搜档网
当前位置:搜档网 › 特高压交直流输电的优缺点对比

特高压交直流输电的优缺点对比

特高压交直流输电的优缺点对比
特高压交直流输电的优缺点对比

特高压交直流输电的优缺点对比

一、直流输电技术的优点 1.经济方面:

(1)线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根,采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。

(2)年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。

所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。

2.技术方面:

(1)不存在系统稳定问题,可实现电网的非同期互联。由此可见,在一定输电电压下,交流输电容许输送功率和距离受到网络结构和参数的限制,还须采取提高稳定性的措施,增加了费用。而用直流输电系统连接两个交流系统,由于直流线路没有电抗,不存在上述稳定问题。因此,直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。

(2)限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制’,将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。

(3)调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。

(4)没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。

(5)节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。

二、直流输电技术的不足:

(1)换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。

(2)消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。

(3)产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。

(4)就技术和设备而言,直流波形无过零点,灭弧困难。目前缺乏直流开关而是通过闭锁换流器的控制脉冲信号实现开关功能。若多条直流线路汇集一个地区,一次故障也可能造成多个逆变站闭锁,而且在多端供电方式中无法单独地切断事故线路而需切断全部线路,从而会对系统造成重大冲击。

(5)从运行维护来说,直流线路积污速度快、污闪电压低,污秽问题较交流线路更为严重。与西方发达国家相比,目前我国大气环境相对较差,这使直流线路的清扫及防污闪更为困难。设备故障及污秽严重等原因使直流线路的污闪率明显高于交流线路。

(6)不能用变压器来改变电压等级。直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流

500kV输电(经济输送容量为1 000MW,输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。三、特高压交流输电的主要优点:

(1)提高传输容量和传输距离。随着电网区域的扩大,电能的传输容量和传输距离也不断增大。所需电网电压等级越高,紧凑型输电的效果越好。

(2)提高电能传输的经济性.输电电压越高输送单位容量的价格越低。(3)节省线路走廊和变电站占地面积。一般来说,一回1150 kV输电线路可代替6回500 kV线路。采用特高压输电提高了走廊利用率。

(4)减少线路的功率损耗, 就我国而言, 电压每提高 1 % , 每年就相当于新增加500万kW 的电力, 500 kV输电比1200 kV的线损大5倍以上。

(5)有利于连网,简化网络结构,减少故障率。四、特高压输电的主要缺点:特高压输电的主要缺点是系统的稳定性和可靠性问题不易解决。自1965-1984年世界上共发生了6次交流大电网瓦解事故,其中4次发生在美国,2次在欧洲。这些严重的大电网瓦解事故说明采用交流互联的大电网存在着安全稳定、事故连锁反应及大面积停电等难以解决的问题。特别是在特高压线路出现初期,不能形成主网架,线路负载能力较低,电源的集中送出带来了较大的稳定性问题。下级电网不能解环运行,导致不能有效降低受端电网短路电流,这些都威胁着电网的安全运行。另外,特高压交流输电对环境影响较大。

总结:输电线路的建设主要考虑的是经济性,而互联线路则要将系统的稳定性放在第一位。在超高压交流输电方面,若在500kV电压等级上采用750kV(最高运行电压800kV),有可能因两级电压相距太近,会造成电磁环网多、潮流控制困难、电网损耗大等问题,而且,即使今后采用灵活交流输电技术或紧凑型输电技术,输电容量的有限增加仍难以满足电力系统长远发展的需要。综上所述,与750kV交流输电相比较,特高压在大容量远距离输电和建设全国的坚强电网方面具有一定的优势,在技术和设备上并无不可逾越的技术难题,在建设投资和运行上也较为经济。

高压直流输电虽然输送容量大且可以非同步并网,但由于其换流站成本高昂,控制复杂并不适合构成电力系统的骨架。高压直流输电更适用于不同区域网架之间的连接,以及远距离大容量的电力输送。而(特)高压交流系统则适合作为大区域中枢,担当网架的主干。两者优势互补,各有分工。

事实上,在我国特高压电网建设中,将以1000kV 交流特高压输电为主形成特高压电网骨干网架,实现各大区电网的同步互联;±800kV 特高压直流输电则主要用于远距离、中间无落点(难以引出分支线路,换流站昂贵)、无电压支撑的大功率输电工程。

中国科学院院士、中国电科院研究员周孝信指出,直流输电和交流输电只能互补,不能互相取代。他介绍,直流输电只具有输电功能、不能形成网络,类似于“直达航班”,中间不能落点,定位于超远距离、超大容量“点对点”输电。直流输电可以减少或避免大量过网潮流,潮流方向和大小均能方便地进行控制。但高压直流输电必须依附于坚强的交流电网才能发挥作用。

交流输电则具有输电和构建网络双重功能,类似于“公路交通网”,可以根据电源分布、负荷布点、输送电力、电力交换等实际需要构成电网。中间可以落点,电力的接入、传输和消纳十分灵活,定位于构建坚强的各级输电网络和经济距离下的大容量、远距离输电,广泛应用于电源的送出,为直流输电提供重要支撑。

一、首先我们来看高压直流输电的特点:

1.换流器控制复杂,造价高;

2.直流输电线路造价低,输电距离越远越经济;

3.没有交流输电系统的功角稳定问题,适合远距离输电;

4.适合海底电缆(海岛供电、海上风电)和城市地下电缆输电;

5.能够非同步(同频不同相位,或不同频,或不同电压等级)连接两个交流电网,且

不增加短路容量;

6.传输功率的可控性强,控制速度快,可有效支援交流系统;

7.换流器大量消耗无功(注意这是对LCC-HVDC而言,VSC-HCDC整流侧和逆变侧均可

独立灵活控制无功,两种系统差别下文将单独说明。),且产生谐波;

