搜档网
当前位置:搜档网 › 粘性流体力学基础

粘性流体力学基础

粘性流体力学基础
粘性流体力学基础

流体力学基础知识

流体力学基础知识 第一节 流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母ρ表示,单位为kg/m 3。流体单位体积内所具有的重量称为重度,重度用γ表示,单位为N/m 3,两者之间的关系为g ργ=,g 为重力加速度,通常g =9.806m/s 2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用μ来表示。 所谓运动粘度是指动力粘度μ与相应的流体密度ρ之比,用ν来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升高而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60℃时,由于粘滞性下降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60℃下。 第二节 液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa 。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△F ,当△F 逐渐趋近于零时作用在△F 面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示

第一章流体力学基础

液压复习参考题 注意:以下题目仅供参考,并非考试题目 一、填空题 1.液压系统中的压力取决于(负载),执行元件的运动速度取决于(流量)。 2.液压传动装置由(动力元件)、(执行元件)、(控制元件)和(辅助元件)四部分组成,其中(动力元件)和(执行元件)为能量转换装置。 3.液体在管道中存在两种流动状态,(层流)时粘性力起主导作用,(紊流)时惯性力起主导作用,液体的流动状态可用(雷诺数)来判断。 4.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损失和(局部压力)损失两部分组成。 5.通过固定平行平板缝隙的流量与(压力差)一次方成正比,与(缝隙值)的三次方成正比,这说明液压元件内的(间隙)的大小对其泄漏量的影响非常大。 6.变量泵是指(排量)可以改变的液压泵,常见的变量泵有( 单作用叶片泵)、( 径向柱塞泵)、( 轴向柱塞泵)其中(单作用叶片泵)和(径向柱塞泵)是通过改变转子和定子的偏心距来实现变量,(轴向柱塞泵)是通过改变斜盘倾角来实现变量。 7.液压泵的实际流量比理论流量(小);而液压马达实际流量比理论流量(大)。 8.斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为(柱塞与缸体)、(缸体与配油盘)、(滑履与斜盘)。 9.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是(吸油)腔,位于轮齿逐渐进入啮合的一侧是(压油)腔。 10.为了消除齿轮泵的困油现象,通常在两侧盖板上开(卸荷槽),使闭死容积由大变少时与(压油)腔相通,闭死容积由小变大时与(吸油)腔相通。 11.齿轮泵产生泄漏的间隙为(端面)间隙和(径向)间隙,此外还存在(啮合)间隙,其中(端面)泄漏占总泄漏量的80%~85%。 12.双作用叶片泵的定子曲线由两段(大半径圆弧)、两段(小半径圆弧)及四段(过渡曲线)组成,吸、压油窗口位于(过渡曲线)段。 13.调节限压式变量叶片泵的压力调节螺钉,可以改变泵的压力流量特性曲线上(拐点压力)的大小,调节最大流量调节螺钉,可以改变(泵的最大流量)。 14.溢流阀为(进口)压力控制,阀口常(闭),先导阀弹簧腔的泄漏油与阀的出口相通。定值减压阀为(出口)压力控制,阀口常(开),先导阀弹簧腔的泄漏油必须(单独引回油箱)。 15.调速阀是由(定差减压阀)和节流阀(串联)而成,旁通型调速阀是由(差压式溢流阀)和节流阀(并联)而成。 16.两个液压马达主轴刚性连接在一起组成双速换接回路,两马达串联时,其转速为(高速);两马达并联时,其转速为(低速),而输出转矩(增加)。串联和并联两种情况下回路的输出功率(相同)。 17.在变量泵—变量马达调速回路中,为了在低速时有较大的输出转矩、在高速时能提供较大功率,往往在低速段,先将(马达排量)调至最大,用(变量泵)调速;在高速段,(泵排量)为最大,用(变量马达)调速。 18.顺序动作回路的功用在于使几个执行元件严格按预定顺序动作,按控制方式不同,分为(压力)控制和(行程)控制。同步回路的功用是使相同尺寸的执行元件在运动上同步,同步运动分为(速度)同步和(位置)同步两大类。 19.在研究流动液体时,把假设既(无粘性)又(不可压缩)的液体称为理想流体。 20.液体流动时,液体中任意点处的压力、流速和密度都不随时间而变化,称为恒定流动。

