搜档网
当前位置:搜档网 › 高考数学函数零点专题

高考数学函数零点专题

高考数学函数零点专题
高考数学函数零点专题

欢迎下载学习好资料 2.

函数的零点专题高考解读函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利求方程的根、用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的x掌握零点存在性定理.增强根据实际问题建立数轴的交点的横坐标的等价性;图象与学模型的意识,提高综合分析、解决问题的能力.知识梳理 1.函数的零点与方程的根xffxfxx 的零(),我们把使叫做函数())=0 (1)函数的零点对于函数的实数( 点.函数的零点与方程根的关系(2)xfxgxyfFxxgxf的图象与)=函数((()=(=)-)(的根,)的零点就是方程即函数()xgy )(函数的图象交点的横坐标.= (3)零点存在性定理bbfafyfxa,上的图象是连续不断的一条曲线,且有)<0如果函数(=(([)在区间),·]cbfcyfxabca这个)使得)在区间(=,()内有零点,即存在∈(0, 那么,函数,=)(xf的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条=也就是方程(0) 件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解..在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数2即把方程分拆为一个等式,使两端都转化为我们所熟悉的函形结合是基本的解题方法,xxgfxgxf的形式,这时()),=((),即把方程写成)数的解析式,然后构造两个函数(可以根据图象的变化趋势找到方程中字母方程根的个数就是两个函数图象交点的个数,. 参数所满足的各种关系高频考点突破函数的零点判断考点一

11?x?2x?)ea(?xf(x)?e?2x?有唯一零点,已知函数11课标20173,理】1例、【a=

则111?DBCA.1

...223

1x fxx-2的零点所在的区间是+( 【变式探究】(1)函数)

(=)e211)(,1,(0)(2,3)

(1,2) D.A. B.. C222xfxfyxxgxxx=)(,若函数0)≥(3-

=)(满足:R∈,)(=已知偶函数(2).

学习好资料欢迎下载

xx,,>0log?2??yfxgx)的零点个数为( )-则=(()

1x,,<0-?x?A.1 B.3 C.2 D.4

【方法技巧】函数零点的求法

fx)=0(1)直接求零点:令,如果能求出解,则有几个解就有几个零点.(

ab]上是连续不断的曲线,且,(2)零点存在性定理:利用定理不仅要函数在区间[fafb)<0,还

必须结合函数的图象与性质(如单调性、奇偶性()(才能确定函数有多少)·个零点.

(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其有几个交点,就有几个不同的零点.

fxxxfx)的零点所在的区间为( (=ln +) -2【变式探究】设(,则函数)A.(0,1) B.(1,2) C.(2,3) D.(3,4)

考点二、二次函数的零点

2axxafx∈R.

)=+2+2例、已知函数,(2xfxfx的解集;1-[1,2],求不等式 ((1)若不等式)(≥)≤0的解

集为2axxfxg的取值上有两个不同的零点,求实数1)+(2)若函数在区间((1,2))=(+范围.【方法技巧】

解决二次函数的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.

【变式探究】

22xaafxxa小,求实数大,一个零点比1的一个零点比+(-2)-1)已知1()=+(的取值范围.

考点三函数零点的应用

2xx?x?2)?aeea?(xf(). 21,理】已知函数2017例3、【课标1f(x)的单调性;(1)讨论f(x)a的取值范围.

2)若有两个零点,求(xx,≤||,22-??xfgxbfx,其-)=)【变式探究】已知函数-()

=(2函数(2xx?,>2-2,

bxgxybf)

( 的取值范围是个零点,则4恰有)(-)(=若函数.R∈中

欢迎下载学习好资料

7777)2(,(??)??,)(0,)(, D.A. B. C. 4444【方法规律】通过解方程即可得

若方程可解,函数零点的应用主要表现在利用零点求参数范围,出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.【变式探究】2nmmnm≤1--2+

??xmfnxmn(2==⊕设对于实数),(定义运算“⊕”:2nnmmn?>

-xxxfxxxax,则,,且关于恰有三个互不相等的实数根的方程(,)⊕-1)(=-1)1321xx+.+的取值范围是

________32

考点四、分段函数的模型,0,x?x?1?1的则满足15】设函数、【2017课标3,理例4?)f(x1)?f(x?f(x)??x2,?02,x?x的取值范围是_________.

