搜档网
当前位置:搜档网 › 航空发动机原理复习题

航空发动机原理复习题

航空发动机原理复习题
航空发动机原理复习题

发动机原理部分

进气道

1.进气道的功用:

在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机;

2.涡轮发动机进气道功能

冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力

3.进气道类型:

亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式

4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。

影响进气道冲压比的因素:流动损失、飞行速度、大气温度。

5.空气流量:单位时间流入进气道的空气质量称为空气流量。

影响因素:大气密度, 飞行速度、压气机的转速

压气机

6.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需

要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。7.压气机分类及其原理、特点和应用

(1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动.

(2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动.

(3)混合式压气机:

8.阻尼台和宽叶片功用

阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。

宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。

9.压气机喘振:

是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。

10.喘振的表现:

发动机声音由尖锐转为低沉,出现强烈机械振动.

压气机出口压力和流量大幅度波动,出现发动机熄火.

发动机进口处有明显的气流吞吐现象,并伴有放炮声.

11.造成喘振的原因

气流攻角过大,使气流在大多数叶片的叶背处发生分离。

燃烧室

12.燃烧室的功用及有几种基本类型

功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。

分类:单管(多个单管)、环管和环形三种基本类型

13.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要

求、压力损失小、尺寸小、重量轻、排气污染少

14.环形燃烧室的结构特点、优缺点

结构特点:火焰筒和壳体都是同心环形结构,无需联焰管

优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。

缺点:调试时需要大型气源;

采用单个燃油喷嘴,燃油—空气匹配不够好;

火焰筒刚性差;

15. 燃烧室主要由哪几部分组成及功能

扩压器、火焰筒、外壳、内壳、涡流器、喷咀、点火器

涡轮

16. 涡轮的分类及原理

(1)冲击式涡轮 :推动涡轮旋转的扭矩是由于气流方向改变而产生的。

(2)反力式涡轮:推动涡轮旋转的扭矩是由于气流速度的大小和方向的改变而产生

(3)冲击-反力式涡轮: 推动涡轮旋转的扭矩是由于气流速度的大小和方向的改变而产生的。

17. 涡轮的结构组成

静子—由导向器组成; 转子—由工作叶轮组成导向器工作叶轮

18. 简述叶片冷却的方法

导热,冲击, 对流换热, 气膜冷却

19. 叶轮间隙的原理和作用

涡轮机匣与工作叶片叶尖之间的距离叫涡轮径向间隙。

涡轮间隙对涡轮效率有很大的影响,据估算,涡轮间隙若增加1mm ,涡轮效率下降%,这将使发动机耗油率增加%,所以为了减少损失,提高效率,应尽可能减小径向间隙。

20. 涡轮叶片的特点

涡轮叶片比压气机要厚,涡轮叶片比压气机弯曲程度要大。

21. 涡轮落压比: 涡轮进口处的总压 与涡轮出口处的总压 之比 22. 涡轮落压比随转速的变化规律

1.当涡轮导向器最小截面处处于临界或超临界状态时,涡轮的落压比为常数;

2.当涡轮导向器最小截面处处于临界或超临界状态, 而喷管处于亚临界状态时,随着转速下降, 涡轮的落压比下降; 这时涡轮落压比的变化是由最后一级涡轮落压比的变化造成的, 而其它各级涡轮的落压比不随转速而变化。

3.当涡轮和喷管均处于亚临界状态时,随着转速减小, 涡轮的落压比减小。各级落压比都减小, 而且越靠后的级落压比减小得越多。

尾喷管

23. 喷管的主要功用使从涡轮流出的燃气膨胀,加速,将燃气的一部分热转变为动能, 提高

燃气的速度, 使燃气以很大的速度排出, 这样可以产生很大的推力.

通过反推力装置改变喷气方向,即变向后的喷气为向斜前方的喷气, 产生反推力, 以迅速降低飞机落地后的滑跑速度, 缩短飞机的滑跑距离.

采用消音喷管降低发动机的排气噪音.

通过调节喷管的临界面积来改变发动机的工作状态

24. 喷管的分类亚音速:收敛形的管道、超音速:先收敛后扩张形的管道

25. 收缩喷管的3种工作状态 当: 时,喷管处于亚临界工作状态 临界工作状态、

超临界工作状态:

这时喷管出口气流马赫数等于1;

出口静压等于临界压力而大于反压, 是不完全膨胀, 实际落压比小于可用落压比; 当来流总压和总温不变时, 通过喷管的质量流量不随反压的变化而变化, 达到最大值;

所以我们定义: 喷管出口反压小于气流的临界压力, 喷管出口处气流的速度等于音*4*3*p p T =π*3p *4p 1.85p p p p πcr *4b *4*b =<= 1.85p p p p πcr *4b *

4*b =>= 1.85p p p p πcr *

4b *4*b =>=

速的工作状态称为超临界工作状态。

26.反推的功用、原理及分类

功用:改变喷气的方向, 产生反推力, 使飞机在着陆后比较快的减速,以缩短飞机着陆后的滑跑距离。

原理:是改变喷气方向, 变向后的喷气为向斜前方喷气。

分类: 折流板式反推力装置和格栅式反推力装置。

27.发动机的噪音源

一个是喷出的高温高速燃气与外界大气混合所产生的噪音;

另一个是空气进入进气道和流过发动机时产生的噪音;

第三个是发动机的振动所产生的噪音。但前者是主要的噪音源。

28.发动机的消音的方法

降低喷气速度、改变振动的频率,、吸音材料。

29.发动机的消音的部位进气整流罩内壁面;风扇机匣内壁面;尾喷管内壁面。

轴承、封严及附件传动

30.转子支撑方案

转子通过支撑结构支撑于发动机机匣上,转子上承受的各种负荷由支撑结构承受并传至发动机机匣上,最后由机匣通过安装节传至飞机构件中。发动机转子采用几个支撑结构,安排在何处称为转子支撑方案

发动机系统部分

发动机空气系统

31.发动机空气系统冷却功能分类以及冷却区域

a)用于发动机方面:发动机内部和附件装置的冷却、轴承腔封严、平衡轴承的轴向

载荷、压气机防喘振控制、控制涡轮叶片的叶尖间隙、发动机防冰、发动机启动等。

b)用于飞机方面:座舱环境控制、机翼防冰、探头加温等

32.发动机防喘措施中间级放气;压气机静子叶片可调;采用多转子

33.简述VBV的工作原理

活门开度根据发动机工作状态参数计算后,决定开、关和开度大小。

大气温度高,放气关闭时对应的发动机转速增大。

活门实际位置通过反馈钢索传回控制器与要求位置比较。

34.简述VSV的工作原理

a)可调静子叶片(VSV)通常是将高压压气机的进口导向叶片和前几级静子叶片做

成可调的。在压气机不同的工作状态及外界条件下,通过改变工作叶轮进口处绝对速度的切向分量大小,从而改变相对速度的方向,减小攻角,防止喘振。

b)转速低时,叶片关小;转速高时,叶片开大。

c)叶片实际位置通过反馈钢索传回控制器与要求位置比较,或传感器传回控制器与

要求位置比较。

35.VSV中可调的是发动机中哪部分

36.间隙控制的目的:

