搜档网
当前位置:搜档网 › 基于情景分析的中国大陆SO2、NOX排放清单预测研究

基于情景分析的中国大陆SO2、NOX排放清单预测研究

基于情景分析的中国大陆SO2、NOX排放清单预测研究
基于情景分析的中国大陆SO2、NOX排放清单预测研究

船用柴油机氮氧化物排放控制技术规则修正案

船用柴油机氮氧化物排放控制技术规则修正案MEPC 58/23/Add.1 船用柴油机氮氧化物排放控制技术规则修正案 (2008年氮氧化物技术规则) 引言 前言 1997年9月26日,《经1978年议定书修正的〈1973年国际防止船舶造成污染公约〉》(MARPOL 73/78)当事国大会以大会决议2通过了《船用柴油机氮氧化物排放控制技术规则》(《氮氧化物技术规则》)。《防污公约》附则VI,《防止船舶造成空气污染规则》于2005年5月19日生效后,该附则第13条适用的所有船用柴油机都必须符合本规则的规定。2005年7月,环保会第53届会议同意修订《防污公约》附则VI和《氮氧化物技术规则》。2008年10月,环保会第58届会议完成了审议,本《氮氧化物技术规则》(以下简称本规则)就是该过程取得的结果。 作为一般性的背景信息,在燃烧过程中形成氮氧化物的先决条件是氮和氧。这些成分一起构成柴油机吸入空气的99,。在燃烧过程中氧气将被消耗,多余氧气的数量是空气/燃料比的函数,柴油机在此情况下运转。氮在燃烧过程中大多未起反应;但有很小一部分将被氧化形成多种形式的氮氧化物。能够形成的氮氧化物(NO)包括一氧化氮(NO)和二氧化氮(NO),其总量主要是火焰或燃烧温X2 度的函数,以及存在于燃料中有机氮(如果存在)数量的函数,氮氧化物的形成还是氮和多余氧气在柴油机燃烧过程中暴露在高温下时间的函数。换句话说,燃烧温度愈高(如高峰值压力、高压缩比、高供油比率等),所形成的氮氧化物总量就越大。通常低速柴油机所形成的氮氧化物量比高速机要大。氮氧化物能引起酸化,形成对流层臭氧,营养富集等不良环境影响,对全球人类健康造成危害。

氮氧化物排放标准2020

氮氧化物: 氮氧化物,包括多种化合物,如一氧化二氮(N2O)、一氧化氮(NO)、二氧化氮(NO2)、三氧化二氮(N2O3)、四氧化二氮(N2O4)和五氧化二氮(N2O5)等。除一氧化二氮及二氧化氮以外,其他氮氧化物均不稳定,遇光、湿或热变成二氧化氮及一氧化氮,一氧化氮又变为二氧化氮。因此,职业环境中接触的是几种气体混合物常称为硝烟(气),主要为一氧化氮和二氧化氮,并以二氧化氮为主。氮氧化物都具有不同程度的毒性。 大气污染物排放标准: 《大气污染物排放标准》是为了控制污染物的排放量制定的标准。 释文:大气污染物排放标准是为了控制污染物的排放量,使空气质量达到环境质量标准,对排入大气中的污染物数量或浓度所规定的限制标准。经有关部门审批和颁布,具有法律约束力。除国家颁布的标准外,各地、各部门还可根据当地的大气环境容量、污染源的分布和地区特点,在一定经济水平下实现排放标准的可行性,制订适用于本地区、本部门的排放标准。从1974年开始,中国实行的《工业“三废”排放试行标准》中规定了二氧化硫、一氧化碳、硫化氢等13种有害物质的排放标准。 排放标准: 汽车是一个流动的污染源,排放的主要污染物有一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOx)和颗粒物(PM)等,都是

污染环境的物质,需要加以控制。汽车污染物的排放源来自排气管、曲轴箱和燃油系。 制定法规 随着汽车尾气污染的日益严重,汽车尾气排放立法势在必行,世界各国早在六、七十年代就对汽车尾气排放建立了相应的法规制度,通过严格的法规推动了汽车排放控制技术的进步,而随着汽车排放控制技术的不断提高,又使更高标准的制订成为可能。 原理 汽车排放是指从废气中排出的CO(一氧化碳)、HC+NOx(碳氢化合物和氮氧化物)、PM(微粒,碳烟)等有害气体。它们都是发动机在燃烧作功过程中产生的有害气体。这些有害气体产生的原因各异,CO是燃油氧化不完全的中间产物,当氧气不充足时会产生CO,混合气浓度大及混合气不均匀都会使排气中的CO增加。HC 是燃料中未燃烧的物质,由于混合气不均匀、燃烧室壁冷等原因造成部分燃油未来得及燃烧就被排放出去。NOx是燃料(汽油)在燃烧过程中产生的一种物质。PM也是燃油燃烧时缺氧产生的一种物质,其中以柴油机最明显。因为柴油机采用压燃方式,柴油在高温高压下裂解更容易产生大量肉眼看得见的碳烟。 排放标准: 新开发汽车 新开发汽车排放标准又分为3类: ①总质量≤3.5t装点燃式发动机或压燃式发动机汽车。