8.双极不对称大地回线运行时存在直流偏磁问题和电化学腐蚀问题(地电流危害);

9.不能向无源系统供电(依然是对LCC-HVDC系统而言),构成多端直流系统困难(由

于直流没有过零点,难以熄弧,所以现在缺少大容量直流断路器,无法切除输电线路的短路故障,从而限制了多端直流输电的发展。最近ABB貌似把这个东西搞出来了,不明觉厉。)。

二、经济问题:

高压直流输电主要是两头换流站贵,线路便宜。所以相较于交流输电,距离越远

越经济。

?架空线路等价距离约在640~960km

?地下电缆线路的等价距离为56~90km

?海底电缆线路的等价距离为24~48km

*交流输电时电缆线路会与周边介质(海水、土壤)形成一个较大的电容,影响电网的经济稳定,直流输电不存在这个问题。

三、电能质量:

直流输电系统的主要缺点是存在谐波,特别是低次谐波(主要是LCC-HVDC,而VSC-HVDC最低次谐波频率较高,滤波器可以有效消除这种高次谐波)。另一个不太突出的缺点是地电流。

?谐波的危害:

1.对铁磁设备的影响。谐波造成额外的铁耗导致发热、振动和噪声,降低了设备出力、

效率及寿命;

2.对旋转电机的影响:谐波造成转矩脉动,转速不稳;

3.对电力电容器的影响:谐波可能引起谐振过电压;

4.对电力系统测控的影响:谐波使测量误差增加,可能导致控制失灵,保护误动;

5.三次谐波电流过大可能使中性线过流;

6.谐波叠加在基波上,使电气应力增加,对各种电气设备尤其是电容器的绝缘造成威

胁;

7.谐波对通信线路造成干扰。

?HVDC引起的变压器直流偏磁(地电流):

现象:直流输电系统接地极流过较大电流时(如单极大地运行)会导致中性点接地变压器产生直流偏磁现象。

后果:导致铁芯饱和,产生谐波,引起振动和噪声,引起发热,严重时损坏变压器,引起保护误动等。

四、电网安全:

?直流输电对电网稳定的贡献:

1.紧急功率支援:如交流电网出现大幅度功率缺额(联络线跳开、某些大电厂跳开等),

HVDC 可以快速增加输送功率或者快速潮流反转。HVDC快速有效的潮流控制能力对于所连交流系统的稳定控制,交流系统正常运行过程中应对负荷随机波动的频率控制及故障状态下的频率变动控制都能发挥重要作用。

?直流输电对电网的不利影响:

1.LCC-HVDC换相失败:

概念:当逆变器两个阀进行换相时,因换相过程未能进行完毕,或者预计关断的阀关断后,在反向电压期间未能恢复阻断能力,当加在该阀上的电压为正时,立即重新导通,则发生了倒换相,使预计开通的阀重新关断,这种现象称之为换相失败。

危害:

a) 换相失败引起输送功率中断威胁系统安全稳定;

b) 交流系统短路时,电压跌落可能引起多个换流站同时发生换相失败,导致多回直流线路功率中断,引起系统潮流大范围转移和重新分布;

c) 影响故障切除后受端系统电压恢复,进而影响故障切除后直流功率快速恢复,可能会威胁交流系统暂态稳定性。

2.谐波不稳定性:

概念:HVDC 引起的谐波不稳定是指在换流站附近有扰动时,谐波振荡不易衰减甚至放大的现象,表现为交流母线电压严重畸变。

危害:电流谐波放大几倍甚至几十倍;电压严重畸变会导致换相失败并使系统运行困难。

3.不对称运行:在单极大地回线运行方式或者双极两端接地不对称运行方式下,会有较大电(甚至为额定运行电流)经接地极流经大地。持续、长时间的大电流流过接地极会表现出三类效应:电磁效应、热力效应、电化效应。

(1)电磁效应:

a) 现象:直流电流注入大地,在极址土壤中形成恒定直流电流场,导致出现大地电位升高、跨步电压、接触电势等。

b) 影响:影响依靠大地磁场工作的设施;对金属管道、铠装电缆、具有接地系统电气设备产生负面影响;跨步电压和接触电势影响人畜安全;电磁干扰。

(2)热力效应:

a) 直流电流作用下电极温度升高,可能蒸发土壤水分,导电性能变差,电极将出现热不稳定,严重时会使土壤烧结成几乎不导电的玻璃状,电极将丧失运行能力。

b) 影响电极温升土壤参数:电阻率、热导率、热容率、湿度。

(3)电化效应:

a) 大地中水与盐类物质相当于电解液,当直流电流经大地返回时,在阳极上会产生氧化反应,使得电极及附近金属发生电腐蚀;也会导致附近土壤中盐类物质被电解。

4.短时过电压:

(1)现象:超过正常电压范围,持续相对较长时间的不衰减或衰减慢的过电压。(Temporary Overvoltage,TOV)

(2)原因:造成换流站短时过电压的根本原因是换流站安装的大量无功补偿电容器和滤波器;额定工况下,无功容量为额定输送功率的40%-60%,甩负荷时引起无功消耗大幅下降甚至为零,剩余的无功补偿容量就会导致过电压。

5.HVDC 引起的次同步振荡(Subsynchronous Oscillation (SSO)):

(1)概念:汽轮发电机轴系会与电力系统功率控制设备,如高压直流输电系统,静止无功补偿系统等,发生相互作用,产生的低于同步频率的振荡。

(2)现象:在直流输电整流站附近的汽轮发电机组,如果大部分功率通过直流输电来输送,且与交流大系统之间的联系又比较薄弱,容易引起次同步振荡(SSO)。

(3)后果:导致机组大轴疲劳甚至断裂,导致系统振荡失稳。

写了这么多不利影响,有点耸人听闻的感觉。其实这些危害大都有解决方案,就是要多花点钱。总的来说就是让系统变得更加复杂昂贵了。

特高压交流输电的主要优点为:

(1) 提高传输容量和传输距离。随着电网区域的扩大,电能的传输容量和传输距离也不断增大。所需电网电压等级越高,紧凑型输电的效果越好。?