保持涡轮叶片叶尖和机匣之间的间隙为最佳,减少漏气损失,提高发动机性能。37.HPTACC工作原理高压涡轮间隙控制活门混合空气控制高压涡轮护罩支架的热力膨

胀。通常HPTACC 系统保持在HPT 叶尖与机匣支架之间的间隙至最小。但当发动机内部温度不稳定时或在大功率时,HPTACC系统增加涡轮间隙。HPTACC系统增大间隙以确保高压涡轮叶尖与护罩不接触。

38.LPTACC工作原理低压涡轮间隙控制系统控制低压涡轮(LPT)叶尖间隙。LPTACC增

加或减少流至LPT 机匣的风扇出口空气量。冷却低压涡轮机匣控制保持LPT叶尖间隙至最小的热力膨胀。这样可提高燃油效率

39.发动机引气防冰的位置

发动机的进气道前缘,压气机前缘整流罩、第一级导流叶片都有可能结冰。

40.发动机防冰的原因以及方法

i.结冰会破坏进气道的气动外形,减小进气面积,使空气流量减少,功率下降,

性能变差,进一步引致发动机故障。

ii.结冰会破坏转子的平衡,引起发动机振动过大。脱落下来的冰块还可能被吸入发动机,打坏发动机部件。

防冰方法:热空气加温防冰和电加温防冰。

发动机操纵系统

41.简述B737发动机操纵原理

飞机驾驶员并不直接操纵发动机,而是通过一个中介—燃油控制器实行。

驾驶舱的推力杆不同位置,燃油控制器要发动机产生相应的推力。

燃油控制器感受一些变量并供给足够的燃油流量到燃烧室,使发动机产生飞机所需要的推力。供给的燃油流量不允许超出发动机的工作限制。

油门杆通过传动钢索与燃油控制器上的功率杆相连。

42.正向推力和反推力的控制

正向推力和反推力的要求从驾驶舱通过操纵系统传到位于发动机的燃油控制器。

前向推力杆和反推杆是绞接在一起的,一个锁定机构防止前向推力杆和反推杆的同时作动。

每个杆能够运动的能力取决于另一个杆的位置。

如果前向推力杆在慢车位,反推杆离开OFF位的话,推力杆不能向前推增加正推力;

如果反推杆在OFF位,前向推力杆离开慢车位,那么,反推杆提不起来。

当反推杆拉起时,发动机的转速将增加。

它们的运动由操纵系统传到燃油控制器,控制器的设计使得功率杆在慢车域的任一方向运动,供油量都会增加。

发动机排气系统

43.涡扇发动机的排气系统及其作用

将涡轮排出的燃气以一定的速度和要求的方向排入大气,产生推力。

对涡轮喷气发动机,涡轮后排气流产生全部推力;

从涡轮出来的排气流,因有高速旋流,为了降低摩檫损失,通常将排气锥和外壁之间的通道设计为扩散的,气流流速降低、压力升高。涡轮后部支板对气流进入喷管之前整流,避免旋涡损失。

44.发动机反推的实现方法

对高涵道比发动机,只将风扇气流反向;阻流门-格栅式、枢轴门型反推器。

对涡喷发动机和低涵道比发动机,将热燃气流或内外涵混合气流反向。蛤壳形折流门、铲斗门型(戽头式门)。

发动机指示系统

45.发动机监控的的参数有那些

低压转子转速N1;高压转子转速N2;排气温度EGT

46.造成EGT较高的状况有那些

1、核心机气路原因

2、燃油系统的原因

3、故障方面的原因。

4、人为因素致EGT升高

启动点火系统

47.起动过程的三个阶段

a)从启动机工作到燃烧室喷油点火。

b)从燃烧室点火到启动机与发动机脱开。

c)从启动机脱开到慢车转速。

48.发动机起动气压动力来自哪里

辅助动力装置APU气压;地面设备;对面的发动机。

49.EEC(B737)在起动中的作用

在起动过程中EEC 保护发动机。在一次起动过程中当EEC 发现发动机的参数是超过极限时,EEC就关断至发动机的燃油供给。

燃油控制系统

50.什么是发动机燃油和控制系统

是计算产生指令的推力需要的燃油量。然后发动机燃油和控制系统计量燃油并把燃油喷入燃烧室。

发动机燃油和控制系统也输送必要的燃油到发动机空气系统,这样发动机运转有效而稳定。

51.叙述B(737)EEC(发动机电子控制器)通道的工作原理

每个EEC有两个计算机。每个计算机能够控制发动机。一个计算机是在有效的控制中而另一个则在备用中。

计算机被称为通道。一个计算机称为通道A 而另一个计算机称为通道B。两个通道通过一个横向通道数据链(CCDL)连通。

52.(B737)EEC主要功能

a)输入信号有效和处理

b)起动,关车和点火控制

c)发动机推力管理

d)反推力控制

e)发动机核心控制

f)高压涡轮间隙主动控制(HPTACC)和低压涡轮间隙主动控制(LPTACC)

g)自检设备

h)驾驶舱指示

53.例举简述(B737)EEC的输入信号和有效处理

EEC 从发动机和飞机其它系统获得数字的和模拟的信号。这些信号中的某些信号对相同的数据有多于一个的来源。这就提高了发动机的可靠性。

如一个已知的参数的所有来源都不是有效的,将使用一个偏差值安全地控制发动机。

如果EEC发现一个信号不是有效的,它将在自检设备存储器内存储一个信息。

发动机电子控制部分

发动机电子控制概念

54.什么是稳态控制、过渡控制和安全限制

稳态控制(调节):是指当发动机操纵指令不变时,(慢车、中间、最大状态等)通过对燃油流量或喷口面积的调节,客服飞行环境条件变化的影响,使发动机的工作状态和操纵指令保持一致。