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

第一章-流体力学基础习题

~ 第一章 流体力学 【1-1】 椰子油流过一内径为20mm 的水平管道,其上装有一收缩管,将管径逐渐收缩至 12mm ,如果从未收缩管段和收缩至最小处之间测得的压力差为800Pa ,试求椰子油的流量。 【1-2】 牛奶以2×10-3m 3/s 的流量流过内径等于27mm 的不锈钢管,牛奶的粘度为×10-, 密度为1030kg/m 3,试确定管内流动是层流还是紊流。 【1-3】 用泵输送大豆油,流量为×10-4m 3/s ,管道内径为10mm ,已知大豆油的粘度为40 ×10-,密度为940kg/m 3。试求从管道一端至相距27m 的另一端之间的压力降。 】 【1-7】某离心泵安装在高于井内水面 5.5m 的地面上,吸水量为40m 3/h 。吸水管尺寸为 4114?φmm ,包括管路入口阻力的吸水管路上的总能量损失为kg 。试求泵入口处的真空度。(当地大气压为×105Pa ) 【1-9】每小时将10m 3常温的水用泵从开口贮槽送至开口高位槽。管路直径为357?φmm , 全系统直管长度为100m ,其上装有一个全开闸阀、一个全开截止阀、三个标准弯头、两个阻力可以不计的活接头。两槽液面恒定,其间垂直距离为20m 。取管壁粗糙度为0.25mm 、水的密度为1000kg/m 3、粘度为1×10-。试求泵的效率为70%时的轴功率。 【1-10】用泵将开口贮槽内密度为1060kg/m 3、粘度为×10-的溶液在稳定流动状态下送到蒸 发器内,蒸发空间真空表读数为40kPa 。溶液输送量为18m 3/h 。进蒸发器水平管中心线高于贮槽液面20m ,管路直径357?φmm ,不包括管路进、出口的能量损失,直管和管件当量长度之和为50m 。取管壁粗糙度为0.02mm 。试求泵的轴功率(泵的效率为65%)。 【1-13】拟用一台3B57型离心泵以60m 3/h 的流量输送常温的清水,已查得在此流量下的允 许吸上真空H s =5.6m ,已知吸入管内径为75mm ,吸入管段的压头损失估计为0.5m 。试求: 1) ; 2) 若泵的安装高度为5.0m ,该泵能否正常工作该地区大气压为×104Pa ; 3) 若该泵在海拔高度1000m 的地区输送40℃的清水,允许的几何安装高度为若干米当地大气压为×104Pa 。

流体力学基础知识

第一章流体力学基本知识 学习本章的目的与意义:流体力学基础知识就是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容与要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点与重点: 难点:流体的粘滞性与粘滞力 重点:牛顿运动定律的理解。 2.教学内容与知识要点: 2、1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动 性。 流体也被认为就是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度与重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ = V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13、6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ = V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9、8×103kg/ m3 γ水银=133、28×103kg/ m3 密度与重度随外界压强与温度的变化而变化 液体的密度随压强与温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2、、3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体阻抗

流体力学第一章答案

第一章习题简答 1-3 为防止水温升高时,体积膨胀将水管胀裂,通常在水暖系统顶部设有膨胀水箱,若系统内水的总体积为10m 3,加温前后温差为50°С,在其温度范围内水的体积膨胀系数αv =0.0005/℃。求膨胀水箱的最小容积V min 。 锅炉 散热器 题1-3图 解:由液体的热胀系数公式dT dV V 1V = α , 据题意, αv =0.0005/℃,V=10m 3,dT=50°С 故膨胀水箱的最小容积 325.050100005.0m VdT dV V =??==α 1-4 压缩机压缩空气,绝对压强从4 108067.9?Pa 升高到5 108840.5?Pa ,温度从20℃升高到78℃,问空气体积减少了多少? 解:将空气近似作为理想气体来研究,则由 RT P =ρ 得出 RT P = ρ 故 () 34 111/166.120273287108067.9m kg RT P =+??==ρ () % 80841 .5166.1841.5/841.578273287108840.52121 211213 5 222=-=-=-=-=?=+??==ρρρρρρρm m m V V V V m kg RT P 1-5 如图,在相距δ=40mm 的两平行平板间充满动力粘度μ=0.7Pa·s 的液体,液体中 有一长为a =60mm 的薄平板以u =15m/s 的速度水平向右移动。假定平板运动引起液体流

动的速度分布是线性分布。当h=10mm时,求薄平板单位宽度上受到的阻力。 解:平板受到上下两侧黏滞切力T1和T2作用,由 dy du A Tμ =可得 12 U1515 T T T A A0.70.0684 0.040.010.01 U N h h μμ δ ?? =+=+=??+= ? -- ?? (方向与u相 反) 1-6 两平行平板相距0.5mm,其间充满流体,下板固定,上板在2 N/m2的力作用下以0.25m/s匀速移动,求该流体的动力黏度μ。 解:由于两平板间相距很小,且上平板移动速度不大,则可认为平板间每层流体的速 度分布是直线分布,则 σ μ μ u A dy du A T= =,得流体的动力黏度为 s Pa u A T u A T ? ? = ? ? = ? = =- - 4 3 10 4 25 .0 10 5.0 2 σ σ μ 1-7 温度为20°С的空气,在直径为2.5cm的管中流动,距管壁上1mm处的空气速度为3cm/s。求作用于单位长度管壁上的黏滞切力为多少? 解:温度为20°С的空气的黏度为18.3×10-6 Pa·s 如图建立坐标系,且设u=ay2+c 由题意可得方程组 ?? ? ? ? + - = + = c a c a 2 2 ) 001 .0 0125 .0( 03 .0 0125 .0 解得a= -1250,c=0.195 则u=-1250y2+0.195

