f(x)= 1 x ln x 的单调区间.

思考题1 求下列函数的单调区间: (1)f(x)=(x-1)2-ln(x-1)2; (2) f(x)=(x-1)e x-x2. 题型二讨论函数的单调性 例2 (2011·北京)已知函数f(x)=.求f(x)的单调区间. 思考题2 已知函数f(x)=a ln x+2a2 x +x(a≠0). (1)若曲线y=f(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值; (2)讨论函数f(x)的单调性. 题型三利用单调性求参数范围

导数在经济学中的应用

引言 近年来,随着市场经济的不断发展、经济的不断繁荣,经济活动中的实际问题也愈加复杂,简单的分析已经不足以满足企业管理者对经济分析的需求。因此,有必要将高等数学应用于简单的数学函数所不能解决的实际经济问题中,对其进行定量分析,这使得高等数学在解决经济问题中占据重要地位。而导数作为高等数学中的重要概念,同样也是解决经济问题的一个有力工具。在高等数学中,导数通常被用于判断函数的单调性,求函数的最值、极值等。在实际经济问题中,导数可作为经济分析的工具,广泛地应用到经济研究和企业管理之中,促进经济理论朝着更加精确的方向发展。本文从边际分析,弹性分析,优化分析三个方面论述导数在经济分析方面的应用。 1、导数的概念 早在法国数学家费马探究极值问题时就将导数的思想引入了,但导数思想是在英国数学家牛顿研究力学和德国数学家莱布尼茨研究几何学的过程中正式建 2、经济分析中常用的函数 由于导数主要应用于探究经济领域中出现的一些函数关系问题,所以,我们必需对经济分析中的一些常用的函数具有一定的了解,以便更好的理解和使用它们。经济分析中常用的函数主要有以下四类: 2.1需求函数 需求函数指在特定的时间,各种可能的价格条件下,消费者愿意并且能够购买该商品的数量。(出处?)为了使问题简单化,我们一般假设需求函数的诸多

自变量中除价格外其他均为常量,则函数表示为()P f Q d =,其中,P 为商品的价格,Q d 为商品的需求量。这个函数表示一种商品的需求量与价格之间存在一 一对应的关系,并且通过观察可以知道商品(除某些抵挡商品、某些炫耀性商品、某些投资性商品除外)的需求量与价格成反方向变动关系,即商品本身价格上升,需求量随之减少,反之亦然。 例1:服装店销售某种衬衫的件数Q 与价格P 是线性关系,当价格为100元一件时,可销售120件,当价格为80元时,可销售200件,求需求函数。 解:设衬衫的件数与价格的函数关系为:b aP Q += 则b a +=100120;b a +=80200 解得4-=a ;520=b 所以需求函数为5204+-=P Q 。 2.2供给函数 一种商品的供给函数,是指单个生产者在一定时期在各种可能的价格下,愿意且能够提供出售的该种商品数量。[3]我们通常通过将除价格外的其他因素看成常量以达到化简问题的目的。所以,供给函数可以用()P f Q s =表示,其中,P 为商品的价格,Q S 为商品的供给量。可以看出,商品(除单个劳动力商品、古董商品、某些投资性商品外)的价格与供给量之间成同方向变动的关系。 例2:已知大蒜的收购价为每千克4元,每星期能收购2000千克,若收购价每千克提高0.5元,每星期可收购2500千克,求大蒜的供给函数。 解:设大蒜的线性供给函数为:b aP Q += 则b a +=42000;b a +=5.42500 得1000=a ;2000-=b 所以供给函数为为:20001000-=P Q 2.3成本函数 产品成本一般情况下是用货币的形式来表现的企业生产和出售产品的所用度支出。成本函数所表示的是企业成本总额与产出总量之间关系的公式。产品成