过渡控制(跟踪):当发动机的操纵指令发生改变时,(起动、加减速、加力接通、关闭过程等)通过控制系统使发动机的过渡过程迅速、稳定、可靠。

安全限制:保证发动机的工作安全、可靠。防止超温、超压、超转和超功率。只有被限制参数超过极限值时,限制器才参与工作。

55.什么是控制对象、控制装置和控制系统

a)控制对象: 被控制的技术对象(物体或过程)称为控制对象,如:发动机。

b)控制器: 控制对象以外的,为完成控制任务的机构的总合,又称为控制装置。

c)控制系统: 被控制对象和控制器的总合称为控制系统。

56.什么是可空变量、被控变量和干扰量

可控变量: 能影响被控对象(发动机)的工作过程,用来改变被控参数大小的变量称为可控变量。

被控变量: 能表征被控对象(发动机)的工作状态,又能被控制的变量称为被控变量。

如发动机的转速。

干扰量: 作用在被控对象或控制器上,能引起被控系数发生变化的外部作用量,如大气温度,大气压力(飞行高度,飞行马赫数),大气湿度等。

57.什么是发动机控制方案

发动机控制方案是指,根据外界条件(飞行高度和速度)或驾驶指令来改变可控变量,以保证发动机的被控变量不变或按预定规律变化,从而达到控制发动机推力的目的。航空发动机基本控制方案

58.高涵道比涡轮风扇发动机被控参数是

大部分推力由外涵产生,外涵产生的推力只要取决于流过外涵的空气流量,而风扇转速N1决定外涵空气流量。

59.影响起动过程的因素与起动控制

(1)点火能量及起动功率:

起动机功率越大,则剩余功率越大,起动过程越快。

起动机功率的大小取决于对起动时间的要求、发动机转子的转动惯量及压气机需用扭矩等因素。

(2)起动机脱开转速的控制

起动机脱开转子时,剩余功率△N 应能使转子独立加速,涡轮前温度不超限,且起动时间符合要求。脱开过早,则可能因剩余功率太小而起动失败。

(3)起动油量控制(起动供油曲线)

60.什么是发动机的超温限制和限制方法

发动机超温主要指涡轮前温度或加力温度超过最大允许值。

方法:发动机转速限制、设置专门的超温限制器。

61.什么是发动机的超压限制和限制方法

飞行速度、大气温度及发动机转速越高,则压气机出口压力越大。

方法:一般采用减少供油量的办法,当压气机出口压力超限时,超压限制器感受到该超压信号,去干扰燃油量控制器,是供油量减少。

62.什么是发动机的熄火限制和防止高空熄火的方法

高空时空气流量、进气压力及供油量都较低,雾化、混合气质量都显着恶化,从而造成燃烧室熄火。

方法:燃油嘴和燃烧室结构上加以改进;通过限制燃油喷嘴前最低压力的办法来保证燃油喷嘴的雾化质量。

发动机电子控制系统

63.CFM56-3发动机MEC的组件和被控参数有哪些

主发动机控制器MEC;

风扇进口温度传感器T2;

压气机进口温度传感器CIT;

可变放气活门VBV 系统;

可调静子叶片VSV系统;

64.CFM56-3发动机PMC的组件和被控参数有哪些

功率管理控制器PMC;

转速表发电机;

风扇转速传感器;

风扇进口温度传感器T12 ;

风扇进口静压传感器Ps12。

65.简述MEC与PMC的双重控制模式

PMC功率管理控制器控制发动机推力。PMC 控制推力( nL 转速) 实际上是

通过MEC 调节燃油供油量来实现的。

全功能数字电子控制器FADEC

66.FADEC系统组成模块有那些

发动机智能控制(IEC)、性能寻优控制(PSC)、稳定性寻优控制(SSC)、主动失速/喘振控制(ASC)。

67.FADEC系统优点

提高发动机的性能;

可以降低燃油消耗量;

减轻驾驶员的负担;

提高可靠性;

降低成本;

易于实施发动机和飞机控制一体化。

68.FADEC在发动机控制方面功用

推力管理,对发动机的推力进行精确的控制,提高了推力控制的精度;

燃油量的控制由EEC对发动机控制;

控制放气活门的开度和可调静子叶片的角度,以得到最佳的喘振裕度防止喘振使发动机更好地工作;

涡轮间隙(TCC)控制,控制发动机不同级的引气,从而保证涡轮叶尖间隙为最佳间隙,减少燃气泄漏,改善涡轮的效率,提高发动机的性能;

对发动机的燃油和滑油进行控制;

对发动机的起动点火和反推进行控制;

安全保护,EEC使发动机的各主要参数不超限。

电子控制系统可靠性及发动机状态监控

69.发动机状态监测参数要求

性能诊断试图监视推进系统气路部件的性能,需要用一些特定的参数来计算压气机和涡轮效率、流通能力、VSV位置、有效喷口面积以及工作的偏移等,对监控参数的要求:

精度:通常是非常高(优于+/%);

重复性:通常是非常好的;

采样速率:每秒1次;

更新速率:至少每秒1次;

输出速度:每飞行小时1次;

飞行航段:民用飞机为巡航或爬升(一般是最稳定或可重复的飞行航段)

发动机控制系统典型故障分析及排故方案

70.简述EGT超温故障常见原因

1、核心机气路原因

指气流通过压气机、燃烧室及涡轮时,由于个别单元或整个核心机使用时间增加导致效率下降,从而引起EGT升高。例如:

压气机的叶型损失;

级间损失;

叶端损失及喘振;

放气门关闭不严;

燃烧室的富油燃烧;

外部冷却不均;

涡轮冷却不良及间隙控制不好。

以上各种情况都能引起气路效率下降、EGT超温。

2、燃油系统的原因

燃油系统故障。例如:

喷嘴位置误差或积碳导致雾化不良会造成局部超温;

燃油计量单元故障或EEC感受错误信息使燃油量增大会导致EGT超温现象。

3、故障方面的原因。例如:

鸟击或外来物导致叶片损伤;

起飞滑跑时发生喘振;

提前关闭放气活门或不该打开时打开。

4、人为因素致EGT升高

EGT超温大多是人为因素造成的。例如:

机组人员违反操作规程推动油门杆过快或操作引发的EGT超温;

外界环境变化引起EGT升高

高海拔低气压地区、严寒条件或空气含水分、盐分及微尘过高等,会使起动缓慢形成富油燃烧,或使叶片腐蚀、封严损坏等致使核心机效率下降,都会使EGT升高。

71.简述提高EGT裕度的主要措施

生产厂家选择新型耐高温材料制造涡轮或采用更为有效的冷却系统;也可采用耐高温涂层或更合理的气路设计,是发动机能长时间高效率工作来改善EGT裕度

发动机客户主要通过降低排气温度的方法来提高EGT裕度,目前有效措施:

高压涡轮主动间隙控制

减功率起飞

发动机冲洗

风扇叶片及防磨带检查

应对发动机建立故障档案,进行追踪分析,才能提出最为有效的改进和预防措施来提高EGT裕度

高压涡轮主动间隙控制

压气机或涡轮的动叶叶尖间隙是影响单元体效率及EGT裕度的重要因素之一。72.空中停车发生起因

结构疲劳断裂、结构腐蚀、外来物损伤;