传热学基础试题及答案

传热学基础试题 一、选择题 1.对于燃气加热炉:高温烟气→内炉壁→外炉壁→空气的传热过程次序为 A.复合换热、导热、对流换热 B.对流换热、复合换热、导热 C.导热、对流换热、复合换热 D.复合换热、对流换热、导热 2.温度对辐射换热的影响( )对对流换热的影响。 A.等于 B.大于 C.小于 D.可能大于、小于 3.对流换热系数为1000W/(m 2·K )、温度为77℃的水流经27℃的壁面,其对流换热的热流密度为( ) A.8×104W/m 2 B.6×104 W/m 2 C.7×104 W/m 2 D.5×104 W/m 2 4.在无内热源、物性为常数且温度只沿径向变化的一维圆筒壁(t 1 >t 2,r 1 B. 21r r r r dr dt dr dt ==< C. 2 1r r r r dr dt dr dt === 5.黑体的有效辐射____其本身辐射,而灰体的有效辐射( )其本身辐射。 A .等于 等于 B.等于 大于 C.大于 大于 D.大于 等于 6.有一个由四个平面组成的四边形长通道,其内表面分别以1、2、3、4表示,已知角系数X1,2=0.4,X1,4=0.25,则X1,3为( )。

A. 0.5 B. 0.65 C. 0.15 D. 0.35 7.准则方程式Nu=f(Gr,Pr)反映了( )的变化规律。 A.强制对流换热 B.凝结对流换热 C.自然对流换热 D.核态沸腾换热 8.当采用加肋片的方法增强传热时,将肋片加在()会最有效。 A. 换热系数较大一侧 B. 热流体一侧 C. 换热系数较小一侧 D. 冷流体一侧 9. 某热力管道采用两种导热系数不同的保温材料进行保温,为了达到较好的保温效果,应将( )材料放在内层。 A. 导热系数较大的材料 B. 导热系数较小的材料 C. 任选一种均可 D. 不能确定 10.下列各种方法中,属于削弱传热的方法是( ) A.增加流体流速 B.管内加插入物增加流体扰动 C. 设置肋片 D.采用导热系数较小的材料使导热热阻增加 11.由炉膛火焰向水冷壁传热的主要方式是( ) A.热辐射 B.热对流 C.导热 D.都不是 12.准则方程式Nu=f(Gr,Pr)反映了( )的变化规律。 A.强制对流换热 B.凝结对流换热 C.自然对流换热 D.核态沸腾换热 13.判断管内紊流强制对流是否需要进行入口效应修正的依据是( ) A.l/d≥70 B.Re≥104 C.l/d<50 D.l/d<104 14.下列各种方法中,属于削弱传热的方法是( ) A.增加流体流度 B.设置肋片 C.管内加插入物增加流体扰动 D.采用导热系数较小的材料使导热热阻增加 15.冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( ) A.增加 B.减小 C.不变 D.有时增加,有时减小

流体力学基础.

第 二章 流 体 力 学 基础 ξ 1 流体的主要性质 1.1 流体的主要物理性质 1、 流体的流动性 ——流体的易变形性 流体的基本属性 流体的力学定义:不能抵抗任何剪切力作用下的剪切变形趋势的物质 2、流体的连续性 ? 连续介质模型 ? 流体质点:含有大量分子的流体微团 3、质量和重力特性 – 密度( kg/ m 3)、 比容: ( m 3/kg )、比重:无量纲量 – 浓度:质量浓度(kg/m3)、摩尔浓度(mol/m3) 4、流体的可压缩性与热膨胀性 ? 等温压缩系数( m 2/N ): ? 热膨胀系数(1/K ) ? 液体的压缩系数和膨胀系数都很小 ? 压强和温度的变化对气体密度和体积的变化影响较大 ? 可压缩流体与不可压缩流体 5. 流体的粘滞性 (1) 粘滞性: ? ——由于相对运动而产生内摩擦力以反抗自身的相对运动的性质。 ? 一切流体都具有粘性,这是流体固有的特性。 ? 粘性的物理本质:分子间引力、分子的热运动,动量交换 (2) 牛顿粘性定律 ? 粘性力(内摩擦力): ? ? 粘性切应力: (3) 粘性系数 动力粘滞系数或动力粘度(μ)(Pa·S ) 运动粘度 (m2/s ) : 理想流体(无粘性流体,μ=0)与实际流体(粘性流体μ≠0) )/(2m N dy u d μτ-=) (N A dy u d F μ-=ρμν=