导数应用与数列求和

龙源期刊网 https://www.sodocs.net/doc/5b1900377.html, 导数应用与数列求和 作者:王大成 来源:《神州》2011年第31期 高中引入了导数概念,给出了导数的定义,讲清楚了导数的几何意义及物理意义,在应用方面也给出了一些例题,主要是解决函数单调性、最值、不等式证明等问题。但是在数列求和方面的应用基本上还没有涉及到,因此我仅以本文来为导数的应用开辟一条新的途径。 问题一:数列(an)的通项公式an=n×2n-1(n∈N*),求数列(an)的前项和Sn. 1.错位相减法: Sn=1×20+2×21+3×22+...+n×2n-1 (1) 2Sn=1×21+2×22+...+(n-1)×2n-1+n×2n (2) 由(1)-(2)得,-Sn=1+21+22+…+2n-1-n×2n, 有-Sn=1+(n-1)×2(n∈N*) 2.导数法:令f(x)=x+x2+x3+…xn(x≠0,x≠1) f(x)=1×x0+2x1+3x2+…+nxn-1,所以Sn=f(2), f(x)=x+x2+x3+…+xn=x(1-xn)/1-x, 因为f(x)=[1-(n-1)xn](1-x)+(x-xn-1)/(1-x)2 有Sn=f(2)=1+(n-1)×2n 定理1:数列(an)的通项公式an=n×pn-1(p≠0,p≠1,n∈N*),其前项n和为Sn,则Sn=1+[(p-1)n-1]pn/(1-p)2。 证明:令f(x)=x+x2+x3+…+xn(x≠0,x≠1), 所以,f(x)=1×x0+2x1+3x2+…+nxn-1,所以Sn=f(p), f(x)=x+x2+x3+…+xn=x(1-xn)/1-x,因為f(x)=[1-(n+1)xn](1-x)+(x-xn-1)/(1-x)2 有Sn=f(p)=1+[(p-1)n-1]pn/(1-p)2,证毕。

导数在实际生活中的应用

导数在实际生活中的应用 1.(江苏省启东中学高三质量检测)曲线y =1 3 x 3+x 在点????1,43处的切线与坐标轴围成的 三角形面积为________. 解析:曲线y =1 3x 3+x 在点????1,43处的切线斜率为y ′|x =1=????13x 3+x ′x =1=(x 2+1)|x =1 =2,所以切线的方程为y -43=2(x -1),即y =2x -2 3 ,与x 轴的交点和y 轴的交点为 ????13,0,????0,-23,所求面积为S =12×13×23=19 . 答案:1 9 2.(江苏省高考命题研究专家原创卷)设m ∈R ,若函数y =e x +2mx ,有大于零的极值 点, 则m 的取值范围是________. 解析:因为函数y =e x +2mx ,有大于零的极值点,所以y ′=e x +2m =0有大于零的实 根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图象可得-2m >1, 即m <-1 2. 答案:m <-1 2 3.(江苏省高考名校联考信息优化卷)已知f (x )=x 2+2x +a ln x ,若f (x )在区间(0,1]上恒 为单调函数,则实数a 的取值范围为________. 解析:由题意知,f ′(x )=2x +2+a x =2x 2 +2x +a x , ∵f (x )在区间(0,1]上恒为单调函数,∴f ′(x )在区间(0,1]上恒大于等于0或恒小于等于0, ∴2x 2+2x +a ≥0或2x 2+2x +a ≤0在区间(0,1]上恒成立,即a ≥-(2x 2+2x )或a ≤-(2x 2 +2x ),而函数y =-2x 2-2x 在区间(0,1]的值域为[-4,0),∴a ≥0或a ≤-4. 答案:a ≥0或a ≤-4 4.已知f (x )为奇函数,且当x >0时,f (x )>0,f ′(x )>0,则函数y =xf (x )的递增区间 是________. 解析:当x >0时,y ′=[xf (x )]′=f (x )+xf ′(x )>0,∴y =xf (x )在(0,+∞)上递增. 又f (x )为奇函数,∴y =xf (x )为偶函数,∴y =xf (x )在(-∞,0)上递减. 答案:(0,+∞) 5.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元, 已知总收益R 与年产量x 的关系是