喘振、不平衡振动过大;

超温烧腐、超转;

滑油系统故障。

航空发动机原理与构造复习题

一、选择题 1.燃气涡轮发动机的核心机包括 C 。 A.压气机、燃烧室和加力燃室B.燃烧室、涡轮和加力燃室 C.压气机、燃烧室和涡轮D.燃烧室、加力燃室和喷管 2.在0~9截面划分法中,压气机出口截面是 B 。 A.1—1截面B.3—3截面C.4—4截面D.6—6截面 3.在0~9截面划分法中,燃烧室出口截面是。 C A.1—1截面B.3—3截面C.4—4截面D.6—6截面 4.发动机正常工作时,燃气涡轮发动机的涡轮是_____B____旋转的。 A.压气机带动B.燃气推动 C.电动机带动D.燃气涡轮起动机带动 5.气流在轴流式压气机基元级工作叶轮内流动,其_____C____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 6.气流在轴流式压气机基元级整流环内流动,其____C_____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 7.气流流过轴流式压气机,其____C_____。 A.压力下降,温度增加B.压力下降,温度下降 C.压力增加,温度上升D.压力增加,温度下降 8.轴流式压气机基元级工作叶轮叶片通道和整流环叶片通道的形状是____C_____。A.工作叶轮叶片通道是扩散形的,整流环叶片通道是收敛形的 B.工作叶轮叶片通道是收敛形的,整流环叶片通道是扩散形的 C.工作叶轮叶片通道是扩散形的,整流环叶片通道是扩散形的 D.工作叶轮叶片通道是收敛形的,整流环叶片通道是收敛形的 9.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 10.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 11.多级轴流式压气机由前向后,____A_____。 A.叶片长度逐渐减小,叶片数量逐渐增多 B.叶片长度逐渐减小,叶片数量逐渐减小 C.叶片长度逐渐增大,叶片数量逐渐增多 D.叶片长度逐渐增大,叶片数量逐渐减小 12.涡轮由导向器和工作叶轮等组成,它们的排列顺序和旋转情况是___A_____。A.导向器在前,不转动;工作叶轮在后,转动 B.导向器在前,转动;工作叶轮在后,不转动

航空发动机原理

航空发动机原理 航空发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,航空发动机已经形成了一个种类繁多,用途各不相同的大家族。 航空发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,航空发动机可分为两类 1、吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 2、火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为 1、直接反作用力发动机 直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 2、间接反作用力发动机两类。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。 附图: 活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。 为航空器提供飞行动力的往复式内燃机。发动机带动空气螺旋桨等推进器旋转产生推进力。 从1903年第一架飞机升空到第二次世界大战末期,所有飞机都用活塞式航空发动机作为动力装置。40

航空发动机结构分析思考题答案

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2 2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静

子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子? 答:P40 图3.6 _c\d 8.工作叶片主要由哪两部分组成 答:叶身、榫头(有些有凸台) 9.风扇叶片叶身凸台的作用是什么? 答:减振凸台,通过摩擦减少振动,避免发生危险的共振或颤振。 10.叶片的榫头有哪几种基本形式?压气机常用哪一种?答: a)销钉式榫头; b)枞树型榫头;

2020年航空发动机行业分析报告

2020年航空发动机行业分析报告 2020年2月

目录 一、我国航空发动机国产化势在必行,产业链各环节企业将迎来重大 发展机遇期 (5) 1、国家级基金战略扶持:预计2017年启动的国家级两机专项计划投入规模 6在3000亿以上 ........................................................................................................ 2、国家安全战略重要保障:两机是工业领域皇冠上的明珠,是国家安全的重 7要战略保障 .............................................................................................................. 3、产业链条足够长、市场空间足够大:预计未来10年全球两机市场规模将 达到6000亿美元,产业链各环节企业发展空间巨大 (8) 二、我国航空发动机产业发展现状及标的梳理 (12) 1、航空发动机产业发展特点:技术壁垒高、经济回报高、研制周期长 (12) (1)技术壁垒高 (12) (2)经济回报高 (13) (3)研制周期长、研制投入大 (13) 2、我国国产军用航空发动机发展现状 (14) (1)仿制和改进 (14) (2)部分自主设计 (15) (3)拥有自主知识产权 (15) 3、我国航空发动机等两机产业链标的梳理 (16) 三、两机产业链:全球维度看切入两机供应体系,国内维度看自主可 控加速技术与产品落地 (17) 1、航发动力:我国航空发动机制造龙头企业,整机制造处垄断地位 (18) 2、应流股份:两机叶片千亿美金赛道,从此有了中国制造 (19)

航空发动机原理试题

《气体动力学基础》试卷 一、 填空(30分,每空1分) 1. 气体密度是指_单位容积内气体的质量_。从微观上讲,密度的大小代表了_气体分子的疏密程度_。气体流过航空发动机的喷管时,其密度的变化规律是__减小__。 2.从微观上讲,气体压力是_大量气体分子无规则运动碰撞器壁的总效应_。在比容一定的情况下,气体温度升高,引起气体压力的变化规律是_增大 。 3.定压比热是指_在压力一定的条件下,1kg 气体温度升高或降低1℃,所需吸收或放出的热量_;定压比热与定容比热的关系式可以写成 R c c v p +=。 4.绝热过程是指 气体在和外界没有任何热交换的前提下,所进行的热力过程 ;在该过程中压力和比容的关系式可以写成k v v p p )(2 112=;该过程的外(容积)功的计算式可以写成)(1 11122v p v p k l --=。 5.“一维定常流”中“一维”是指_气流参数是一维坐标的函数_。 6.可压流的连续性方程可以写成 常数=V A ρ ,它说明_在一维定常流的条件下,流过各截面的气体流量相等_。 7. 一维定常流能量(焓)方程的一般形式是 1221222 i i V V l q -+-=±±外 。气体流过发动机的涡轮时,能量方程可以改写成 l V V i i +-=-2 212221 ,此方程表示的能量转换关系是 气体焓的下降,用来对外作功和增加气体的动能 ;气体流过发动机进气道时,能量方程可以改写成常数=+2 2 V i ,此方程表示的能量转换关系是_焓和动能之和保持不变 。 8.滞止压力(总压)是指_理想绝能条件下,将气流滞止到速度为零时的压力_。气体流过发动机的进气道时,在不考虑流动损失的情况下,总压的变化规律是 不变_的。