【变式探究】已知一家公司生产某品牌服装的年固定成本为10万元,每生产1千x千件并全部销售完,每千件万元.设该公司一年内共生产该品牌服装件需另投入2.71?2xx100<10.8

-≤?30?xRRx的销售收入为(())万元,且=1

000108?x.>10-?

2xx3

Wx(千件)关于年产量的函数解析式; (1)写出年利润万元()(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本)

【方法技巧】

(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型.

(2)求函数最值常利用基本(均值)不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.

【变式探究】

国庆期间,某旅行社组团去风景区旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75人为止.每团乘飞机,旅行社需付给航空公司包机费15 000元.

写出飞机票的价格关于人数的函数;(1).

学习好资料欢迎下载

(2)每团人数为多少时,旅行社可获得最大利润?

高考链接

1.【2017北京,理14】三名工人加工同一种零件,他们在一天中的工作情况如图Ai名工人上午的工作时间和加工的零件数,点所示,其中点的横、纵坐标分别为第i Bii=1,2的横、纵坐标分别为第名工人下午的工作时间和加工的零件数,,3.

i QiQQQ中最大的是则,①记,为第_________. 名工人在这一天中加工的零件总数,3112pippp中

最大的名工人在这一天中平均每小时加工的零件数,则②记,为第,i312是_________.

,若存在高考山东理数】已知函数其中2.【2016

m=bbxfx的取值范围是实数有三个不同的根,则,使得关于)的方程(________________.

.

,函数2016高考上海理数】已知3.

(1)当时,解不等式;

的方程2的解集中恰好有一个元素,)若关于

求的取值范围;

上的最大值与最小值,若对任意,函数在区间(3)设

.

1的差不超过,求的取值范围

4.【都有()满足,对任意】存在函数72015高考浙江,理

B. A.

学习好资料欢迎下载

D. C.

,使函数,若存在实数155.【2015高考湖南,理】已知 . 的取值范围是有两个零点,则

,则方2015高考江苏,,6.13【】已知函数

程实根的个数为

函数2015】已知函数高考天津,理 87.

的4个零点,则恰有,其中,若函数( )

取值范围是

(A)(B)(C)(D)

8.【2015高考浙江,理10】已知函数,则,

的最小值是.y(单位:小时)与储存温度x】某食品的保鲜时间(单【2015高考四川,理139.

kb为常数)、)满足函数关系(为自然对数的底数,。若位:

的保鲜时间是48小时,则该食品在该食品在0的保鲜时间设计192小时,在22

的保鲜时间是 33小时。

10.【2015高考上海,理10】设为,的反函数,

的最大值为

则.

12.【2015高考浙江,理18】已知函数是,记

.

在区间上的最大值

;)证明:当时,1

.

的最大值,求满足,)当2(.

欢迎下载学习好资料

p ,

第二·湖南卷)某市生产总值连续两年持续增加,第一年的增长率为13.(2014q )

( 年的增长率为 ,则该市这两年生产总值的年平均增长率为qqpp 1)()-++1(+1qppq 1 11 B.C.A.)()- D.(++

221x 22

axxxfxxgx 的图像<0)与+(+

-((14.2014·湖南卷)已知函数)(=)=ln()+e 2ay )

( 轴对称的点,则 上存在关于的取值范围是11????1,e -,e -???? -∞,e)C. D.A .(.-∞,) B(ee ????e 2

xxfxafxxx -1|=)3-|,0∈R.15.(2014·天津卷)已知函数若方程(|)=

|(+a 的取值范围为________. 恰有4个互异的实数根,则实数32

bxcfxfaxffx (-2)==(,

201416.(·浙江卷)已知函数且(0<)=-(+-1)++3)≤3,则( )

cc ≤3<6 ≤3 B .A .cc >9

9 D .6<.≤C ππ??fxxax ,??是减函数,则(sin )=cos 2在区间17.(2014·全国卷)若函数+ 62??a 的取值范围是________.

C D

x |2|

xafgxgaxfx (1)]=1∈()=R).若.18(2014·江西卷)已知函数-(=)5,([,a =( )