(2) 提高电能传输的经济性。输电电压越高输送单位容量的价格越低。?

(3) 节省线路走廊。一般来说,一回1 150 kv输电线路可代替6回500 kv线路。采用特高压输电提高了走廊利用率。

特高压输电的主要缺点是系统的稳定性和可靠性问题不易解决。自1965~1984年世界上共发生了6次交流大电网瓦解事故,其中4次发生在美国,2次在欧洲。这些严重的大电网瓦解事故说明采用交流互联的大电网存在着安全稳定、事故连锁反应及大面积停电等难以解决的问题。特别是在特高压线路出现初期,不能形成主网架,线路负载能力较低,电源的集中送出带来了较大的稳定性问题。下级电网不能解环运行,导致不能有效降低受端电网短路电流,这些都威胁着电网的安全运行。另外,特高压交流输电对环境影响较大。?

由于交流特高压和高压直流各有优缺点,都能用于长距离大容量输电线路和大区电网间的互联线路,两者各有优缺点。输电线路的建设主要考虑的是经济性,而互联线路则要将系统的稳定性放在第一位。随着技术的发展,双方的优缺点还可能互相转化。两种输电技术将在很长一段时间里并存且有激烈的竞争。

交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能…..)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流器相比,造价更低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来了极大的方便;这是交流电与直流电相比所具有的独特优势。

直流输电的优势在于:

1、输送功率相同时,直流输电所用的线材仅为交流输电2/3 ~1/2 。直流输电采用两线制,可以以大地和海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3;同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也小。

2、在输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起的损耗。

3、直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行。交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为

50hz ,但实际上常产生波动。这两种因数常引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很能够强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故。在技术不发达的国家里,交流输电距离一般不超

地300km,而直流输电线路互连时,它两端的的交流电网可以用各自的频率和相位运行,不需进行同步调整。

这是非常重要的一点。

4、直流输电发生故障的损失比交流输电小。两个交流系统若用交流线路互连,则当一侧线路发生短路时,另一侧要向一侧输送短路电流,因此使两系统原有开关切断短路电流的能力受到威胁,需要更换开关,而直流输电中,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路上基本上不向发生短路的交流系统输送短路电流,故则交流系统的短路电流与没有互连时一样,因此不必更换两侧原有开关及载流设备。

在直流输电线路中,各极是独立调节和工作的,彼此没有影响。所以,当一极发生故障时,只需停运故障极,另一极仍可输送不少于一半功率的电能。但在交流输电线路中,任一相发生永久性故障,必须全线停电

浅谈高压直流输电与交流输电各自优缺点

浅谈高压直流输电与交流输电各自优缺点 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。当时输电电压仅100V。随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V。但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。19世纪80年代末,人类发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国竣工。此后,交流输电普遍代替了直流输电。随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置;1954年,建起了世界上第一条远距离高压直流输电工程。之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kV,投入商业运营的直流工程最高电压等级为±600kV(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kV电压等级。 在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。在直流输电系统中,通过控制换流器,可以使其工作于整流或逆变状态。

直流电与交流电在应用中的优缺点

直流电与交流电在应用中的优缺点 高压直流输电方式与高压交流输电方式相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值. 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势. 直流电的优点主要在输电方面: ①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3. 如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少. ②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗. 在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上. ③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ,但实际上常产生波动.这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故.在技术不发达的国家里,交流输电距离一般不超过300km而直

浅谈高压直流输电对交流电网继电保护影响

浅谈高压直流输电对交流电网继电保护影响 摘要:目前在交流电网的继电保护工作中尚且存在许多不足之处,需要工作人 员引起注意并且加以解决,比如直流输电的交流母线通过多条线路和多落点接入 交流电网,对含有直流馈入的电网做仿真分析,在直流馈入点附近采用受影响小 的继电保护装置等等,这些都是可取的措施。 关键词:高压直流;输电;交流电网;继电保护;分析 1导言 近年来我国尤其是沿海经济发达地区用电需求增长很大,但是我国能源丰富地 区大都在西部,这种能源和负荷分布不平衡的局面促使我国实行“西电东送”工程,因此,大力开发西南水电,采用特高压直流将电能输送到沿海经济发达地区势在必行。 2直流偏磁成因 对于特高压直流输电来讲,较之于常规高压直流输电有所区别,而且运行方 式也非常的复杂,即便是一个双极特高压直流输电系统其运行方式也可能达到二 十多种。当电极不对称以大地作为回路运行过程中,直流电流就会以大地作为一 部分构成一个回路,如此强大的电流会在接地极址位置形成相对比较恒定的电流场,进而对接地极与周围交流系统产生巨大的影响。实践中可以看到,距离接地 极址越近,则直流电场就越大,反之亦然。 2高压直流输电线路继电保护的整体情况和存在问题 2.1高压直流输电线路继电保护的整体情况 从新中国成立以来,以换流技术为基础的交流电网继电保护技术就开始有了 进步,尤其是在高压直流输电上取得了更可喜的发展成果。在当前情况下,用作 长距离高能量电能传输的更多的是依靠半控型器件晶闸管的电流源换流器高压直 流输电(CSCHVDC);而由全控型器件构成的电压源换流器高压直流输电(VSC-HVDC)则偏向于受端弱系统。与此相对应的,高压直流输电线路的电网构造从之前的两端系统拓展成多段的体系;电网的线路也发生了改变,从之前单纯的海底 电缆形式转变成架空线路和电缆共存的形式;此外,高压直流输电在运输的地域 宽度、功率大小、电压高低等方面都展现了更突出的优势。目前的直流输电电网 继电保护工作在开展时,主要依靠ABB和SIEMENS公司,分为几种不同的保护方式。 2.2高压直流输电线路继电保护的现存问题 从保护效果的形成机制看,目前的直流输电继电保护工作成效不高,主要是 因为设计理念不先进、方案可实施性不强,主保护工作不力是因为系统的灵敏性弱、故障处理不到位、整体规划不强、采样率要求太高和对干扰的抵抗程度低等等。而后备保护工作不到位,则是因为保护的时效性不强、低电压保护缺少根据 等等原因。就交流电网的保护配置方面看,直流输电的保护类型太过单调,不够 可靠,一旦发生故障不能及时处理。 3交流电网的现状 自从第一个交流发电站成立以来,交流电网凭借以下的优势迅速的发展并被 广泛的使用。一是利用建立在电磁感应原理基础上的交流发电机可以很经济方便 地把机械能(水流能、风能)、化学能等其他形式的能转化为电能;交流电源和 交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉。二是交流电 可以方便地通过变压器升压和降压,这给配送电能带来极大的方便。随着技术的 不断深入,交流电网出现了一些问题,主要有以下几方面:一是交流输电不能做