航空发动机结构设计中可装配性案例分析

航空发动机结构设计中可装配性案例分析 摘要:航空发动机零部件数目繁多,结构复杂,精度及性能要求高,型号规格相似,在生命周期内需要多次装配、分解及维修,且为手工装配,工作量大,错装、漏装现象容易发生。因此,对于航空发动机这种高度复杂的产品,除了应当完善严格的工艺规划、装配操作与流程管理外,更应当在设计初期对产品的可装配性进行分析,总体上提高产品质量和可靠性,降低成本,缩短发动机的开发和制造周期。 关键词:航空;发动机;结构设计;可装配性;案例 1分组设计 在航空发动机压气机转子设计中,后几级叶片通常采用环形燕尾榫头固定,即在轮缘上车出 1 个环形燕尾槽安装叶片,使加工简单,装配方便。考虑到叶片在工作中受热膨胀以及为了有利于安装分解,叶片榫头与鼓筒榫槽设计为间隙配合,为防止工作状态叶片甩开后,缘板出现周向碰摩或较大串动,静态装配时要求叶片周向总间隙 M 在合理范围内。 叶片首次装配或更换新叶片后,通常会出现总间隙M 小于规定要求的情况,操作者会将最后 1 个叶片(不带锁紧槽的叶片)暂时不装,将安装的叶片手动排除活动间隙后,用卡尺测量空缺位置的缘板间隙,比对最后 1 个安装叶片的缘板宽度,计算二者差值,即为装配工序留 给加工修磨工序的修磨值,通过修磨值确定对 1 片或多片叶片进行修磨。目前设计要求为:如果装配后不能满足总间隙 M 的要求,允许修磨叶片缘板的 2 个周向侧面,但每边叶片修磨量有上限要求。有时会发生叶片修磨过量,导致叶片修磨后仍无法满足要求,需要更换叶片进行重新修磨,造成叶片的损坏或浪费。 2非均布设计 在某型发动机设计中,4 支点轴承外环安装在高压涡轮后轴颈内,轴向用 4 支点轴承螺母紧固,采用锁紧环防松方法。锁紧环安装在轴承螺母径向安装槽内,通过锁紧环上的定位销插入高压涡轮后轴颈和轴承螺母周向同一个卡槽内防松。其中,高压涡轮后轴颈后端面和轴承螺母后端周向均布 12 个卡槽。要求轴承螺母拧紧至一定的力矩(1193~1342N m)后,用锁紧环锁紧。在实际装配中,在规定的力矩范围内,高压涡轮后轴颈后端面和轴承螺母后端的卡槽只有 1 次机 会重合,或者 12 个槽全部对上,或者 1 个也对不上,旋转角度需为360°÷12÷1=30°,每次都需采用修磨螺母端面的方法解决,既损坏机件连接性能,又耗费人力物力。而在 CFM56 系列发动机类似设计中,高压涡轮后轴颈后端面周向均布 12 个卡槽,而轴承螺母后端面周向均 布 11 个卡槽,螺母旋转 1 周,有 11 次机会可以对正锁紧,旋转角度只需为 360°÷12÷11=2.73°,这样可使力矩范围更窄,也能 1 次对正成功。 3防错设计

2013级《航空发动机原理》期末考试复习

《航空发动机原理》复习 一、单项选择题(共20题每题2分共40分) 1.以下哪个是衡量发动机经济性的性能参数( A )。 A EPR B FF C SFC D EGT 2.涡轮风扇发动机的涵道比是( D )。 A流过发动机的空气流量与流过内涵道的空气流量之比 B流过发动机的空气流量与流过外涵的空气流量之比 C流过内涵道的空气流量与流过外涵道的空气流量之比 D流过外涵道的空气流量与流过内涵道的空气流量之比 3.高涵道比涡扇发动机是指涵道比大于等于( C ). A 2 B 3 C 4 D 5 4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。 A20% B40% C80% D90% 5.涡桨发动机的喷管产生的推力约占总推力的( B ) A.85-90% B.10-15% C.25% D. 0 6.涡桨发动机使用减速器的主要优点是:( C ) A能够增加螺旋桨转速而不增加发动机转速 B螺旋桨的直径和桨叶面积可以增加 C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高 D在增大螺旋桨转速情况下,能增大发动机转速 7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C ) A N2<Nl B N2=Nl C N2>Nl D设计者确定哪个大 8.亚音速进气道是一个( A )的管道。 A扩张形B收敛形 C先收敛后扩张形 D圆柱形 9.亚音速进气道的气流通道面积是( D )的。 A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形10.气流流过亚音速进气道时,( D )。 A速度增加,温度和压力减小 B速度增加,压力增加,温度不变 C速度增加,压力减小,温度增加 D速度减小,压力和温度增加11.在离心式压气机里两个起扩压作用的部件是( D )。 A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器12.轴流式压气机的一级由( C )组成。 A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器 13. 空气流过压气机工作叶轮时, 气流的( C )。 A相对速度增加, 压力下降B绝对速度增加, 压力下降

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

(完整版)航空发动机结构练习题库(一)

1.航空发动机研制和发展面临的特点不包括下列哪项()。 A.技术难度大 B.研制周期长 C.费用高 D.费用低 正确答案:D 试题解析:发动机研制开发耗费昂贵。 2.航空发动机设计要求包括()。 A.推重比低 B.耗油率高 C.维修性好 D.可操纵性差 正确答案:C 试题解析:航空发动机设计要求其推重比高、耗油率低、可操纵性好、维修性好。 3.下列哪种航空发动机不属于燃气涡轮发动机()。 A.活塞发动机 B.涡喷发动机 C.涡扇发动机 D.涡桨发动机 正确答案:A 试题解析:活塞发动机不属于燃气涡轮发动机,二者结构、原理不同。 4.燃气涡轮发动机的核心机由压气机、燃烧室和()组成。 A.进气道 B.涡轮 C.尾喷管 D.起落架 正确答案:B 试题解析:压气机、燃烧室和涡轮并称为核心机。 5.活塞发动机工作行程不包括()。 A.进气行程 B.压缩行程 C.膨胀行程 D.往返行程 正确答案:D 试题解析: 活塞发动机四个工作行程:进气、压缩、膨胀、排气。 6.燃气涡轮发动机的主要参数不包括下列哪项()。 A.推力 B.推重比 C.耗油率 D.造价 正确答案:D 试题解析:造价不是发动机性能参数。 7.对于现代涡扇发动机,常用()代表发动机推力。 A.低压涡轮出口总压与低压压气机进口总压之比