三角函数、数列、导数试题及详解

三角函数、数列导数测试题及详解 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有 一项是 符合题目要求的. 1.已知点A (-1,1),点B (2,y ),向量a=(l ,2),若//AB a ,则实数y 的值为 A .5 B .6 C .7 D .8 2.已知等比数列123456{},40,20,n a a a a a a a ++=++=中则前9项之和等于 A .50 B .70 C .80 D .90 3.2 (sin cos )1y x x =+-是 A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 4.在右图的表格中,如果每格填上一个数后,每一横行成等差数列, 每一纵列成等比数列,那么x+y+z 的值为 A .1 B .2 C .3 D .4 5.已知各项均不为零的数列{}n a ,定义向量 *1(,),(,1),n n n n c a a b n n n N +==+∈,下列命题中真命题是 A .若* ,//n n n N c b ?∈总有成立,则数列{}n a 是等差数列 B .若* ,//n n n N c b ?∈总有成立,则数列{}n a 是等比数列 C .若* ,n n n N c b ?∈⊥总有成立,则数列{}n a 是等差数列 D .若* ,n n n N c b ?∈⊥总有成立,则数列{}n a 是等比数列 6.若sin2x 、sinx 分别是sin θ与cos θ的等差中项和等比中项,则cos2x 的值为 A . 133 8 + B . 133 8 C . 133 8 ± D . 12 4 - 7.如图是函数sin()y x ω?=+的图象的一部分,A ,B 是图象上的一个最高点和一个最低 点,O 为坐标原点,则OA OB ?的值为 A .12π B . 2 119π+ C .2 119 π- D .2 113 π- 8.已知函数()cos ((0,2))f x x x π=∈有两个不同的零点x 1,x 2,且方程()f x m =有两个

导数在高中数学解题中的应用

导数在高中数学解题中的应用 高二年级数学组钱洪永 摘要:导数作为高中新教材的新增内容之一,它给高中数学增添了新的活力,特别是导数广泛的应用性,为解决函数、切线、不等式、数列、实际等问题带来了新思路、新方法,为我们展现出了一道亮丽的风景线,也使它成为新教材高考试题的热点和命题新的增长点.这几年的高考命题趋势表明:导数已经由以往的“配角”地位上升到“主角”,成为分析问题和解决问题的重要工具.将导数与传统内容结合,不仅能加强能力的考查力度,而且也使试题具有更广泛的实践意义。导数的思想方法在高中数学解题中是非常重要的,在解决许多问题上起到居高临下和以繁化简的作用。文章着重运用导数的基本知识和理论,来解决高中数学里的函数的图像、单调性、最值等函数问题以及导数在研究方程的根上的运用,结合实例阐述了导数在代数问题,解析几何及实际问题的一些应用。这对高中数学的教学具有一定的指导作用。 关键词:导数;高中数学;应用 1引言 导数是我们研究中学数学的一个有力工具,它使各个章节的内容联系的更加紧密,有助于我们对中学数学的深入学习。数的工具性微积分作为一种强有力的数学工具的地位是毋庸置疑的,而导数则以它优良的性质、广泛的用途扮演了重要的角色.以中学数学为例导数作为一个交汇点,联结起了函数、方程、向量、数列、不等式、解析几何等内容;并为解决这些提供了统一、有章可循的方法。导数在现行的高中数学教材中处于一种特殊的地位,在高中阶段学习函数时,为了理解函数的性态,学生主要学习函数的定义域、值域、单调性、奇偶性、周期性、有界性等。有利于学生更好地掌握函数思想数学上的许多问题,用初等数学方法是不能解决的,或者难以解决,而通过建立函数关系,利用函数思想,然后用导数来研究其性质,充分发挥导数的工具性和应用性的作用,可以轻松简捷地获得问题的解决。高中新课程改革的背景下,导数知识作为高等数学微积分中的内容在高中课程中做铺垫,又对导数内容的教材进行了修改。课程改革是导数知识在实践中经历了变化与发展的过程。应用非常广泛,涉及到中学数学的各个方面。我们应该把导数的工具作用发挥出来,在数学中应该加强导数的思想教学。 2文献综述 2.1国内外研究现状 在查阅到的文献资料中,大量学者对导数在高中数学中的应用有不同的见