1.3 作用于流体上的力 1、 质量力 表征:单位质量力:----单位质量流体所受到的质量力 当质量力仅为重力:F bx =0,F by =0,F bz = -g 2 表面力 表征: 切向应力(剪切应力):τ =T/(N/m 2) 法向应力(压应力):p=P/A (N/m 2) ξ 2 流体运动的微分方程 1、 流体运动的描述 (1)描述流体运动的数学方法——拉格朗日法和欧拉法 拉格朗日法—— – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体质点的物理量表示为:f =f (a ,b ,c ,τ) – 欧拉法——空间描述 – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体物理量表示为:f =F (x ,y ,z ,τ) (2) 迹线与流线 迹线: – 同一流体质点在连续时间内的运动轨迹线 – 是拉格朗日法对流体运动的描述 流线: – 某一时刻流场中不同位置的连续流体质点的流动方向线 – 是欧拉法对流体运动的描述 – 流线的性质:流线不能相交,也不能是折线,流线只能是一条光滑的曲线;对于稳定流动,流线与迹线相重合; – (3)系统与控制体 系统 ——某一确定的流体质点集合的总体,与外界无质量交换 流体系统的描述是与拉格朗日描述相对应 控制体 ——流场中确定的空间区域 可与外界进行质量交换和能量交换 控制体描述则是与欧拉描述相对应 2、质量守恒定律——连续性方程 m F F m F F m F F z bz y by x bx ===,,

CFD 基 础(流体力学)解析

第1章 CFD 基 础 计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、 热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等 领域。 本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。 1.1 流体力学的基本概念 1.1.1 流体的连续介质模型 流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微 元体。 连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。 连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。 1.1.2 流体的性质 1. 惯性 惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。惯性与质量有关,质量越大,惯性就越大。单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。对于均质流体,设其体积为V ,质量为m ,则其密度为 m V ρ= (1-1) 对于非均质流体,密度随点而异。若取包含某点在内的体积V ?,其中质量m ?,则该点密度需要用极限方式表示,即 0lim V m V ρ?→?=? (1-2) 2. 压缩性 作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。压缩性(compressibility)可用体积压缩率k 来量度

流体力学基本概念和基础知识..

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

【精品】流体力学与传热学教案设计

流体力学与传热学 流体静力学:研究静止流体中压强分布规律及对固体接触面的作用问题 流体动力学:研究运动流体中各运动参数变化规律,流体与固体作用面的相互作用力的问题 传热学研究内容:研究热传导和热平衡规律的科学上篇:流体力学基础 第一章流体及其主要力学性质 第一节流体的概念 一流体的概述 ⒈流体的概念:流体是液体和气体的统称 ⒉流体的特点:易流动性—在微小剪切力的作用下,都将连续不断的产生变形(区 别于固体的特点) ⑴液体:具有固定的体积;在容器中能够形成一定的自由表面;不可压缩性 ⑵气体;没有固定容积;总是充满所占容器的空间;可压缩性

二连续介质的模型 ⒈连续介质的概念 所谓连续介质即是将实际流体看成是一种假想的,由无限多流体质点所组成的稠密而无间隙的连续介质.而且这种连续介质仍然具有流体的一切基本力学性质. ⒉连续介质模型意义 所谓流体介质的连续性,不仅是指物质的连续不间断,也指一些物理性质的连续不间断性.即反映宏观流体的密度,流速,压力等物理量也必定是空间坐标的连续函数(可用连续函数解决流体力学问题)

第二节流体的性质 一密度—--表征流体质量性质 ⒈密度定义:单位体积内所具有的流体质量 ⑴对于均质流体:ρ=m/v 式中ρ-流体的密度(㎏/m 3) m-流体的质量(㎏) v —流体的体积(m 3) ⑵对于非均质流体:ρ=⒉比体积(比容):单位质量流体所具有的体积(热力学和 气体动力学概念) ⑴对于均质流体:v=V/m=1/ρ(m 3/㎏) 3.液体的密度在一般情况下,可视为不随温度或压强而变化;但气体的密度则随温度和压强可发生很大的变化。 二流体的压缩性和膨胀性 dv dm v m v =??→?0lim