则A .1 B .2 C .3 D .-1 1111abc =log ,则( -=2,)

=log .19(2014·辽宁卷)已知, 2

3323abcacb >>>> BA ..cabcba >> DC ..>>xy xyaaa <1)<2014·山东卷)已知实数,(0满足,则下列关系式恒成立的<.20(是( )

1122

xyxy D.

sin ln(+1)>>1) C. +ln( B. >A. sin

22

xy +1+133

yx >

【高考数学专题】函数的零点练习题

函数的零点 班级 ___________ 姓名 __________ 知识必备 1、函数零点定义. 对于函数()D x x f y ∈=,,把使()0=x f 成立的实数x 叫作函数()D x x f y ∈=,的零点。 2、函数的零点与相应方程的根,函数的图像与x 轴交点之间的关系. 方程()0=x f 有实根?函数()x f y =的图像与x 轴交点?函数()x f y =有零点. 3、函数零点的判定(零点存在性定理) 如果函数()x f y =在区间[]b a ,上的图像是一条连续曲线,并且有()()0+-≤-+=0 ,ln 20 ,322x x x x x x f 的零点个数为____________. 5、函数()()2,1≥∈-+=+n N n x x x f n n 在区间?? ? ??121,内的零点个数为______. 6、已知0x 是函数()x x f x -+ =11 2的一个零点,若()()+∞∈∈,,10201x x x x ,则( ) ()()0,0.21<x f x f C ()()0,0. 21>>x f x f D 7、已知a 是()x x f x 2 1log 2-=的零点,若a x <<00,则()0x f 的值满足( ) ()0. 0=x f A ()0.0x f C ()符号不确定 0.x f D 8、若函数()a x x x f -+=2 log 3 在区间()21, 内有零点,则实数a 的取值范围是( ) ()2log 1. 3--,A ()2l o g 0.3,B ()12l o g .3, C ()4l o g 1.3,D 9、若432<<<

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题 导数压轴题之隐零点问题(共13题) 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增,

而==1, 故a≤1, 综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤() 2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,

高中数学函数的零点和最值

函数的零点 1、函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点。 方程f(x)=0有实数根?函数y=f(x)的图象与x 轴有交点?函数y=f(x)有零点 注意:零点是一个实数,不是点。 练习:函数23)(2 +-=x x x f 的零点是( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 方程f(x)=0的根的个数就是函数y=f(x)的图象与x 轴交点的个数。 方程f(x)=0的实数根就是函数y=f(x)的图象与x 轴交点的横坐标。 方法:①(代数法)求函数的零点就是求相应的方程的根,一般可以借助求根公式或因式分解等办法,求出方程的根,从而得出函数的零点。 ②(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 练习:Ⅰ求零点 ①y=x 3-1, ② y=2^x-1, ③y=lg(x 2-1)-1, ④y=2^|x|-8, ⑤y=2+log 3x Ⅱ结合函数的图像判断函数f(x)=x 3-7x+6的零点 Ⅲ判断函数f(x)=lnx+2x 是否存在零点及零点的个数 2、一元二次方程和二次函数 例,当a>0时,方程ax 2+bx+c=0的根与函数y=ax 2+bx+c 的图象之间的关系如下表: 练习:如果函数f(x)= ax 2-x-1仅有一个零点,求实数a 的范围。 3、零点存在性定理: 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。 例1:观察二次函数f (x)=x 2- 2x - 3的图象: ① 在区间[-2,1]上有零点_______; f (-2)=_____,f (1)=_____, f (-2) · f(1)___0(< 或 > 或 =) ② 在区间[2,4]上有零点_______; f (2) · f(4)___0(< 或 > 或 =) 例1图 例2图 例2:观察函数 y = f (x)的图象: ①在区间[a ,b]上___(有/无)零点; f (a) · f(b)___0(< 或 > 或 =) ②在区间[b ,c]上___(有/无)零点; f (b) · f(c)___0(< 或 > 或 =) 练习:①判断函数f(x)=x2-2x-1在区间(2,3)上是否存在零点? 4、函数最值: 最大值:一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x0∈I ,使得f(x0) = M ,那么,称M 是函数y=f(x)的最大值. 方法:利用函数单调性的判断函数的最大(小)值 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b). 练习:①函数 f (x )= )1(11 x x --的最大值是______ ②函数f (x )=ax (a >0,a ≠1)在[1,2]中的最大值比最小值 大2a ,则a 的值为______ ③设a 为实数,函数f (x )=x2+|x -a|+1,x ∈R. (1)讨论f (x )的奇偶性;(2)求f (x )的最小值. ④已知二次函数f (x )=(lga )x2+2x +4lga 的最大值为3,求a 的值.