B.高压涡轮出口总压与压气机进口总压之比 C.高压涡轮出口总压与低压涡轮出口总压之比 D.低压涡轮出口总压与低压涡轮进口总压之比 正确答案:A 试题解析:低压涡轮出口总压与低压压气机进口总压之比用来表示涡扇发动机推力。 8.发动机的推进效率是()。 A.单位时间发动机产生的机械能与单位时间内发动机燃油完全燃烧时放出的热量之比。 B.发动机的推力与动能之比。 C.发动机推进功率与单位时间流过发动机空气的动能增量之比。 D.推进功率与单位时间内发动机加热量之比。 正确答案:C 试题解析:发动机的推进效率是发动机推进功率与单位时间流过发动机空气的动能增量之比。 9.航空燃气涡轮发动机是将()。 A.动能转变为热能的装置 B.热能转变为机械能的装置 C.动能转变为机械能的装置 D.势能转变为热能的装置 正确答案:B 试题解析:航空燃气涡轮发动机是将热能转变为机械能的装置。 10.航空燃气涡轮喷气发动机经济性的指标是()。 A.单位推力 B.燃油消耗率 C.涡轮前燃气总温 D.喷气速度 正确答案:B 试题解析:燃油消耗率是航空燃气涡轮喷气发动机经济性的指标。 11.气流马赫数()时,为超音速流动。 A.小于1 B.大于0 C.大于1 D.不等于1 正确答案:C 试题解析:气流马赫数大于1时,为超音速流动。 12.燃气涡轮喷气发动机产生推力的依据是()。 A.牛顿第二定律和牛顿第三定律 B.热力学第一定律和热力学第二定律 C.牛顿第一定律和付立叶定律 D.道尔顿定律和玻尔兹曼定律 正确答案:A 试题解析:燃气涡轮喷气发动机产生推力的依据是牛顿第二定律和牛顿第三定律。 13.燃气涡轮喷气发动机出口处的静温一定()大气温度。 A.低于 B.等于 C.高于

2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析报告

2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析 报告 中国报告网

2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析报告 ?【报告来源】中国报告网—https://www.sodocs.net/doc/5215029963.html, ?【关键字】市场调研前景分析数据统计行业分析 ?【出版日期】2016 ?【交付方式】Email电子版/特快专递 ?【价格】纸介版:7200元电子版:7200元纸介+电子:7500元 中国报告网发布的《2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析报告》内容严谨、数据翔实,更辅以大量直观的图表帮助本行业企业准确把握行业发展动向、市场前景、正确制定企业竞争战略和投资策略。本报告依据国家统计局、海关总署和国家信息中心等渠道发布的权威数据,以及我中心对本行业的实地调研,结合了行业所处的环境,从理论到实践、从宏观到微观等多个角度进行市场调研分析。它是业内企业、相关投资公司及有关部门准确把握行业发展趋势,洞悉行业竞争格局,规避经营和投资风险,制定正确竞争和投资战略决策的重要决策依据之一。本报告是为了了解行业以及对本行业进行投资不可或缺的重要工具。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 第一章:中国航空发动机行业发展综述13 1.1 航空发动机的相关概述13 1.1.1 航空发动机的定义13 1.1.2 航空发动机的分类13 1.1.3 航空发动机属“四高”行业14 (1)高技术14 (2)高投入15 (3)高风险15 (4)高壁垒16 1.1.4 航空发动机价值拆分情况17 (1)发动机占飞机价值的30% 17 (2)发动机生命周期费用拆分18 (3)航空发动机部件价值拆分19 (4)航空发动机制造成本拆分20 1.2 我国航空发动机行业的发展综述21 1.2.1 航空发动机是航空工业的短板21 1.2.2 航空发动机行业发展历程分析22 1.2.3 航空发动机行业生命周期分析23

航发动力业务梳理及盈利能力分析(2021年)

航发动力:我国军用航发龙头,整机制造几乎处行业垄断地位 航发动力在发动机整机制造行业几乎处于垄断地位,具备涡喷、涡扇、涡轴、涡桨等全种类军用航空发动机生产能力,是我国三代主战机型国产发动机唯一供应商。在国际上, 公司是能够自主研制航空发动机产品的少数企业之一。主要产品和服务有军民用航空发动机整机及部件、民用航空发动机零部件出口、军民用燃气轮机、军民用航空发动机维修保障服务。拥有我国航空主机业务动力系统的全部型谱,完成包括“昆仑”(WP-14)、 “秦岭”(WS-9)、“太行”(WS-10)等多个重点发动机型号的研制与批产工作。公司实控人是中国航空发动机集团。 图表 30:航发动力股权结构 公司业务包括航空发动机及衍生产品(覆盖研制、生产、试验、销售、维修保障五大环节)、外贸转包生产(国际新型民用航空发动机零部件试制等)及非航空产品三大板块。 2019 年航空发动机及衍生产品营收(220.25 亿元,+11.73%,占比 87.36%),是主要业务板块。其中西航集团、黎明公司、南方公司和黎阳动力四大航空发动机核心资产是上市公司净利润主要来源,2019 年四大航空发动机厂净利润总和为 13.11 亿元,上市公 司归母净利润为 10.77 亿元。 图表 31:2019 年航发动力营收结构-分业务 图表 32:航发动力 2016-2019 各业务毛利率 航空发动机制造及 衍生产品 外贸转包生产 非航空产品及其他 其他业务 25% 20% 15% 10% 5% 0% 2016 2017 2018 2019

图表 33:航发动力主要业务及子公司(亿元) 持股 2018 年 2019 年 2020H1 公司 主营介绍 集团 司 岭)、涡扇 10(太行)等 公司 (昆仑)、涡扇 10(太行)等 公司 桨 5/6/9/10 动力 涡扇 13 公司 国 GE 、PWA 、英国 RR 等航发巨头 叶片 向世界顶尖航空发动机生产商供货多年 西航集团、黎明公司、南方公司和黎阳动力四大航发核心资产几乎涵盖国内所有型号航空发动机,具备涡喷、涡扇、涡轴、涡桨、活塞全种类军用航空发动机生产能力。国内航空发动机整机制造商还包括成发公司、兰翔机械厂等等,但主要发动机型号(如涡扇 -10 等)均由航发动力制造。 2016 2017 2018 2019 2020H1 2018 2019 2020H1 航发动力2020 年三季报业绩超市场预期。2019 年公司实现营收(252.11 亿元,+9.13%),归母净利润(10.77 亿元,+1.27%)。2020 年(1-9)月营收(154.68 亿元,+20.90%),归母净利润(6.34 亿元,+53.30%);存货 233.4 亿元,较年初增 25.88%,主要是产品 图表 34:航发动力四大主机厂营收情况(百万元) 图表 35:航发动力四大主机厂营收增速 14000 12000 10000 8000 6000 4000 2000 西航集团 黎明公司 南方公司 黎阳动力 西航集团 黎明公司 南方公司 黎阳动力 60% 50% 40% 30% 20% 10% 0% -10% 2017 2018 2019 2020H1 图表 36:航发动力四大主机厂利润总额情况(百万元) 图表 37:航发动力四大主机厂净利润情况(百万元) 2016 2017 2018 2019 2020H1 800 600 400 200 0 -200 600 400 200 -200 占比 营收 净利润 营收 净利润 营收 净利润 西航 母公 大中军用航空发动机:代表产品涡喷 8、涡扇 9(秦 64.10 4.10 67.40 5.32 26.99 0.97 黎明 大中推力航空发动机:代表产品涡喷 5/6/7、涡喷 14 100% 112.79 3.98 125.64 4.08 45.28 1.46 南方 中小型航空发动机:代表产品涡轴 8/9/10/11/16、涡 100% 49.44 3.53 58.53 3.77 24.47 1.61 黎阳 中等推力涡喷及涡扇发动机:代表产品涡喷 7/13、 100% 21.84 -0.46 21.12 -0.05 9.99 0.16 莱特 叶盘、机匣、盘、环、结构件等零部件,客户包括美 100% 7.89 - 9.18 - 3.40 - 安泰 两机叶片:具备全球最先进精密锻造及机加工工艺, 100% 0.65 - 0.70 - 0.12 -