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

特高压直流输电的现状与展望

特高压直流输电的现状与展望 摘要:特高压直流输电大多用于长距离输电,例如海底电缆、大型发电站输电等,在我国,其是指通过1000kV级交流电网和±600kV级以上直流电网要求构成 的电网系统。放眼现在,直流输电在电力传输中的地位与日俱增,尤其在结合计 算机等技术后,特高压直流输电系统的整体调控更加可靠。本文将通过分析我国 特高压直流输电的现状,以及探究今后发展的展望,讨论特高压直流输电如何在 个别恶劣环境中进行应用的问题。 关键词:特高压;直流输电;现状;展望 1 特高压直流输电的现状 1.1 发展速度快 从上世纪六十年代开始,由于部分发达国家需要向部分地区进行远距离、大 容量输电的需求,开始了对特高压直流输电的研究。从开始阶段的不到一千公里,五十万千伏直流输电电压,输电功率六百万千瓦,到如今的上千公里,八十万千 伏直流输电电压,其中的发展速度无疑是飞快的。除此之外,由于现代科技更为 发达,再加上可以通过计算机进行实时地检测,特高压直流输电系统在调节方面 的优化,可谓是跨越了一大步。此外,相较于以往的电线,光纤的使用也使得特 高压直流输电在传输过程中的安全性得以提高,大大提高了其输电效率。并且, 特高压直流输电的应用范围也大大扩增,不再局限于几个发达国家。 1.2 效率更高 在远距离大容量输电方面,相较于交流输电,或者是超高压输电方式,特高 压直流输电通常会是更好的选择,其在经济投资、能源损耗以及工程规模方面都 要优于交流输电和超高压输电。例如,在特高压和超高压两种方式之间,面对相 同的输电工程,姑且定为10GW的输送功率,2千米的输送距离,超高压输电需 要240亿元的投资,在输电过程中有将近1.15GW的损耗,其工程规模为135米,而特高压输电只需要200亿元的投资,在输电过程中只有1GW的损耗,工程规 模也只有120米;而相等电压等级情况下的交流输电方式,需要315亿元的投资,在输电过程中更是有1.7GW的线损,工程规模也远远大于前面两种方案。所以, 在远距离大容量电力输送过程中,特高压直流输电的输电效率更好。 1.3 我国特高压直流输电现状 我国从上世纪八十年代才开始尝试建设超高压直流输电工程,即葛洲坝直流 输电工程,虽然开始较晚,但发展十分迅速。经过这些年的技术积累,我国现已 具备建设特高压直流输电工程的技术,并于2010年,完全通过我国自主研发, 成功建造了在当时而言,技术领先全球、输电能力最大的±800kV的向家坝特高压 直流输电工程。在今后3~5年中,我国还将在其他地区建设特高压直流输电工程,预计将会达到二十个左右。 2 特高压直流输电的特点 2.1 技术性能更加稳定 直流输电技术基本不存在系统稳定的问题,可以实现电网的非同期互联。简 单来说,就是指直流输电在连接连两个交流系统时,可以在非同步时期运行,在 效果方面,通过交变直,直变交,将两个直流系统隔离,使得两边能够独立运行。除此之外,在运行期间,如果线路发生短路,直流输电能够及时地进行调节,恢 复时间也很短,例如直流输电单极故障的恢复时间一般不超过0.4秒,除此之外,还可以抑制振荡阻尼和次同步振荡的影响。