流体力学基础

第 二章 流 体 力 学 基础 ξ 1 流体的主要性质 1.1 流体的主要物理性质 1、 流体的流动性 ——流体的易变形性 流体的基本属性 流体的力学定义:不能抵抗任何剪切力作用下的剪切变形趋势的物质 2、流体的连续性 ? 连续介质模型 ? 流体质点:含有大量分子的流体微团 3、质量和重力特性 – 密度( kg/ m 3)、 比容: ( m 3/kg )、比重:无量纲量 – 浓度:质量浓度(kg/m3)、摩尔浓度(mol/m3) 4、流体的可压缩性与热膨胀性 ? 等温压缩系数( m 2/N ): ? 热膨胀系数(1/K ) ? 液体的压缩系数和膨胀系数都很小 ? 压强和温度的变化对气体密度和体积的变化影响较大 ? 可压缩流体与不可压缩流体 5. 流体的粘滞性 (1) 粘滞性: ? ——由于相对运动而产生内摩擦力以反抗自身的相对运动的性质。 ? 一切流体都具有粘性,这是流体固有的特性。 ? 粘性的物理本质:分子间引力、分子的热运动,动量交换 (2) 牛顿粘性定律 ? 粘性力(内摩擦力): ? ? 粘性切应力: (3) 粘性系数 动力粘滞系数或动力粘度(μ)(Pa·S ) 运动粘度 (m2/s ) : 理想流体(无粘性流体,μ=0)与实际流体(粘性流体μ≠0) )/(2m N dy u d μτ-=) (N A dy u d F μ-=ρμν=

1.3 作用于流体上的力 1、 质量力 表征:单位质量力:----单位质量流体所受到的质量力 当质量力仅为重力:F bx =0,F by =0,F bz = -g 2 表面力 表征: 切向应力(剪切应力):τ =T/(N/m 2) 法向应力(压应力):p=P/A (N/m 2) ξ 2 流体运动的微分方程 1、 流体运动的描述 (1)描述流体运动的数学方法——拉格朗日法和欧拉法 拉格朗日法—— – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体质点的物理量表示为:f =f (a ,b ,c ,τ) – 欧拉法——空间描述 – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体物理量表示为:f =F (x ,y ,z ,τ) (2) 迹线与流线 迹线: – 同一流体质点在连续时间内的运动轨迹线 – 是拉格朗日法对流体运动的描述 流线: – 某一时刻流场中不同位置的连续流体质点的流动方向线 – 是欧拉法对流体运动的描述 – 流线的性质:流线不能相交,也不能是折线,流线只能是一条光滑的曲线;对于稳定流动,流线与迹线相重合; – (3)系统与控制体 系统 ——某一确定的流体质点集合的总体,与外界无质量交换 流体系统的描述是与拉格朗日描述相对应 控制体 ——流场中确定的空间区域 可与外界进行质量交换和能量交换 控制体描述则是与欧拉描述相对应 2、质量守恒定律——连续性方程 m F F m F F m F F z bz y by x bx ===,,

传热学基础复习资料

传热学基础 一、填空题 1、传热的基本方式有热传导、热对流和热辐射三种。 热传导、热对流、热辐射 2、传热过程可分为不随时间变化的和随时间变化的。 稳态传热、非稳态传热 3、对流换热实质是和两种传热机理共同作用的结果。 热对流、导热 4、某瞬时物体内部各点温度的集合称为该物体的,其同温度各点连成的面称为,其法线方向上温度的变化率用表示。 温度场、等温面、温度梯度 5、当物质的种类一定时,影响导热系数大小的外因主要是和。 6、表示物体的蓄热量与界面上换热量的比值称为。 时间常数 7、在湍流传热时,热阻主要集中在,因此,减薄该层的厚度是强化的重要途径。 层流内层、对流传热 8、对流传热系数的主要影响因素有(1)(2)(3)(4)(5) 。 流体的种类和相变化的情况;流体的性质;流体流动的状态;流体流动的原因; 穿热面的形状、分布和大小 9、无相变时流体在圆形直管中作强制湍流传热,在α=0.023λ/diRe 0.8Pr n 公式中,n 是为校正的影响。当流体被加热时,n 取,被冷却时n 取。 热流方向、0.4、0.3 10、努塞尔特准数Nu 表示的准数,其表达式为,普兰特准数Pr 表示的准数,其表达式为。 对流传热系数、λ αl Nu =、物性影响、λμP C =Pr 11、蒸汽冷凝有和两种方式。 膜状冷凝、滴状冷凝 12、双层平壁定态热传导,两层壁厚面积均相等,各层的导热系数分别为1λ和2λ,其对应的温度差为1t ?和2t ?,若1t ?>2t ?,则1λ和2λ的关系为。 1λ<2λ 二、简答题 1、何谓热对流?何谓对流传热?对流换热又可分为哪两大类? 答:热对流是指流体中质点发生相对位移而引起的热量传递。通常,对流传热是指流体与固体壁面间的传热过程,它是热对流和热传导的结合。它又可分为强制对流和自然对流两类。 2、请简述辐射换热区别于导热和热对流方式最主要的特征。 它是唯一一种非接触的传热方式;它不仅产生能量转移,而且还伴随着能量形式的转换,即发射时从热能转换为辐射能,而被吸收时又从辐射能转换为热能。 3、请简述在非稳态导热过程中物体中温度分布存在的两个阶段。