函数导数与数列结合题

1已知函数)0.()1ln()(2≤++=a ax x x f (1)若)(x f 在0=x 处取得极值,求a的值; (2)讨论)(x f 的单调性; (3)证明:e N n e n ,()311)...(8111)(911(*2∈<++ +为自然对数的底数) (本题满分14分) (1)()()的使x f x a x x x f 0,122=++=' 一个极值点,则 ()0,00=∴='a f ,验证知a=0符合条件…………………….3分 (2)()2221212x a x ax a x x x f +++=++=' 1)若a=0时, ()+∞∴,0)(在x f 单调递增,在()0,∞-单调递减; 2)若()恒成立,对时,得,当R x x f a a ∈≤'-≤? ??≤?<0100 R x f 在)(∴上单调递减…………………………………6分 3)若()020012 >++>'<<-a x ax x f a 得时,由 a a x a a 2 21111---<<-+-∴ 再令()可得,0<'x f a a x a a x 2 21111-+-<--->或 上单调递增,在)11,11()(2 2a a a a x f ----+-∴ 在上单调递减和),11()11,(2 2+∞----+--∞a a a a 综上所述,若),()(1+∞-∞-≤在时,x f a 上单调递减, 若时,01<<-a 上单调递增,在)11,11()(2 2a a a a x f ----+-

上单调递减和),11()11,(2 2+∞----+--∞a a a a 。 若()()分单调递减,单调递增,在在时,9..................0,0)(0∞-+∞=x f a (3)由(2)知,当()单调递减,在时,∞+∞--=)(1x f a 当()0)0()(,0=<+∞∈f x f x 时,由 分14.......................,.........)3 11)...(8111)(911(21311213 113113131......3131)3 11ln(......)8111ln()911()]311)...(8111)(911ln[()1ln(2122222e e x x n n n n n n =<+++∴

导数及其应用.知识框架

要求层次重难点 导数及其应用导数概念及其 几何意义 导数的概念A了解导数概念的实际背景; 理解导数的几何意义. 导数的几何意义C 导数的运算 根据导数定义求函数y c =, y x =,2 y x =,3 y x =, 1 y x =, y x =的导数 C 能根据导数定义,求函数 23 y c y x y x y x ==== ,,,, 1 y y x x == ,(c为常数)的导数. 能利用给出的基本初等函数的导数公式 和导数的四则运算法则求简单函数的导 数,能求简单的复合函数(仅限于形如 () f ax b +的复合函数)的导数.导数的四则运算C 简单的复合函数(仅限于形如 () f ax b +)的导数)B 导数公式表C 导数在研究函 数中的应用 利用导数研究函数的单调性(其 中多项式函数不超过三次) C 了解函数单调性和导数的关系;能利用导 数研究函数的单调性,会求函数的单调区 间(其中多项式函数一般不超过三次). 了解函数在某点取得极值的必要条件和 充分条件;会用导数求函数的极大值、极 小值(其中多项式函数一般不超过三次); 会求闭区间上函数的最大值、最小值(其 中多项式函数一般不超过三次). 会利用导数解决某些实际问题.函数的极值、最值(其中多项式 函数不超过三次) C 利用导数解决某些实际问题B 定积分与微积 分基本定理 定积分的概念A了解定积分的实际背景,了解定积分的基 本思想,了解定积分的概念. 微积分基本定理A 高考要求 模块框架 导数及其应用

了解微积分基本定理的含义. 一、导数的概念与几何意义 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率00()() f x x f x y x x +?-?= ??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作 “趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 3.可导与导函数: 如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这 个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y '). 导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数. 4.导数的几何意义: 设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与 00(,())B x x f x x +?+?的一条割线.由此割线的斜率是00()() f x x f x y x x +?-?= ??,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即 000()()lim x f x x f x x ?→+?-=?切线AD 的斜率. 由导数意义可知,曲线()y f x =过点00(,())x f x 的切线的斜率等于0()f x '. 知识内容 x 0x y x O D C B A