高压直流输电优缺点

浅谈特高压直流输电 将电能从大型火力、水力等发电厂输送到远方负荷中心地区时会遇到远距离输电问题。要实现远距离的大功率传输,需采用超高压或特高压输电技术。在特高压输电技术中有交流和直流两种方案,可根据技术经济条件和自身特点加以选择。特高压交流输电是目前国内外最基本的远距离输电方式,而特高压直流输电不存在同步稳定性问题,是大区域电网互联的理想方式。下面我将结合自己所学知识与查阅的资料对特高压直流输电进行概括的阐述。 直流输电是指将送端系统的正弦交流电在送端换流站升压整流后通过直流线路传输到受端换流站,受端换流站将直流逆变成正弦的工频交流电后降压和受端系统相连。而对于换流站,它的核心元件是换流器,,由1 个或数个换流单元串联而成,电路均采用三相换流桥,材料多采用可控硅阀。它的基本工作原理是,控制调节装置通过控制桥阀的触发时刻,可改变触发相位,进而调节直流电压瞬时值、电阻上的直流电流、直流输送功率。同时,相同的触发脉冲控制每个桥阀的所有可控硅元件。当三相电源为对称正弦波的情况下,线电压由负到正的过零点时,脉冲触发桥阀,同时阀两端电压变正,阀立即开通。6 个脉冲发生器分别完成对单桥换流器的6 个桥阀的触发,恰好交流正弦波电源经过1 个周期,线电压又达到下一个过零点进行第二个触发周期。一般,工程上为了获得脉波更小的直流输电电压,通常采用12脉的双桥换流器。 与交流输电相比,直流输电技术具有以下特点:输电功率大小、方向可以快速控制调节;直流输电系统的接入不会增加原有系统的短路容量;利用直流调制可以提高系统的稳定水平;直流的一个极发生故障,另一个极可以继续运行,且可以利用其过负荷能力减少单极故障下的树洞功率损失;另外直流架空线路走廊宽度约为相同电压等级交流输线路走廊宽度的一半。而对于特高压直流输电,它不但具有常规直流输电的特点,而且还能够很好的解决我国一些现存的问题: 1、我国一次能源分布很不均衡, 水利资源2/ 3分布在西南地区, 煤矿资源2/ 3 分布在陕西、山西及内蒙古西部。而电力需求又相对集中在经济发展较好较快的东部、中部和南部区域。能源产地和需求地区之间的距离为1 000~ 2 500 km。因此我国要大力发展西电东送, 实现南北互供, 全国联网。特高压直流输电在远距离输电方面较为经济, 而且控制保护灵活快速, 是实现南北互供的较好途径。 2、我国东部、中部、南部地区是我国经济发达地区, 用电需求大, 用电负荷有着较高的增长率。特高压直流输电能够实现大容量输电, 规划的特高压直流输电工程的送电容量高

特高压交直流输电系统技术经济分析

特高压交直流输电系统技术经济分析 摘要:随着我国电力事业的快速发展,我国特高压输电工程建设正处于稳步上 升阶段。特高压输电技术的广泛应用,很好地解决了当前输电技术存在的经济性 较低以及无法实现或者实现难度较大的更远距离输电问题,进一步提高了输电系 统供电的稳定性、安全性以及经济性。对于当前特高压输电网而言,1000kV以及±800kV输电系统的技术经济性是重中之重。基于此,研究特高压交直流输电系统 技术经济性具有重要的现实意义。 关键词:特高压交直流水电系统;技术经济性 引言: 1000kV与±800kV输电系统的技术经济性是发展特高压输电网的重要基础。从我国特高压交直流输电示范工程成功运行经验讨论1000kV与±800kV输电的技术 经济性对推进特高压输电网的规划建设具有重要现实意义。 1 1000kV和±800kV输电系统建设成本阐述 1.1 1000kV输电系统的建设成本 一般来说,都是使用单位输电建设成本来表示1000kV与±800kV输电系统的 建设成本。同时,参照示范工程投资决算实对其施估算。以2009年投入运行的1000kV特高压交流试验示范工程为例来看,其最初建设成本为56.9亿元。根据 试验示范工程相关元器件成本以及建设成本的实际情况,使用工程成本计算方法 对其建设成本进行估算,拟使用1000kV、4410MW、1500km特高压输电系统, 其单位输电建设成本预期估算成本为1900元/km?MW。若将500kV输电系统建 设成本按照2500元/km?MW的价格来看,那么此1000kV特高压输电系统的单位 建设成本则近似为500kV输电系统的8成左右。 1.2 ±800kV输电系统的建设成本 对于±800kV直流输电系统而言,首先需要把各发电单元机组通过电站500kV 母线汇集在一起,接着借助500kV输电线路连通到直流输电的整流站中,从而把 三相交流电更换成直流电,再使用两条正负极输电线路将其配送到逆变站中,再 把直流电转变为三相交流电,最后输送到有电压作为保障的500kV枢纽变电站中。和其余输电系统相同,±800kV直流输电系统在进行长距离、大规模输电的过程中,也需要两个电厂作为支撑,拟将其发电机组定位6×600MW以及5×600MW,线路 总长度为1500km,通过±800kV特高压直流输电示范工程数据对其输电建设成本 实施估算。某±800kV特高压直流输电示范工程的直流输电线路总长度为1891km,额定直流电流为4kA,额定换流功率为6400MW,分裂导线的规格为6×720mm2,开工建设的时间为2007年,不断对系统进行调试,最终于2010年正式投入使用。根据系统调试以及投入运行的实际结果来看,自助研发的±800kV特高压直流输电 系统及其相关设备具有较高的运行性能。该±800kV直流输电示范工程建设成本为190亿元,其中换流站与相关线路的成本均占总成本的一半。根据示范工程建设 成本进行估算,±800kV、6400MW、1500km直流输电系统的单位输电建设成本应为1780元/km?MW。 1.3 1000kV和±800kV输电系统建设成本对比分析 一般来说,通过逆变站的输出功率对交流输电进行估算,而直流输电的估算 亦是如此;1000kV交流输电系统的单位建设成本与±800kV直流输电系统的单位 建设成本基本一致,都为1900元/km?MW,处于相同等级。1000kV交流输电系 统的对地电压为578kV和±800kV直流输电系统极线的对地电压相匹配。±800kV