航空发动机原理

航空发动机主要有三种类型:活塞式航空发动机,燃气涡轮发动机和冲压发动机。 航空发动机的发展经历了活塞发动机,喷气时代的活塞发动机,燃气涡轮发动机,涡轮喷气发动机/涡轮风扇发动机,涡轮螺旋桨发动机/涡轮轴发动机。本文主要利用动态图来说明航空发动机的工作原理。 星型活塞发动机(常见于旧飞机,例如B-36,yun-5等): 星型活塞发动机的原理与汽车发动机的原理相同。燃料在汽缸中爆炸并燃烧以推动活塞工作,但汽缸装置为星形。汽车上的活塞发动机通常以V或w的形式布置。活塞式航空发动机由于效率低,噪音大,燃油消耗大而已基本取消。 涡轮喷气发动机:(J-7,MiG-25等) 涡轮喷气发动机是涡轮发动机的一种。取决于气流产生推力。它通常用于为高速飞机提供动力,但其燃油消耗高于涡轮风扇发动机。著名的MiG-25和SR-71黑鸟侦察机均配备了涡轮喷气发动机,其最大速度可突破3马赫。由于油耗高,逐渐被涡轮风扇发动机取代。 涡轮螺旋桨发动机:(Y-8,C-130,a-400m等) 涡轮喷气发动机的本质类似于带有减速器和外部螺旋桨的涡轮喷气发动机。涡轮螺旋桨发动机的推力主要由螺旋桨产生,而喷气机产生的推力很小,仅为螺旋桨的十分之一。涡轮螺旋桨发动机的优点是速度低,效率高,适用于运输机,海上巡逻机等。由于螺旋桨旋转的面积较大,因此在高速飞行时会有很多阻力,因此涡轮螺旋桨发动

机不适合高速飞行。 涡轮风扇发动机:(涡轮风扇10,AL-31F,f-135等,cmf56)涡轮风扇发动机是从涡轮喷气发动机发展而来的。与涡轮喷气发动机相比,涡轮风扇发动机的主要特点是第一级压缩机的面积要大得多。目前,大多数先进的飞机都使用涡扇发动机。涡扇发动机相当于涡轮螺旋桨发动机和涡轮喷气发动机性能的折衷产品,适用于以400-1000 km / h的速度飞行。 优点:高推力,高推进效率,低噪音,低油耗,飞行距离长。 缺点:风扇直径大,迎风面大,阻力大,发动机结构复杂,设计困难。 螺旋桨风扇发动机:(ge-36) 螺旋桨式风扇发动机不仅可以被视为具有先进高速螺旋桨的涡轮螺旋桨发动机,而且除了外部管道外,还可以被视为超高旁通比涡轮风扇发动机。它具有涡轮螺旋桨发动机低油耗率和涡轮风扇发动机高飞行速度的优点。实验中的Ge36显示出非常低的燃料消耗,但是由于噪音,它并未在任何飞机上使用。

航空发动机项目投资分析报告

航空发动机项目投资分析报告 规划设计/投资分析/实施方案

报告说明— 该航空发动机项目计划总投资4076.34万元,其中:固定资产投资3292.14万元,占项目总投资的80.76%;流动资金784.20万元,占项目总投资的19.24%。 达产年营业收入6606.00万元,总成本费用4966.52万元,税金及附加76.47万元,利润总额1639.48万元,利税总额1942.09万元,税后净利润1229.61万元,达产年纳税总额712.48万元;达产年投资利润率40.22%,投资利税率47.64%,投资回报率30.16%,全部投资回收期4.82年,提供就业职位110个。 航空发动机是一种将燃料的化学能转化为燃气的热能,进而转化为飞行器的动能,从而为飞行器提供动力的热力机械。作为一种高度复杂和精密的装置,航空发动机的研发需要大量投入,典型发动机研制经费均超过9亿美元。

第一章项目概况 一、项目概况 (一)项目名称及背景 航空发动机项目 (二)项目选址 某经济新区 场址选择应提供足够的场地用以满足项目产品生产工艺流程及辅助生产设施的建设需要;场址应具备良好的生产基础条件而且生产要素供应充裕,确保能源供应有可靠的保障。 (三)项目用地规模 项目总用地面积12332.83平方米(折合约18.49亩)。 (四)项目用地控制指标 该工程规划建筑系数66.77%,建筑容积率1.67,建设区域绿化覆盖率7.17%,固定资产投资强度178.05万元/亩。 (五)土建工程指标

项目净用地面积12332.83平方米,建筑物基底占地面积8234.63平方米,总建筑面积20595.83平方米,其中:规划建设主体工程14895.37平 方米,项目规划绿化面积1477.19平方米。 (六)设备选型方案 项目计划购置设备共计90台(套),设备购置费1474.24万元。 (七)节能分析 1、项目年用电量438481.37千瓦时,折合53.89吨标准煤。 2、项目年总用水量5252.65立方米,折合0.45吨标准煤。 3、“航空发动机项目投资建设项目”,年用电量438481.37千瓦时, 年总用水量5252.65立方米,项目年综合总耗能量(当量值)54.34吨标准煤/年。达产年综合节能量22.20吨标准煤/年,项目总节能率25.88%,能 源利用效果良好。 (八)环境保护 项目符合某经济新区发展规划,符合某经济新区产业结构调整规划和 国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明 显的影响。 (九)项目总投资及资金构成 项目预计总投资4076.34万元,其中:固定资产投资3292.14万元, 占项目总投资的80.76%;流动资金784.20万元,占项目总投资的19.24%。