导数在求极限中的应用

引言 极限是研究变量的变化趋势的基本工具。在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如函数的连续、导数、定积分和无穷级数等都是建立在极限的基本之上的。极限的思想和方法产生某些实际问题的精确解,并且对数学在实际中的应用也有着重要的作用。因此研究生考试往往把求极限问题作为考核的一个重点,而在不同的函数类型条件下所采用的求极限的技巧是各不相同的,因此大家要学会判断极限的类型,熟练和灵活的掌握各种技巧的应用。 本文主要介绍了导数在求极限中的基本应用,包括导数定义法,L’Hospital 法则,Taylor展式法及微分中值定理在求极限中的应用。旨在让大家掌握各种导数方法适用的函数类型,要注意的事项及它的一些推广结论。达到能灵活运用导数方法去求解一些极限问题以使问题简单化的目的。 1

2 第1章 导数在求极限中的基本应用 1.1 导数定义法 这种极限求法主要针对所给的极限不易求,但是函数满足导数定义的形式且能够确定的变化趋向的极限易求出时,可以用此法比较方便的求出极限. 定义 若函数()y f x =在其定义域中的一点0x 处极限 0000()()lim lim x x f x x f x y x x ?→?→+?-?=?? 存在,则称在0x 处可导,称此极限值为()f x 在0x 处的导数,记为0()f x '.显然,()f x 在0x 处的导数还有如下的等价定义形式: 000 ()() ()lim x x f x f x f x x x →-'=-. 下面通过两个例子让大家逐步领悟导数定义法的内涵 例1 求极限tan sin 0 lim sin b x b x x x αα+-→-. 解 由于 tan sin tan sin tan sin tan sin sin b x b x b x b b b x x x x x x αααααα+-+----= + . 所以,tan sin tan sin 0 tan lim lim lim sin tan sin sin b x b x b x b b b x x x x x x x x x αααααα+-+-→→→---=+ ln ln 2ln b b b αααααα=+=. 例2 (本题选自《数学分析中的典型问题与方法》裴礼文.第二版.) 设(0)f k '=,试证00()() lim a b f b f a k b a - + →→-=-. 证明 (希望把极限式写成导数定义中的形式)

导数的应用(习题课)优秀教学设计

§1.3 导数的应用(习题课)教学设计 【教材分析】 本节课是人教A版选修2-2第一章第三节内容,前面已经学习了利用导数求解函数的单调性、极值、最值、零点等问题,本节课是在前节内容的基础上,进一步学习如何利用导数研究不等式恒成立问题。这个问题属于高考压轴题的范畴,本节主要从“套路”和“模型”的角度出发,体现导数的工具性特征。 【学情分析】 学生已经学习了导数的基础知识,知道了一些解题的基本思路,但如何利用导数来解决一些较难的问题,完成对压轴题的“破冰”,学生还是无能为力,这是本节课的困难,需要进行不断的引导与强化。 【教学目标】 1、知识与技能: (1)能利用导数研究函数的单调性、极值、最值、零点等问题及不等式恒成立问题; (2)能够利用导数作图,反之可以利用图像来研究函数的性质; 2、过程与方法: 导数作为一种工具,是高中数学诸多知识的一个交汇点。通过教师思路上的引导,小组合作探究,能让学生从诸多条件中抽丝剥茧,发现解决方法,从而提高学生发现问题、解决问题的能力,深化对问题的认识,在过程中获得思维能力的提高。 3、情感与价值观: 培养学生主动学习,合作交流的意识,互相启发,相互促进,充分发挥各自的主观能动性,激发学生的学习兴趣,完善学习成果。 【教学重点】 利用“套路”和“模型”来研究导数研究不等式恒成立问题。 【教学难点】 (1)基本模型的熟悉与应用;(2)问题如何转化成“模型”来处理。 【课时设计】 两个课时,其中一个0.5个课时完成课堂练习,1.5个课时完成后面内容。 【教学策略】 采用练、评、讲的教学方法,利用几何画板、多媒体投影仪辅助教学。