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景 发表时间:2018-11-17T14:55:25.480Z 来源:《基层建设》2018年第28期作者:朱振伟李天轩 [导读] 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 国网江苏省电力有限公司宿迁供电分公司江苏宿迁 223800 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 关键词:特高压;直流输电;技术现状;应用前景 1 引言 特高压直流输电技术起源于20 世纪60年代,瑞典Chalmers大学1966年开始研究±750kV导线。1966年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20世纪80年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV是合适的直流输电电压等级,2002 年 Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 2 特高压直流输电现状 20 世纪 80 年代前苏联曾动工建设长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW。该工程将哈萨克斯坦的埃基巴斯图兹的煤炭资源转换成电力送往前苏联欧洲中部的塔姆包夫斯克,设计为双极大地回线方式,每极由两个 12 脉动桥并联组成,各由 3×320Mvar Y/Y 和 3×320Mvar Y/Δ单相双绕组换流变压器供电;但由于 80 年代末到90年代前苏联政局动荡,加上其晶闸管技术不够成熟,该工程最终没有投入运行。由巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常。 3 特高压直流输电技术的特点及适用范围 特高压直流输电无需复杂的系统设计,基本可以采用±500kV 和±600kV 直流输电系统类似的设计方法,需要考虑的关键问题是外部绝缘和套管的设计等问题。特高压直流输电的输送容量大,输电距离长,输电能力主要受导线最高允许温度的限制。交流线路的无功补偿对远距离大容量输电系统至关重要;而直流输电线路本身不需要无功补偿,在换流站利用站内的交流滤波器和并联电容器即可向换流器提供所需的无功功率。一般来讲,对于远距离大容量输电直流方案优于交流方案,特高压方案优于超高压方案。表 1 为输送功率为 10GW 输送距离为 2000km 时交、直流以及不同电压等级直流的投资及线路走廊占用情况比较。 表1 10GW 电力输送 2000km 的交、直流输电方案 由表 1 可见,特高压直流输电适用于远距离大容量的电力输送。 4 我国能源和负荷的分布特点 水能资源和煤炭作为我国发电能源供应的两大支柱,今后的开发多集中在西南、西北和晋陕蒙地区,并逐渐向西部和北部地区转移,而东部沿海地区和中南地区的国民经济的持续快速发展导致能源产地与能源消费地区之间的距离越来越大,使得我国能源配置的距离、特点和方式都发生了巨大变化,并决定了能源和电力跨区域大规模流动的必然性。 (1)水电东送规模 三峡水电站(包括地下电站)的总装机容量为22.4GW,“十二五”初期将全部建成投产。综合分析一次能源平衡、输电距离及资源使用效率等因素,可知金沙江下游水电站主送华中、华东电网是合理的。 (2)煤电基地的电力外送规模 各煤电基地的电力外送规模有望得到较大发展。现已建成和规划采用 500kV 交流和±500kV 直流跨区送电的坑口电站的电力外送规模总计15GW。2020 年煤电外送将新增 84GW,主要送往华中东部四省、华东地区和华北京津冀鲁四省市以及广东地区。 (3)东部电力市场空间 华中东部四省。按低负荷水平预测,2020 年需电量将为 600TWh,负荷将为 110GW,装机容量缺额将为 138GW。扣除本地水电和必要的气电以外,2020 年之前尚有 47GW 的市场空间,其中2010~2020 年约为 32GW。华北的京津冀鲁。按低负荷水平预测,2020年需电量将为 840TWh,负荷将为 140GW,装机容量缺额将为 168GW。扣除本地核电、蓄能电站以外,2020 年之前尚有 90GW 的市场空间,其中2010~2020 年约为 45GW。初步测算,到 2020 年水电跨区送电规模总计约 70GW,煤电外送约 84GW,而东部受电地区的市场空间约为 127GW;而能源与负荷的距离大多数超过了 1000km,采用特高压直流输电技术比较合适。 5 特高压直流输电的初步发展规划 2020 年前后西部水电的大部分电力通过直流特高压通道向华中和华东地区输送,其中金沙江一期溪洛渡和向家坝水电站、二期乌东德和白鹤滩水电站向华东、华中地区送电,锦屏水电站向华东地区送电,宁夏和关中煤电基地向华东地区送电、呼伦贝尔盟的煤电基地向京津地区送电大约需要 9 条输电容量为 6GW 的±800kV 级特高压直流输电线路。根据 10 年发展规划,特高压直流输电工程的建设进度如

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

超高压直流输电

目录 前言 (2) 主要设备 (3) 远距离输电优势明显 (3) 工程应用 (3) 超高压直流输电和交流输电的性能对比 (4) 超高压直流输电的优势及其依赖的技术 (5) 超高压直流输电系统的结构 (6) 超高压直流输电的故障保护系统 (7)

前言 高压直流输电技术被用于通过架空线和海底电缆远距离输送电能;同时在一些不适于用传统交流联接的场合,它也被用于独立电力系统间的联接。世界上第一条商业化的高压直流输电线路1954年诞生于瑞典,用于连接瑞典本土和哥特兰岛,由阿西亚公司(ASEA, 今ABB集团)完成。 在一个高压直流输电系统中,电能从三相交流电网的一点导出,在换流站转换成直流,通过架空线或电缆传送到接受点;直流在另一侧换流站转化成交流后,再进入接收方的交流电网。直流输电的额定功率通常大于100兆瓦,许多在1000-3000兆瓦之间。 高压直流输电用于远距离或超远距离输电,因为它相对传统的交流输电更经济。 应用高压直流输电系统,电能等级和方向均能得到快速精确的控制,这种性能可提高它所连接的交流电网性能和效率,直流输电系统已经被普遍应用。 高压直流输电是将三相交流电通过换流站整流变成直流电,然后通过直流输电线路送往另一个换流站逆变成三相交流电的输电方式。它基本上由两个换流站和直流输电线组成,两个换流站与两端的交流系统相连接。 直流输电线造价低于交流输电线路但换流站造价却比交流变电站高得多。一般认为架空线路超过600-800km,电缆线路超过40-60km直流输电较交流输电经济。随着高电压大容量可控硅及控制保护技术的发展,换流设备造价逐渐降低直流输电近年来发展较快。我国葛洲坝一上海1100km、±500kV,输送容量的直流输电工程,已经建成并投入运行。此外,全长超过2000公里的向家坝-上海直流输电工程也已经完成。该线路是目前(截至2011年初)世界上距离最长的高压直流输电项目。