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

高考数学专题04 函数的零点(第六篇)(解析版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第六篇函数与导数 专题04 函数的零点 【典例1】【辽宁省丹东市2020届模拟】已知设函数()ln(2)(1)ax f x x x e =+-+. (1)若0a =,求()f x 极值; (2)证明:当1a >-,0a ≠时,函数()f x 在(1,)-+∞上存在零点. 【思路引导】 (1)通过求导得到()f x ',求出()0f x '=的根,列表求出()f x 的单调区间和极值. (2)对a 进行分类,当1a >时,通过对()f x '求导,得到()f x '在()1,-+∞单调递减,找到其零点,进而得到()f x 的单调性,找到()0>0f x ,()00f <,可证()f x 在()1,-+∞上存在零点. 当01a <<时,根据(1)得到的结论,对()f x 进行放缩,得到1e 0a f -??> ??? ,再由()00f <,可证() f x 在()1,-+∞上存在零点. 【详解】 (1)当0a =时,()()()ln 21f x x x =+-+,定义域为()2,-+∞,由()1 02 x f x x +'=- =+得1x =-. 当x 变化时,() f x ',()f x 的变化情况如下表:

故当1x =-时,()f x 取得极大值()()()1ln 21110f -=---+=,无极小值. (2)()()1 e 112 ax f x a x x ??= -++?+'?,2x >-. 当0a >时,因为1x >-,所以()() ()2 1 e 1202ax f x a a x x ??=- -++?+'',()1 002 f b -'=-<, 所以有且仅有一个()11,0x ∈-,使()10g x '=, 当11x x -<<时,()0f x '>,当1x x >时,()0f x '<, 所以()f x 在()11,x -单调递增,在()1,x +∞单调递减. 所以()()010f x f >-=,而()0ln210f =-<, 所以()f x 在()1,-+∞存在零点. 当10a -<<时,由(1)得()()ln 21x x +≤+, 于是e 1x x ≥+,所以()e 11ax ax a x -≥-+>-+. 所以()()()()()) e e ln 21e 1ln 21]ax ax ax f x x x x a x -???=+-+>-+++??? . 于是11111 11e e e 1ln e 21]e e 1ln e 1]0a a a a a f a a -------??????????????>+-+->+--=???? ? ? ? ? ???????????????? ???. 因为()0ln210f =-<,所以所以()f x 在1e ,a -?? +∞ ??? 存在零点. 综上,当1a >-,0a ≠时,函数()f x 在()1,-+∞上存在零点. 【典例2】【河南省名校-鹤壁高中2019届高三压轴第二次考试】已知函数()2 23x f x e x x =+-. (1)求函数()f x '在区间[]0,1上零点个数;(其中()f x '为()f x 的导数) (2)若关于x 的不等式()()2 5312 f x x a x ≥+-+在[)1,+∞上恒成立,试求实数a 的取值范围. 【思路引导】

高中数学函数的零点教学设计

第4讲与函数的零点相关的问题 函数零点的个数问题 1.函数f(x)=xcos 2x在区间[0,2π]上的零点的个数为( D ) (A)2 (B)3 (C)4 (D)5 解析:要使f(x)=xcos 2x=0,则x=0,或cos 2x=0,而在区间[0,2π]上,通过观察y=cos 2x 的函数图象,易得满足cos 2x=0的x的值有,,,,所以零点的个数为5个. 2.(2015南昌二模)已知函数f(x)=函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是( B ) (A)5 (B)6 (C)7 (D)8 解析:函数y=f(x)-g(x)的零点个数就是函数y=f(x)与y=g(x)图象的交点个数.在同一坐标系中画出这两个函数的图象: 由图可得这两个函数的交点为A,O,B,C,D,E,共6个点. 所以原函数共有6个零点.故选B. 3.(2015南昌市一模)已知函数f(x)=若关于x的方程f[f(x)]=0有且只有一个实数解,则实数a的取值范围为. 解析:依题意,得a≠0,令f(x)=0,得lg x=0,即x=1,由f[f(x)]=0,得f(x)=1, 当x>0时,函数y=lg x的图象与直线y=1有且只有一个交点,则当x≤0时,函数y=的图象与直线y=1没有交点,若a>0,结论成立;若a<0,则函数y=的图象与y轴交点的纵坐标-a<1,得-1