【教学过程】 一、课堂练习(提前印发给学生) 问题 设计意图师生活动1、解决导数在函数中的应用问题的一般步骤:构造函数 求 求导 求 →→→ 求极值、最值 求问题的解 →→回顾定义,明确方法。 学生自主完成。 2、曲线在处的切线方程为 .x x y ln 2=e x =3、函数的单调递减区间为 . 1ln -=x x y 4、函数的极小值点为( ) x x e y x 2-=A. 1 B. C. D.2-e )2,1(-e ) ,1(e 5、函数的零点个数为( )x xe y =A. 0 B. 1 C. 2 D. 3 6、若不等式恒成立,则实数的取值范围为0ln >-x ax a ( ) A. B. C. D.??????+∞,1e [)+∞,e ??? ??+∞,1e ??? ? ? ∞-e 1,左边5个题均是导数应用中的基础题型, 练习的目的如下:1、巩固求解切线、单调区间、极值点、 零点的一般步骤;2、熟练掌握简单复合函数的求导,并能根据导函数画出原函数图像,深化对导数的理解。 学生自主完成,并 总结求解步骤,注意事项。 二、列表比较常考函数的图像与性质:(课堂完成) 教师:通过以上5个题目我们发现,含对数指数的复合函数出现的频率很高,事实上在高考中考查的也很频繁,下面我们对这几类函数进行单独研究,后期就会有意想不到收获。 学生:独立完成下表,小组内部讨论结论是否正确。 设计意图:针对高考的热点问题进行练习,先追根溯源,找到构成问题的“基本元素”,再由简到繁,引导学生体会解题思路,有意识去提炼总结,提高学生解题能力的同时增强自信心。原函数 x xe y =x e y x = x e x y = x x y ln =x x y ln = x x y ln = 定义域

导数在实际生活中的应用1教案

导数在实际生活中的应用1 教学目标 1、使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用 2、提高将实际问题转化为数学问题的能力 教学重点 理利用导数解决生活中的一些优化问题 教学难点 利用导数解决生活中的一些优化问题 教学过程 一.创设情景 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二.新课讲授 1、导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方 面: (1)与几何有关的最值问题; (2)与物理学有关的最值问题; (3)与利润及其成本有关的最值问题; (4)效率最值问题。 2、解决优化问题的方法: 首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域, 通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 3三.例题讲解 4、学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张 贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。如何设计海报的 尺寸,才能使四周空心面积最小? 解:设版心的高为xdm ,则版心的宽为 128x dm,此时四周空白面积为 128512()(4)(2)12828,0S x x x x x x =++-=++> 求导数,得'2512()2S x x =-。 令'2512()20S x x =-=,解得16(16x x ==-舍去)。 于是宽为128128816x ==。

新导数与数列求和01

新导数与数列求和01 以下不等式需要记住,这些公式经常结合数列进行命题,前5个需牢记! ,①ln 1(0)x x x ≤->(仅当x=1时取“=”),y=lnx 在(1,0)处的切线方程为y=x-1. ②ln(1)(1)x x x +≤>- (仅当x=0时取“=”), y=ln(x+1)在(0,0)处的切线方程为y=x . ③1x e x ≥+,y=e x 在(0,1)处的切线方程为y=x+1. ④1x e x -≥-,y=e -x 在(0,-1)处的切线方程为y=-x+1. ⑤ sinx <x <tanx ,(0,)2 x π ∈ ; ⑥2ln(1)(0)x x x +<>; ⑦ ln 1(1)12 x x x x -<>+ ; ⑧22ln 11(0)22x x x x <-> ; 证明:lnx ≤x-1(当x=1,时等号成立),令x =n 2(n ∈N * ,n ≥2), 则l nn 2<n 2-1, 11111111123341 n n -++-++?+-++<()()() 2111211n n n n =--+=++

证明:当>>,(.∈)时,

证明:≤(当,时等号成立), (7)设各项为正数的数列{a}满足a=1,a=lna+a+2(n∈N*),求证:a≤2n-1.∴n+1n n≤n n n,

证明:证明:lnx≤x-1(当x=1,时等号成立), 证明:证明:ln(x+1)≤x(当x=0,时等号成立), 证明:证明:lnx≤x-1(当x=1,时等号成立),