(发展战略)国内外高压直流输电的发展与状态

1 我国高压直流输电系统的发展历程及现状 1.1 我国高压直流输电系统的发展历程 我国的高压直流输电工程总体上可以说是起步较晚, 但发展迅速。1980 年国家确定全部依靠自己力量建设中国第一项直流输电工程———舟山直流输电工程。它具有向自主建设大型直流输电工程过渡的工业性试验性质,于1984 年开始施工, 1987 年投入试运行, 1989 年正式投运。工程最终规模为±1 100 kV, 500 A, 100 MW, 线路全长54 km。嗓泅直流输电工程( 上海―嗓泅岛) 是我国自行设计、制造、建设的双极海底电缆直流工程, 于1996 年完成研究工作, 2002 年全部建成。工程为双极±500 kV,600 A, 60 MW, 可双向供电, 线路长度66.2 km, 其中海底电缆59.7 km。葛南( 葛洲坝―上海南桥) 高压直流输电系统, 是我国引进的第一个高压直流输电工程, 1989 年单极投运, 1990 年双极投运。进入21 世纪, 我国的高压直流输电发展迅速, 相继建成投产了天广( 天生桥―广州) 、三常( 三峡―常州) 、三广( 三峡―广东) 和贵广( 贵州―广东) 等多项高压直流输电项目。作为引进技术的验证, 自主研发设计制造的华中―西北联网灵宝背背直流工程, 2005 年7 月投入运行。 1.2 我国高压直流输电系统的现状 至2004 年末, 我国高压直流输电工程累计输送容量达12 470 MW, 输电线路长度累计达4 840 km, 已经超过美国位列世界第一。截至2007 年年底, 我国已建成并正式投入运行葛( 洲坝) 沪( 上海) 、三( 峡) 常( 州) 、三( 峡) 广( 东) 、三( 峡) 沪( 上海) 、天( 天生桥) 广( 东) 、贵( 州) 广( 东) Ⅰ回、Ⅱ回等7 个超高压直流输电工程和灵宝背靠背直流工程, 直流输电线路总长度达 7 085 km, 输送容量达18 560 MW, 线路总长度和输送容量均居世界第一。与此

特高压交流和高压直流输电系统运行损耗及经济性分析

特高压交流和高压直流输电系统运行损耗及经济性分析 发表时间:2018-04-12T10:36:46.213Z 来源:《电力设备》2017年第32期作者:常彦 [导读] 摘要:特高压交流和高压直流输电系统的运行损耗对于输电系统运行的经济性具有直接重要的影响,对于提高输电系统设备的运行效率和使用寿命,促进电力资源优化合理配置都有着积极的促进作用。 (国网山西省电力公司检修分公司山西省太原市 030031) 摘要:特高压交流和高压直流输电系统的运行损耗对于输电系统运行的经济性具有直接重要的影响,对于提高输电系统设备的运行效率和使用寿命,促进电力资源优化合理配置都有着积极的促进作用。 关键词:特高压交流;高压直流;输电系统;运行损耗分析;经济分析 在我国覆盖全国电网的整体输电系统中,输电系统运行损耗都是不可避免的重要问题,运行损耗的大小直接影响到输电系统的经济效益和经济性。其中,关于特高压交流和高压直流输电系统,这一在整个电网中占有重要比重的输电系统的运行损耗和相关经济性分析研究具有十分重要的意义。 1特高压交流和高压直流输电系统及其经济性概述 中国是世界上国土面积第四大的国家,幅员辽阔,人口众多,地形复杂多样,并且由于地形地势气候等多方面的原因,中国的人口规模、经济发展状况以及资源能源需求量呈现西低东高的阶梯式分布。与其相反的是,我国的能源资源分布却是西高东低,具体到与电力相关的资源能源来说,我国目前有超过百分之七十的水力资源在西南,有大约百分之七十五的煤炭资源储存西北,风电和太阳能等能够用于发电的可再生能源也主要分布在西部、北部。因此,这种电力资源能源分布和电力资源需求的极不平衡性,决定着我国能源分配面对的巨大压力,以及通过多种方式优化电力资源配置的迫切性和重要性,其中,特高压交流和高压直流输电系统就是当前技术成熟,应用较为普及的两种主流输电方式,它们为我国电力资源的合理配置的大好局面,提供了重要的助力。所以,不断地分析和研究特高压交流和高压直流输电系统,也是提高电力资源配置效率和质量的必然要求。 分析输电系统经济性的重要内容,就是分析输电系统的运行损耗。对于本文的研究对象来说,特高压交流和直流输电系统经济性分析主要集中在前期建设投资、中期的输电网络运性维修、输电运行中不可避免的输电损耗和以及停电造成的损失费用四个方面。 2特高压交流和直流输电系统经济性分析 本文主要运用对比法分析特高压交流和直流系统的经济性,其中涉及二者经济性比较,主要从投资、运维、输电损耗和停电损失费用四个方面来进行比较,最后再进行综合汇总。 在对比分析法中,我们需要设定一个恒量,为了便于比较和计算,设置特高压交流和高压直流两种输电系统中,输电距离相同,在500-2000千米范围内,分为500千米、1000千米、1500千米和2000千米四个固定值。然后在此基础上,根据输电能力的大小、额定输送量和负载率对两种输电系统的影响大小。 采用的研究对象中,两种输电系统的具体参数分别为:特高压交流输电系统2个1000千伏变电站和多个中间开关站以及1回输电线路组成,线路规格为8×500平方毫米,并且每400千米一个间距设置一个开关站。高压直流输电系统无变电站及中间开关,但需架设1台换流站,同时采用的是6×900平方毫米的线路。 2.1投资费用分析 特高压交流输电系统中,需要建设变电站,变电站的建设费用为430元/千伏,8×500平方毫米规格的线路为425万元/千米。所以,变电站的建设费用为86亿元,线路的费用为500千米21.25亿元,1000千米42.5亿元,1500千米6 3.75亿元、2000千米85亿元。 高压直流输电系统中,不需要建设变电站,但是需要投资建设换流站,一台换流站单价为65亿元,6×900平方毫米规格的线路单价为397万元/ 千米,因此,线路的费用为500千米19.85亿元,1000千米39.7亿元,1500千米59.55亿元、2000千米79.4亿元。 因此,经过对比,在不考虑其他任何因素的情况下,在特高压交流电输电网络的前期站设投资要远远大于高压直流电的输电网络。直到输电距离达到6000千米,高压直流输电网络才更加具有经济价值。 2.2运维费用分析 输电网络的运维就是指输电网络硬件设备的元件耗损率和故障维修的费用。通过对比,我们不难发现,高压直流换流站设备和阀组众多,系统的运行状态比交流系统多,类似换流变压器和阀组这部分元件故障频率较多,维修更新的时间较长,特高压交流变电站的元件较少且故障持续时间短。因此,可以说在各个距离高压直流输电网络的运维费用都要大于特高压交流输电网络,在运维费用方面,特高压交流输电网络更具经济性。 2.3输电损耗费用分析 特高压和超高压交流输电系统的运行损耗主要包括变电站损耗和输电线路损耗两部分。一方面变电站损耗包括变压器、电抗器、电容器等设备损耗等硬件和变电站日常运行用电造成的损耗,这种损耗鱼输电系统的随输送容量基本成正比,随着输送容量的变化成比例调整。另一方面,输电线路损耗主要包括电阻损耗、电晕损耗和泄漏损耗,其中电阻损耗属于硬件损耗的一种,电阻损耗量同样随输送容量的变化成比例变化,电晕损耗的变化则基本受电压等级、导线结构和天气情况等因素影响,泄漏损耗通常并不计入记录分析中。 2.3.1电阻损耗 通常情况下,电路损耗是理论意义上的损耗,是指线路在满负荷运行时造成的功率损耗。然而在实际电力输送中,输电系统不可能不间断地满负荷运行。 计算公式如下:线路电阻损耗值=线路电阻×额定电流×损耗小时数 计算结果可由两种输电系统的具体参数估算到。 2.3.2电晕损耗 交流线路电晕损耗很容易受到线路电压、导线结构和气候条件的影响,经过研究发现,在雨雪天起电晕平均损耗可以达到为晴朗天气平均损耗的37-50倍。电晕损耗年平均值计算公式为 电晕损耗年平均值=(好天气小时数损耗+雪天小时数损耗+雨天小时数损耗)/全年日历小时数” 2.4停电损失费用分析