答案:(-1,0)∪(0,+∞) 4.(2015北京卷)设函数f(x)= ①若a=1,则f(x)的最小值为; ②若f(x)恰有2个零点,则实数a的取值范围是. 解析:①当a=1时,f(x)=其大致图象如图所示: 由图可知f(x)的最小值为-1. ②当a≤0时,显然函数f(x)无零点; 当01,由二次函数的性质可知,当x≥1时,f(x)有2个零点,则要使f(x)恰有2个零点,则需要f(x)在(-∞,1)上无零点,则2-a≤0,即a≥2.综上可知,满足条件的a的取值范围是[,1)∪[2,+∞). 答案:①-1 ②[,1)∪[2,+∞) 确定函数零点所在的区间 5.(2015四川成都市一诊)方程ln(x+1)-=0(x>0)的根存在的大致区间是( B ) (A)(0,1) (B)(1,2) (C)(2,e) (D)(3,4) 解析:设f(x)=ln(x+1)-, 则f(1)=ln 2-2<0,f(2)=ln 3-1>0, 得f(1)f(2)<0,函数f(x)在区间(1,2)有零点,故选B. 6.(2015河南郑州市一模)设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是 f(x),g(x)的零点,则( A )

高中数学《方程的根与函数的零点》公开课优秀教学设计一

2016年全国高中青年数学教师优秀课展示与培训活动交流课案 课 题:3.1.1 方程的根与函数的零点 教 材:人教A 版高中数学·必修1 【教材分析】 本节课的内容是人教版教材必修1第三章第一节,属于概念定理课。“函数与方程”这个单元分为两节,第一节:“方程的根与函数的零点”,第二节:“用二分法求方程的近似解”。 第一节的主要内容有三个:一是通过学生已学过的一元二次方程、二次函数知识,引出零点概念;二是进一步让学生理解:“函数()y f x =零点就是方程()0f x =的实数根,即函数 ()y f x =的图象与x 轴的交点的横坐标”;三是引导学生发现连续函数在某个区间上存在零 点的判定方法:如果函数()y f x =在区间[],a b 上图象是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。这些内容是求方程近似解的基础。本节课的 教学主要是围绕如何用函数的思想解决方程的相关问题展开,从而使之函数与方程紧密联系在一起。为后续学习二分法求方程的近似解奠定基础,本节内容起着承上启下的作用,承接以前学过的方程知识,启下为下节内容学习二分法打基础。 【教学目标】 1.理解函数零点的概念;掌握零点存在性定理,会求简单函数的零点。 2.通过体验零点概念的形成过程、探究零点存在的判定方法,提高学生善于应用所学知识研究新问题的能力。 3.通过本节课的学习,学生能从“数”“形”两个层面理解“函数零点”这一概念,进而掌握“数形结合”的方法。 【学情分析】 1.学生具备的知识与能力 (1)初中已经学过一元二次方程的根、一元二次函数的图象与x 轴的交点横坐标之间的关系。 (2)从具体到抽象,从特殊到一般的认知规律。 2. 学生欠缺的知识与能力 (1)超越函数的相关计算及其图象性质. (2)通过对具体实例的探究,归纳概括发现的结论或规律,并将其用准确的数学语言表达出

专题03 “用好零点”,证明函数不等式-2020年高考数学压轴题之函数零点问题(原卷版)

专题三“用好零点”,证明函数不等式 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕高考压轴题中已知零点(零点个数),证明函数不等式问题,例题说法,高效训练. 【典型例题】 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 【规律与方法】 应用函数的零点证明不等式问题,从已知条件来看,有两类,一类是题目中并未提及函数零点,二一