证明:证明:lnx≤x-1(当x=1,时等号成立),

导数在初等数学中的应用毕业论文

导数在初等数学中的应用毕业论文 目录 1 引言 (1) 2 研究导数在函数中的应用 (1) 2.1 导数在研究函数的单调性中的作用 (1) 2.2 导数在求函数的极值中的作用 (3) 2.3利用导数求函数的值域 (4) 3 研究导数在判别方程根中的应用 (4) 4 研究导数在不等式中的应用 (6) 5 研究导数在恒等式的证明中的应用 (8) 6 导数在数列方面的应用 (10) 7 研究导数的几何应用 (11) 8 导数解决实际生活中的问题 (12) 8.1 成本问题 (12) 8.2 制作容器 (13) 9 导数在应用时注意的部分问题 (14) 总结 (15) 参考文献 (16) 致谢 (16)

1 引言 导数的思想最初是由法国数学家费马为研究极值问题而引入的,但是于导数概念直接相联系的是以下两个问题:已知运动规律求速度和已知曲线求它的切线。这是由英国数学家牛顿和德国数学家莱布尼茨分别在研究力学和几何学过程中建立起来的。 高中数学新课程打破先讲极限后讲导数的顺序,直接通过实际背景和具体应用实例,即通过与社会生活联系紧密的速度、膨胀率、增长率等变化率引入导数,旨在用导数反映的变化率研究初等函数的性质。 导数是高等数学的重要概念之一, 它不仅是研究可导函数的重要工具,也是解决数学问题的一个新的重要工具,不仅有利于学生加深对导数概念的理解,突出导数方法简化初等数学复杂问题的特点,加深导数在高中数学特别在高考数学中的应用,拓宽高中数学教学的视野,以达到抛砖引玉的作用。在初等函数中,导数可以解决函数中的极值、最值问题;证明函数的单调性;证明不等式;还可以和解析几何相联系,解决切线问题以及判别方程根的问题等。下面就通过一些实例来谈谈导数在初等数学中的应用。 2 研究导数在函数中的应用 2.1 导数在研究函数的单调性中的作用 过去研究函数的单调性时,一般是根据增函数、减函数的定义来研究, 即所谓的“定义法”,学习了导数以后就可以利用函数的一阶导数的符号来研究函数的单调性,即“求导法”.求导法还可以比较简单地确定函数的单调区间。 一般地,若函数()y f x =的某一个区间可导,当()0f x '> 时,()f x 在此区间为单调增函数,当()0f x '< 时,()f x 为此区间为单调减函数。 例1 证明函数3()1f x x =-+在(,0)-∞上是减函数 证明:2()3f x x '=-, (,0)x ∈-∞, ()0f x '∴<, ∴3()1f x x =-+在(,0)-∞上是减函数。 例2 求函数22ln y x x =-的单调区间? 解:1(21)(21)4x x y x x x -+'=-=, 当102 x <<时,0y '<,故函数在1(0,)2单调递减,

导数在实际中的应用的简单举例【最新】

答:关于导数,我们知道,它是微积分的核心概念。它有着及其丰富的背景和广泛的应用。我们的教材,通过大量的实例,引导同学们经历由平均变化率到瞬时变化率刻画现实问题的过程,体会导数的思想,理解导数的含义,并且通过用导数研究函数的单调性,极值等性质和解决各种最优化问题,让我们的学生充分体会到导数在解决数学问题和实际问题中的广泛应用和强大力量。 例如,使利润最大、用料最省、效率最高等优化问题,都能够引领我们的学生深刻体会到导数在解决实际问题中的重大作用.具体说来,总结如下 1.研究函数性质 导数作为研究函数问题的利刃,常用来解决极值、最大(小)值、单调性等三类问题.在求解这些函数问题时,要结合导数的思想与理解性质的基础上,掌握用导数方法求解的一般步骤.在熟练运用导数工具研究函数的性质同时,我们要注意比较研究函数的导数方法与初等方法,体会导数方法在研究函数性质中的一般性和有效性. 2.证明不等式成立 证明不等式的方法有许多,导数作为研究一些不等式恒成立问题的工具,体现了导数应用上的新颖性以及导数思想