交、直流输电的优缺点及比较

交、直流输电的优缺点 直流输电的优势 直流输电的再次兴起并迅速发展,说明它在输电技术领域中确有交流输电不可替代的优势。尤其在下述情况下应用更具优势: (1)远距离大功率输电。直流输电不受同步运行稳定性问题的制约,对保证两端交流电网的稳定运行起了很大作用。 (2)海底电缆送电是直流输电的主要用途之 一。"输送相同的功率,直流电缆不仅费用比交流省,而且由于交流电缆存在较大的电容电流,海底电缆长度超过40km时,采用直流输电无论是经济上还是技术上都较为合理。 (3)利用直流输电可实现国内区网或国际间的非同步互联,把大系统分割为几个既可获得联网效益,又可相对独立的交流系统,避免了总容量过大的交流电力系统所带来的问题。 (4)交流电力系统互联或配电网增容时,直流输电可以作为限制短路电流的措施。这是由于它的控制系统具有调节快、控制性能好的特点,可以有效地限制短路电流,使其基本保持稳定。 (5)向用电密集的大城市供电,在供电距离达到一定程度时,用高压直流电缆更为经济,同时直流输电方式还可以作为限制城市供电电网短路电流增大的措施。 4直流输电与交流输电的技术比较 4.1直流输电的优点 (1)直流输电不存在两端交流系统之间同步运行的稳定性问题,其输送能量与距离不受同步运行稳定性的限制; (2)用直流输电联网,便于分区调度管理,有利于在故障时交流系统间的快速紧急支援和限制事故扩大;

(3)直流输电控制系统响应快速、调节精确、操作方便、能实现多目标控制; (4)直流输电线路沿线电压分布平稳,没有电容电流,不需并联电抗补偿; (5)两端直流输电便于分级分期建设及增容扩建,有利于及早发挥效益。 4.2直流输电的缺点 (1)换流器在工作时需要消耗较多的无功功率; (2)可控硅元件的过载能量较低; (3)直流输电在以大地或海水作回流电路时,对沿途地面地下或海水中的金属设施造成腐蚀,同时还会对通信和航海带来干扰; (4)直流电流不像交流电流那样有电流波形的过零点,因此灭弧比较困难。 5直流输电与交流输电的经济比较 (1)直流架空线路投资省。直流输电一般采用双极中性点接地方式,直流线路仅需两根导线,三相交流线路则需三根导线,但两者输送的功率几乎相等,因此可减轻杆塔的荷 重,减少线路走廊的宽度和占地面积。在输送相同功率和距离的条件下,直流架空线路的投资一般为交流架空线路投资的三分之 二。" (2)直流电缆线路的投资少。相同的电缆绝缘用于直流时其允许工作电压比用于交流时高两倍,所以在电压相同时,直流电缆的造价远低于交流电缆。 (3)换流站比变电站投资大。换流站的设备比交流变电站复杂,它除了必须有换流变压器外,还要有目前价格比较昂贵的可控硅换流器,以及换流器的其它附属设备,因此换流站的投资高于同等容量和相应电压的交流变电站。

相关主题