类是题目中明确函数零点或零点个数;从要求证明的不等式看,也有两种类型,一类是求证不等式是函数值的范围或参数的范围,二一类是求证不等式是零点或零点的函数值满足的不等关系. 1.由于函数零点存在定理明确的是函数值满足的不等关系,所以,通过设出函数的零点,利用函数零点存在定理,可建立不等关系,向目标不等式靠近,如上述类型一;也可以利用不等式的性质,向目标不等式靠近,如上述类型二,这两类问题突出的一点是“设而不求”. 2. 当求证不等式是零点或零点的函数值满足的不等关系时,则注意将零点代入函数式,构建方程(组),进一步确定零点之间的关系,然后在通过求导、分离参数、构造函数等手段. 【提升训练】 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围; 若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当时,证明:(其中为自然对数的底数). 4.已知函数f(x)=lnx+a(x﹣1)2(a>0). (1)讨论f(x)的单调性; (2)若f(x)在区间(0,1)内有唯一的零点x0,证明:. 5. 已知函数f(x)=3e x+x2,g(x)=9x﹣1. (1)求函数φ(x)=xe x+4x﹣f(x)的单调区间; (2)比较f(x)与g(x)的大小,并加以证明. 6. 已知函数f(x)=lnx﹣x+1,函数g(x)=ax?e x﹣4x,其中a为大于零的常数. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数的最大值

函数与方程(零点问题)

§2.8 函数与方程 函数零点问题 学习目标;(1)理解函数零点定义,会应用函数零点存在性定理 (2)体会函数与方程的转化思想 一 知识导练 1. (必修1 P43练习3改编) 函数32()2f x x x x =-+的零点是____________. 解析:解方程x3-2x2+x =0得x =0或x =1,所以函数的零点是0或1. 导航:函数零点的求解 2.(必修1 P111复习13改编)已知函数()23x f x x =-,则函数f(x)的零点个数是____. 解析:解法1:令f(x)=0,则2x =3x ,在同一坐标系中分别作出y =2x 和y =3x 的图象,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f(x)的零点个数为2. 解法2:由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内. 导航:函数零点个数的判定 3.给出以下三个结论:(1)0一定是奇函数的一个零点; (2)单调函数有且仅有一个零点; (3)周期函数一定有无穷多个零点. 其中正确的结论共有_____个。 4.(必修1 P97习题8)若关于x 的方程27(13)20x m x m -+--=的一个根在区间(0,1)上,另一个在区间(1,2)上,则实数m 的取值范围为_____________. 解析:设f(x)=7x2-(m +13)x -m -2,则???? ?f (0)>0,f (1)<0,f (2)>0,解得-41. 要点回顾:

高中数学专题---隐零点及卡根思想

高中数学专题--- 隐零点及卡根思想 基本方法: 导数解决函数综合性问题最终都回归于函数单调性的判断,而函数的单调性与其导数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计成为导数综合应用中最为核心的问题. 导函数的零点,根据其数值上的差异,我们可以分为两类:一类是数值上能精确求解的,我们不妨称为“显零点”;另一类是能判断其存在但数值上无法精确求解的,我们不妨称为“隐零点”. (1)函数“隐零点”的存在性判断 对于函数“隐零点”的存在性判断,常采用下列两种方法求解:①若连续函数()f x 在(,)a b 上单调,且()()0f a f b ?,则()f x 在(,)a b 上存在唯一零点;②借助图像分析,即将函数()f x 的零点问题转化为方程()0f x =的解的判断,并通过合理的变形将方程转化为合适的形式在处理. (2)函数“隐零点”的虚设和代换 对于函数“隐零点”,由于无法求出其显性表达式,这给我们求解问题带来一定困难. 处理这类问题的基本方法为“虚设及代换”:在确定零点存在的条件下虚设零点0x ,再借助零点的表达式 进行合理的代换进而求解. (3)函数“隐零点”的数值估计-卡根思想 函数“隐零点”尽管无法求解,但是我们可以进行数值估计,最简单的方法即为判断其存在性的前提下利用二分法进行估计,估值范围越精确越容易解决问题. 对于“隐零点”的代数估计,可以通过单调函数构造函数不等式进行估计. 一、典型例题 1. 已知函数()22e x f x x x =+-,记0x 为函数()f x 极大值点,求证:()0124f x <<. 2. 已知函数()4ln (1)x f x x x += >. 若*k N ∈,且()1k f x x <+恒成立. 求k 的最大值. 二、课堂练习 1. 已知函数()2ln f x x x x x =--,证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<. 2. 已知函数ln 1()x f x ax x -= -. 若12a <<,求证:()1f x <-. 三、课后作业 1. 已知函数()ln f x x =,若关于x 的方程()()1f x m x =+,()m Z ∈有实数解,求整数m 的最大值. 2. 已知函数()22ln f x x =+,令()() 2xf x g x x =-在()2,+∞上的最小值为m ,求证:()67f m <<.