流体力学路线图

流体力学基础理论的学习历来被初学者视为畏途,每到学习结束要进入期末考试的时候,老师和学生一样心中难免忐忑,在流体力学这门课上挂科已经成为某种常态。即使是学习多年的老手也会在具体问题面前感到基础尚不完备,还不够扎实。这个问题的起源当然与流体运动规律本身的复杂性有关,这个复杂性导致流体力学与大家印象中的“学科”概念有一定的出入。比如我们在学习高等数学时,很容易发现,数学是一门“咬文嚼字”的学科,里面充满严格定义的概念,不论学习线性代数还是微积分,都是从一些基本公理出发,循着一条严格的逻辑路线,架构起整门课程。因为数学有这样逻辑严密的特点,所以虽然学起来也不容易,但大家一致认为数学是美的,而且不论谁写的数学书,比如微积分的书,内容都只有程度深浅的差异,而绝没有内容上的巨大差异。 流体力学则有所不同,流体的流动本身是一种连续不断的变形过程,经典的流体力学理论以连续介质假设为基础,将整个流体看作连续介质,同时将其运动看作连续运动。但是由于流体是复杂的,实际上至今还没有完全掌握其全貌,因此流体力学在建立了基本控制方程后,就开始转而从一些特殊的流动出发,采用根据流动特点进行简化的方式,先建立物理模型,再得到数学模型,进而得到我们在书中经常看到的很多“理论”,比如不可压无旋流、旋涡动力学、水波动力学、气体动力学等等,甚至理论中还包括理论,比如不可压无旋流中还有自由流线理论,等等。形成一个类似于俄罗斯套娃的学科结构,这种结构容易给人一种支离破碎的印象。特别是在各个理论之间联系比较薄弱的时候,更容易给人这种印象。似乎一门课中又包含了很多门“小课”,每门“小课”使用的数学工具也完全不同,甚至很多同行还进一步把自己分成是学气的(比如空气动力学),或者是学水的(比如学船舶的)等等。 就象旅行者要有一张地图才能更高效率地到达目的地一样,如果能有一张流体力学的地图,或者叫路线图(roadmap),应该对初学者有很大帮助。这张图就是这门学科的脉络,其中应包含流体力学的主要理论内容,扩展一步的话,还应该包括数学基础(先修课)和主要分支学科。先在这里做个记号,有时间的时候慢慢地先从流体力学基础理论入手,给出一个粗略的路线图,然后再逐渐给出分支学科的路线图,比如空气动力学、计算流体力学的路线图。希望能抛砖引玉,激发出同行们的兴趣,加入绘制路线图的工作。在想象中,这个路线图应该有学科的主要内容,同时应该有相关的参考书。这样初学者就可以按图索骥,沿着一

第一章 流体力学基础

第一章流体力学基础 流体包括液体和气体。 流体力学是力学的一个分支,研究流体处于平衡、运动状态时的力学规律及其在工程中的应用。 按研究介质不同流体力学分为液体力学(水力学)和气体力学。水力学研究的对象是液体,但是,当气体的流速和压力不大,密度变化不大,压缩性可以忽略不计时,液体的各种平衡和运动规律对于气体也是适用的。 流体力学在建筑设备工程中有着广泛的应用。给水、排水、供热、供燃气、通风和空气调节等工程设计、计算和分析都是以流体力学作为理论基础的。因此,必须了解和掌握流体力学的基本知识。 第一节流体的主要物理性质 流体的连续性假说 流体毫无空隙地连续地充满它所占据的空间。因此,描述流体平衡和运动的参数都是空间坐标的连续函数,从而就可以应用数学分析中的连续函数这一工具,分析流体在外力作用下的机械运动。 流体的力学特性 (1)流体不能承受拉力; (2)静止流体不能承受切力,受微小切力作用流体就会流动,这就是流体易流动性的原因,运动的实际流体能承受切力; (3)静止或运动的流体能承受较大的压力。 一、惯性及万有引力特性 惯性——物体保持原有运动状态的性质。惯性的大小用质量表示。 万有引力——地球上的物体均受地球引力的作用,表现为重力。质量为物体的重力为 (N)(1-1)