航空发动机控制系统浅析

航空发动机控制系统浅析 【摘要】航空发动机控制系统是一个多变量、时变、非线性、多功能的复杂系统,其性能的优劣直接影响发动机及飞机的性能。本文主要论述了航空发动机控制系统的发展历程、相关技术及其技术优缺点,并预测了国际发动机控制技术的未来发展。 【关键词】航空发动机控制系统;机械液压;FADEC;分布式;综合控制 1.概述 发动机的工作过程是极其复杂的气动热力过程,在其工作范围内随着发动机的工作条件和工作状态(如巡航、加速及减速等)的变化,它的气动热力过程将发生很大的变化,对于这样一个复杂而且多变的过程如果不加以控制,可以想象系统不但达不到设计的性能要求,而且根本无法正常工作。所以,航空发动机控制系统的目的就是使其在允许的环境条件和工作状态下都能稳定、可靠地运行,充分发挥其性能效益。 2.发展历程 随着航空发动机技术的不断进步和性能不断提高,其控制系统也由简单到复杂。航空发动机控制系统发展阶段的分类方法有很多种,目前,按发动机控制技术的发展和应用阶段大致分为以下4种,作简要介绍:(1)机械液压控制;(2)数字电子式控制;(3)分布式控制;(4)综合控制。 2.1 机械液压控制系统 机械液压控制系统:是使用基于开环控制或单输入单输出(SISO)闭环反馈控制等经典控制理论,采用由凸轮和机械液压装置组成的机械液压控制器即可成功地对发动机进行控制。 机械液压控制系统典型应用的机种:最典型的就是俄罗斯AN-*系列飞机。 这种简单的单输入单输出控制系统优点:(1)方法简单;(2)易于实现;(3)能保证发动机在一定使用范围内具有较好的性能。因此这种控制方法目前仍然应用于许多发动机的控制中。目前,国内运输机飞机上,发动机控制仍然用的是凸轮和机械液压装置组成的机械液压控制器。 随着发动机控制功能的增加,控制系统的复杂度也越来越大。这种简单的液压机械控制系统的缺点就显现了出来:(1)仅适用于:飞行速度比较小、飞行高度比较低、发动机的推力不大的飞机。(2)机械液压流量控制和伺服部件变得越来越大、越来越重、越来越昂贵。

航空发动机原理

航空发动机原理 您说的这个“如此简洁”的原理都是错的,重要的一步膨胀做功都没有,你让人家搞涡 轮的怎么办。。。 如果您只把“进气道进气—压气机增压—燃烧室加热—涡轮膨胀做功—尾喷管加速喷 出”这几个过程当作“航空发动机原理”当然可以说航空发动机的原理太简单了,但将这 个最基础的原理实现的过程就不算航空发动机原理了吗? 就从您提出的这个最简单的原理开始简单的捋一下: 1)知道了原理,首先得开始建模吧,不考虑损失的,将这个”进气—增压—加热—膨 胀做功—加速喷出“的过程用物理模型描述出来就是布雷顿循环——理解这个至少得学 过“工程热力学”吧。 2)有了循环,搞总体的人根据一定的经验和预估,按设计要求设计了循环参数(这 时就不能只考虑理想模型了,还要考虑效率和损失)。按最简单的,至少有总压比, 涡轮前温度和涵道比——最低要求学过“航空发动机原理”这门课(当然远远远远远远 远不够)。

3)有了循环参数得知道如何实现吧,这就需要对各个部件进行设计,得出各个部件 的工作曲线——每个部件的设计的基础理论都不止一本书要学。而每个部件设计又并 不是独立的,发动机各个部件的工作状态是耦合的,为了得到更好的性能,就需要各 个部件的设计人员进行讨(si)论(bi)。除此以外总体人员提出的设计参数又不一定 能够实现,这时为了团(shuai)结(guo)总体和设计又要开始讨(si)论(bi)。 重复(2)(3)直至收敛。 4)按照气动要求设计出来的各个部件还要满足结构要求,既要满足强度要求还要满 足刚度要求,板壳震动轴的一二三阶频率气动耦合振动叶片振动轮盘震动转子整体震 动等等等等一堆震动问题要解决,最可恶的是同时还要求重量轻!用结构老师的话 讲:如果航空发动机中的一个结构只有一两个作用,拿它的设计就是失败的。——知 道这些在说什么至少看过“航空发动机结构”吧。

我国航空发动机行业现状及发展趋势预测分析

2016年我国航空发动机行业现状及2017市场发展趋势预测分析 中商情报网讯:近年来,我国已经形成较完整的航空发动机产业链和相应的 生产布局。2011年我国整个航空发动机市场规模约为200亿元人民币,其中军 用约占70%;民用约占30%,预计到2020年,我国航空发动机产业市场规模将 突破千亿元大关。 中国航空发动机市场规模及预测,2011年-2020年如下图所示: 一、航空发动机整体情况 航空发动机作为飞机动力源,是决定飞机性能的重要因素。航空发动机集中 了机械制造行业几乎所有的高精尖技术,因此航空发动机技术水平的高低是一个 国家工业实力的重要标志。目前世界上能制造飞机的国家很多,但是能独立研制 航空发动机的只有美国、俄罗斯、英国、法国、中国等少数几个国家,而全球民 用航空发动机市场基本被欧美企业垄断。 航空发动机产业空间广阔,未来20年全球民用航空发动机市场规模将达到 14,360亿美元,军用航空发动机市场规模将达到4,300亿美元。 二、航空发动机电子技术 随着发动机测试技术和控制技术的快速发展,发动机系统已从传统的机械系 统向机电系统发展,而且发动机电子技术所占比例不断提高。在航空发动机领域, 以发动机参数采集器和发动机电子控制系统为代表的发动机电子系统的采用极 大推动了发动机电子技术的发展。 (一)发动机参数采集器基本情况 发动机参数采集器属于发动机状态监视装置。这类设备主要进行发动机重要 参数的采集、处理和存储,发动机气路参数趋势分析,发动使用寿命监视,发动 机振动监视,发动机健康管理等。发动机参数采集器可以跟踪采集航空发动机运 行中的工作状态和故障信息,并进行处理,分析出航空发动机部件的性能退化情 况或者根据处理后的数据对故障进行诊断、分析故障原因、性质、部位及发展趋 势,根据具体情况采取必要的维护措施。这类电子状态监视与故障诊断系统对航 空发动机早期故障诊断征兆的及时发现与及时处理具有重要作用,可以避免相关 事故的发生,保障飞行安全,同时还可以“视情维修”,大大节省维修成本与维修 时间,对使用方和维修商都会带来明显的经济效益。 目前国内外飞机都逐渐采用发动机参数采集器取代传统的发动机仪表,新飞 机制造和老飞机改造产生了较大容量的市场。晨曦航空是国内率先研制发动机参 数采集器的企业之一,是国内直升机发动机参数采集器最大供应商。 (二)航空发动机电子控制领域基本情况

相关主题