高考数学函数零点专题

专题2.函数的零点 高考解读 求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x 轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力. 知识梳理 1.函数的零点与方程的根 (1)函数的零点 对于函数f (x ),我们把使f (x )=0的实数x 叫做函数f (x )的零点. (2)函数的零点与方程根的关系 函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标. (3)零点存在性定理 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0, 这个c 也就是方程f (x )=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数形结合是基本的解题方法,即把方程分拆为一个等式,使两端都转化为我们所熟悉的函数的解析式,然后构造两个函数f (x ),g (x ),即把方程写成f (x )=g (x )的形式,这时方程根的个数就是两个函数图象交点的个数,可以根据图象的变化趋势找到方程中字母参数所满足的各种关系. 高频考点突破 考点一 函数的零点判断 例1、【2017课标3,理11】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .1 2 - B .13 C .12 D .1 【变式探究】(1)函数f (x )=e x +1 2 x -2的零点所在的区间是( ) A. )2 1 ,0( B.)1,2 1( C .(1,2) D .(2,3) (2)已知偶函数y =f (x ),x ∈R 满足:f (x )=x 2-3x (x ≥0),若函数g (x )=????? log 2x ,x >0,-1x ,x <0,则y =f (x )-g (x )的零点个数为( ) A .1 B .3 C .2 D .4 【方法技巧】函数零点的求法 (1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点. (2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌 握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和 所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理 问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2

解法一:代数解法 解:(1).因为()00e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 问题2:函数2 ()68f x x x =-+在区间[][][]1,3, 0,1, 1,5有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 解法二:几何解法 (1). ()e 2 x f x x =+- 可化为2x e x =-+.

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

2018届高三数学基础专题练习:导数与零点(答案版)

导数与函数的零点专题 研究方程根或函数的零点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 例题精讲 例1、已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. 解析:f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2,由题设得-2 a =-2,所以a =1. (2)证明 由(1)知,f (x )=x 3-3x 2+x +2,设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0. 当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4,则g (x )=h (x )+(1-k )x >h (x ). h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)单调递减,在(2,+∞)单调递增,所以g (x )>h (x )≥h (2)=0. 所以g (x )=0在(0,+∞)没有实根. 综上,g (x )=0在R 有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 例2、已知函数 . (I)讨论的单调性;(II)若 有两个零点,求a 的取值范围. 【解析】(Ⅰ)()(1)2(1)(1)(2)x x f x x e a x x e a '=-+-=-+. ( i )当0a ≥时,则当1x >时,()0f x '>;当1x <时,()0f x '< 故函数()f x 在(,1)-∞单调递减,在(1,)+∞单调递增. ( ii )当0a <时,由()0f x '=,解得:1x =或ln(2)x a =- ①若ln(2)1a -=,即2 e a =-,则x R ?∈,()(1)()0x f x x e e '=-+≥ 故()f x 在(,)-∞+∞单调递增.

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

高考数学专题复习函数隐性零点的处理技巧

高考数学专题复习函数隐性零点的处理技巧 近些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间; (2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增; 若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k < 1 1 -+x e x +x (x >0)(*), 令g (x )=1 1 -+x e x +x ,则g′(x )=2)1()2(---x x x e x e e , 而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0, 所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点. 设此零点为a ,则a ∈(1,2).当x ∈(0,a )时,g ′(x )<0;当x ∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a ).