式中——重力加速度,取m/s2。 1.密度 对于均质流体,单位体积流体具有的质量,记为。对于质量为,体积为的流体有 (kg/m3)(1-2) 2.容重(重度) 对于均质流体,单位体积流体具有的重量,记为。对于重量为,体积为的流体有 (N/m3)(1-3) 干空气在标准大气压mmHg和20℃时,kg/m3,N/m3。 水在标准大气压和4℃时,kg/m3,N/m3。 水银在标准大气压和20℃时,kg/m3,N/m3。 二、粘滞性 如图1-1所示,为管中断面流速分布。由于流体各流层流速不同,当相邻层间有相对运动时,在接触面上就会产生相互作用的内摩擦力(切力),摩擦生热,耗散在流体中,流体的机械能就会损失一部分。 流体运动时产生内摩擦力或抵抗剪切变形的能力称为流体的粘滞性。

流体力学与传热学教学课程大纲

课程名称:流体力学与传热学 课程编号:130 200040 课程学分:36学分 适用专业:测控技术与仪器 流体力学与传热学教学课程大纲 一、课程性质与任务: 本课程是自动化装置、过程控制系统方向的技术基础课。 通过该课程的学习,使学生对流体平衡、运动规律及能量守恒与转换规律方面具备必要的基本知识,获得传热的一些基本理论、基本知识及传热计算的初步能力,学会运用基本规律来处理和解决实际问题的方法和技能,培养分析问题的能力和创新能力,为学生学习后续课程,从事工程技术工作和进行科学研究打下必2要的基础。 二、课程内容及要求: 总学时数:36; 2学时/端午节放假一天。即共17次课。 第一章绪论(2) a) 流体力学工程应用及其主要的物理性质 基本要求 了解:流体力学的研究对象 流体力学:研究流体平衡、机械运动的规律以及在工程实际中的运用、 任务 研究流体的运动规律; 流体之间或流体与固体之间的相互作用力; 流动过程中动量、能量和质量的传输规律等。 和研究方法; 熟悉:流体宏观模型─连续介质 假定流体是由无穷多个、无穷小的、紧密毗邻、连续不断的流体质点所构 成的一种绝无间隙的连续介质。

、理想流体、不可压缩流动; 掌握:流体的粘性 流体微团发生相对运动时所产生的抵抗变形、阻碍流动的性质 和压缩性 温度一定时,流体在外力作用下,其体积缩小的性质 等物理性质。 教学及考核内容 流体的定义,在静力平衡时,不能承受拉力或剪力的物体。 连续介质的概念,流体的主要物理性质(粘性-牛顿内摩擦定律、 流体相对运动 时,层间内摩擦力T 的大小与接触面积、速度梯 而与接触面 压缩性),(质量力、表面力)。 第二章 流体静力学理论基础(4) a) 流体的平衡微分方程 ;流体静力学基本方程;

第一章 流体力学基础知识

第一章流体力学基础知识 本章先介绍流体力学的基本任务,研究方向和流体力学及空气动力学的发展概述。然后介绍流体介质,气动力系数,矢量积分知识。最后引入控制体,流体微团及物质导数的概念。为流体力学及飞行器空气动力学具体知识的学习做准备。 1.1流体力学的基本任务和研究方法 1.1.1流体力学的基本任务 流体力学是研究流体和物体之间相对运动(物体在流体中运动或者物体不动而流体流过物体)时流体运动的基本规律以及流体与物体之间的作用力。而空气动力学则是一门研究运动空气的科学。 众所周知,空气动力学是和飞机的发生,发展联系在一起的。在这个意义上,这门科学还要涉及到飞机的飞行性能,稳定性和操纵性能问题。事实上,空气动力学研究的对象还不限于飞机。 空气相对物体的运动,可以在物体的外部进行,像空气流过飞机表面,导弹表面和螺旋浆等;也可以在物体的内部进行,像空气在风洞内部和进气道内部的流动。在这些外部或内部流动中,尽管空气的具体运动和研究运动的目的有所不同,但它们都发生一些共同的流动现象和遵循一些共同的流动规律,例如质量守恒,牛顿第二定律,能量守恒和热力学第一定律,第二定律等。 研究空气动力学的基本任务,不仅是认识这些流动所发生现象的基本实质,要找出这些共同性的基本规律在空气动力学中的表达,并且研究如何应用这些规律能动地解决飞行器的空气动力学问题和与之相关的工程技术问题,并对流动的新情况、新进展加以预测。 1.1.2空气动力学的研究方法 空气动力学研究是航空科学技术研究的重要组成部分,是飞行器研究的“先行官”。其研究方法,如同物理学各个分支的研究方法一样,有实验研究、理论分析和数值计算三种方法。这些不同的方法不是相互排斥,而是相互补充的。通过这些方法以寻求最好的飞行器气动布局形式,确定整个飞行范围作用在飞行器的力和力矩,以得到其最终性能,并保证飞行器操纵的稳定性。 实验研究方法在空气动力学中有广泛的应用,其主要手段是依靠风洞、水洞、激波管以及测试设备进行模拟实验或飞行实验。其优点在于,它能在所研究的问题完全相同或大致相同的条件下,进行模拟与观测,因此所得到的结果较为真实、可靠。但是,实验研究的方法往往也受到一定的限制,例如受到模拟尺寸的限制和实验边界的影响。此外实验测量的本身也会影响所得到结果的精度,并且实验往往要耗费大量的人力和物力。因此这种方法亦常常遇到困难。 理论分析的方法一般包括以下步骤;(1)通过实验或观察,对问题进行分析研究,找出其影响的主要因素,忽略因素的次要方面,从而抽象出近似的合理的理论模型;(2)运用基本定律,原理和数学分析,建立描写问题的数学方程,以及相应的边界条件和初始条件;(3)利用各种数学方法准确地或近似地解出方程;(4)对所得解答进行分析、判断,并通过必要的实验与之修正。 理论分析方法的特点,在于它的科学抽象,能够用数学方法求得理论结果,以及揭示问题的内在规律。然而,往往由于数学发展水平的限制,又由于理论模型抽象的简化,因而无法满足研究复杂的实际问题的需要。 上个世纪七十年代以来,随着大型高速计算机的出现,以及一系列有效的近似计算方法(例如有限差分方法、有限元素法和有限体积法等)的发展,使得计算流体力学(CFD)数值方法在空气动力学研究方法中的作用和地位不断提高。与实验方法相比,其研究所需要费用比较少。对有些无法进