的重要性. 由导数方法研究不等式时,一般是先构造一个函数,借助对函数单调性或最大(小)值的研究,经历某些代数变形,得到待证明的不等式. 3.求解参数范围 给定含有参数的函数以及相关的函数性质,求解参数的值或范围,需要我们灵活运用导数这一工具,对问题实施正确的等价转化,列出关于参数的方程或不等式. 在此类含参问题的求解过程中,逆向思维的作用尤其重要. 4.研究曲线的切线问题 导数的几何意义表现为曲线的切线斜率值,从而利用导数可求曲线的切线,并进一步将导数融合到函数与解析几何的交汇问题中. 解决此类相切问题,一般先求函数的导数,依据曲线在处的切线斜率为而进行研究. 由于切点具有双重身份,既在切线上,又在函数图象上,从而对切点的研究可作为解决问题的纽带,特别是在不知道具体切点的情况下,常常设切点坐标并联立方程组而求解. 5.解决实践问题

导数应用论文

导数的应用 吴泽国 目录 [摘要] (2) 一.引言 (2) 二.导数的概念 (2) 三.导数的求法 (3) 1.显函数导数 (3) 1.1导数的四则运算: (3) 1.2复合函数与反函数求导法则 (3) 1.3基本初等函数求导公式 (3) 2.隐函数导数 (4) 3.由参数方程所确定的函数求导法 (4) 4.分段函数的导数 (4) 四.导数的性质 (4) 五.导数的应用 (5) 1.导数在函数中的应用 (5) 1.1利用导数判断函数的单调性 (6) 1.2利用导数判断函数凹凸性及拐点 (7) 1.3利用导数求函数的极值和最值 (8) 1.4利用导数知识描绘函数图形 (13) 1.5利用导数求参数问题 (15) 2.导数在曲线中的应用 (16) 3.利用导数研究方程的根 (17) 4.应用导数证明不等式 (17) 5.导数在数列中的应用 (18) 6.利用导数求极限——洛必达法则 (19) 6.1“0 ”型和“ ∞ ∞ ”型 (19) 6.2其他形式 (20) 7.物理学中的导数 (20) 8.经济学中的导数应用 (21) 结束语: (22) 参考文献: (22) (版权所有)

[摘要] 导数是新教材的一个亮点,它是连接初等数学与高等数学的桥梁,用它可以 解决许多数学问题,它是近年高考的的热点。它不仅帮助即将进入大学的高三学 生奠定进一步学习的基础,而且在解决有关问题已经成为必用工具。由于导数的 广泛应用,现已成为高考的热点知识 本文拟对导数知识的全面归纳,然后通过一些实例全面介绍导数在实际数学 中的应用,让人们全面了解导数这一工具的利用 [关键字] 导数 初等数学 高等数学 应用 一.引言 导数是初等数学与高等数学的重要衔接点,是高考的热点,高考对导数的考 查定位于作为解决初等数学问题的工具出现,高考对这部分内容的考查将仍会以 导数的应用题为主,如利用导数处理函数的极值、最值和单调性问题和曲线的问 题等,考题不难,侧重知识之意。 高考考查导数应用主要有以下三个方面: ①运用导数的有关知识研究函数的单调性和最值问题, ②利用导数的几何意义,研究曲线的切线斜率。函数y=f (x )在x=x 0处的导 数,表示曲线在点P (x 0 , y 0)处的切线斜率。 ③导数在其它数学分支的应用,如在数列、不等式、排列组合等知识的综合 等。 二.导数的概念 1、定义:0'0000 ()()()()()lim lim lim x x x x f x f x y f x x f x f x x x x x ?→?→→-?+?-===??- 左导数:0'0000 ()()()()()lim lim lim x x x x f x f x y f x x f x f x x x x x ----?→?→→-?+?-===??- 右导数: 0'00 00()()()()()lim lim lim x x x x f x f x y f x x f x f x x x x x ++++?→?→→-?+?-===??- '''()()()f x A f x f x A -+∴=?== 可以证明:可导?连续 即:可导是连续的充分条件 连续是可导的必要条件 导函数:'00()()()lim lim x x y f x x f x f x y x x ?→?→?+?-===??

相关主题