(完整版)流体力学基本练习题

流体力学基本练习题 一、名词解释 流体质点、流体的体膨胀系数、流体的等温压缩率、流体的体积模量、流体的粘性、理想流体、牛顿流体、不可压缩流体、质量力、表面力、等压面、质点导数、定常场、均匀场、迹线、流线、流管、流束、流量、过流断面(有效截面)、层流、湍流、层流起始段、粘性底层、水力光滑管、水力粗糙管、沿程阻力、局部阻力 二、简答题 1. 流体在力学性能上的特点。 2. 流体质点的含义。 3. 非牛顿流体的定义、分类和各自特点。 4. 粘度的物理意义及单位。 5. 液体和气体的粘度变化规律。 6. 利用欧拉平衡方程式推导出等压面微分方程、重力场中平衡流体的微分 方程。 7. 等压面的性质。 8. 不可压缩流体的静压强基本公式、物理意义及其分布规律。 9. 描述流体运动的方法及其各自特点 10. 质点导数的数学表达式及其内容。写出速度质点导数。 11. 流线和迹线的区别,流线的性质。 三、填空题、判断 (一)流体的基本物理性质 1. 水力学是研究液体静止和运动规律及其应用的一门科学。() 2. 当容器大于液体体积,液体不会充满整个容器,而且没有自由表面。() 3. 气体没有固定的形状,但有自由表面。() 4. 水力学中把液体视为内部无任何间隙,是由无数个液体质点组成的。()

5. 粘滞性是液体的固有物理属性,它只有在液体静止状态下才能显示出来,并且是引起液体能量损失的根源。() 6. 同一种液体的粘滞性具有随温度升高而降低的特性。() 7. 作层流运动的液体,相邻液层间单位面积上所作的内摩擦力,与流速梯度成正比,与液体性质无关。() 8. 惯性力属于质量力,而重力不属于质量力。() 9. 质量力是指通过所研究液体的每一部分重量而作用于液体的、其大小与液体的质量成比例的力. () 10. 所谓理想流体,就是把水看作绝对不可压缩、不能膨胀、有粘滞性、没有表面张力的连续介质。() 11. 表面力是作用于液体表面,与受力作用的表面面积大小无关。() 12. 水和空气的黏度随温度的升高而减小。() 13. 流体是一种承受任何微小切应力都会发生连续的变形的物质。() 14. 牛顿流体就是理想流体。() 15. 在一个大气压下,温度为4C时,纯水的密度为1000kg/m A3o () 16. 不同液体的黏滞性各不相同,同一液体的黏滞性是一常数。() 17. 水力学中,单位质量力是指作用在单位_____ 液体上的质量力。() A 面积 B 体积 C 质量 D 重量 18. 水力学研究的液体是一种_____ 、____ 、_____ 续质。() A 不易流动易压缩均质 B 不易流动不易压缩均质 C 易流动易压缩均质 D 易流动不易压缩均质 19. 不同的液体其粘滞性_____ ,同一种液体的粘滞性具有随温度 _________ 而降低的特性。() A 相同降低 B 相同升高 C 不同降低 D 不同升高 20. 动力粘滞系数的单位是:(B) 22 A N.s/m B N.s/m 2 C m 2/s D m/s 21. 下列说法正确的是:()

相关主题