氮氧化物排放标准2020

氮氧化物排放标准2020: 锅炉在燃烧过程中所产生的氮的氧化物主要为NO和NO2,通常把这两种氮的氧化物通称为氮氧化物NOx。煤炭、天然气、重油等天然矿物燃料在燃烧过程中生成的氮氧化物中,NO占90%,其余为NO2。新版《锅炉大气污染物排放标准》(GB 13271-2014)要求2017年4月1日后在用锅炉须由现行标准的氮氧化物排放量≤200mg/m3降低至排放量≤80mg/m3,新建锅炉由现行标准的氮氧化物排放量≤80 mg/m3降低至排放量≤30mg/m3。 中正低氮燃气锅炉SZS系列 为了进一步减少氮氧化物排放,改善空气质量,全国各地区在满足国家标准的同时,还陆续出台更为严格的地方标准。 区域 NOx指标(mg/m3) 参考标准 发布日期 新建 在用 北京 30

80 DB11-139-2015 2015 天津 80 150 DB12-151-2016 2016 郑州 30 未明确 郑州市2017年大气污染 防治攻坚行动方案的通知 2017 西安、宝鸡、咸阳、渭南、铜川 30 80 陕西省环境保护厅关于燃气锅炉低氮排放改造控制标准的复函2017.5.22 山东 核心区50 重点区100一般区150其它200

(2016.12.31之前) 七市执行150 其余执行200 DB37(征求意见稿) 2017.11.29 上海 50 150 (2019-12-31之前) 50 (2020-1-1之后) DB31387-2017 (征求意见稿) 2017 杭州 50 150 DB201(征求意见稿)DB201(征求意见稿)成都 200 400

GB 13271-2014 2014 未明确 30(煤改气) 关于优化环评审批促进燃煤锅炉提标改造的通知2017.9 重庆 200 400 DB 50/658-2016 2016 广东 150 200 DB44/765-2017 (征求意见稿) 2017 哈尔滨 150 150

氮氧化物控制原理及技术

氮氧化物排放控制原理及新技术 李俊华,陈亮,常化振,郝吉明清华大学环境科学与工程系 (通讯地址:清华大学环境系,100084,Tel:62771093,email:lijunhua@https://www.sodocs.net/doc/542825404.html,) 摘要:NOx排放量逐年增加,造成区域酸沉降趋势不断恶化,大气中二次颗粒物臭氧(O3)和微细可吸入颗粒物(PM2.5)居高难下,严重影响人体健康和生态环境质量。本文介绍了我国NOx排放趋势,重点讨论了NOx控制原理及关键控制技术的研究进展。基于目前烟气脱硝技术存在的问题,提出了脱硝催化剂原材料和制备工艺国产化、针对我国不同煤种研究催化剂适应性的问题,以及下一步燃煤烟气协同污染控制最新研究方向。 关键词:氮氧化物,燃煤烟气,稀燃汽车,排放,脱硝催化剂,协同控制 1我国NOx排放现状 《国家环境保护“十一五”规划》提出确保实现SO2减排目标,实施燃煤电厂脱硫工程,实施酸雨和SO2污染防治规划,重点控制高架源的SO2和NOx排放,综合改善城市空气环境质量。随着“十一五”期间对电厂实施烟气脱硫效果明显,大气SO2浓度及硫沉降均有所下降。但NOx作为一类主要的大气污染物,在我国其排放量仍在增加,不仅对人体健康造成直接危害,同时也不仅会造成空气中NO2浓度的增加、区域酸沉降趋势不断恶化,还会使对流层O3浓度增加,并在空气中形成微细颗粒物(PM),影响大气环境质量[1,2]。 我国以煤为主的能源结构和发电结构,使得燃煤成为NOx的最大来源,全国NOx排放量的67%来自煤炭燃烧,其中燃煤电厂是NOx排放的最大分担者。2007年全国NOx排放量为1643.4万吨,工业排放NOx1261.3万吨,其中火电厂排放811万吨,占全国NOx排放量的49.4%,占工业NOx排放的64.3%[3]。今年NOx排放量将达到1800万吨,未来若无控制措施,NOx排放在2020年将达到3000万吨以上,届时我国将成为世界上第一大NOx排放国,污染将进一步加重,污染进一步加重。我国于2004年1月1日起执行的《火电厂大气污染物排放标准》(GB13223—2003),将新建燃煤电厂的氮氧化物的排放浓度控制在450mg/Nm3。对于氮氧化物污染严重和环境容量有限的经济发达地区,当地政府提出了更高的排放要求,如北京为了迎接2008年奥运会,将NOx排放标准严格到100mg/Nm3。因此针对重点源开展NOx排放控制原理及新技术的研究变得十分必要和迫切。 2固定源烟气NOx排放控制原理及技术

氮氧化物排放量计算

锅炉燃烧氮氧化物排放量 燃料燃烧生成的氮氧化物量可用下式核算: GNOx=1.63B(β·n+10-6Vy·CNOx) 式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg); B ~煤或重油消耗量(kg); β~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n≥0.4%),燃油锅炉为32~40%,煤粉炉取20~25%; n ~燃料中氮的含量(%); Vy ~燃料生成的烟气量(Nm3/kg); CNOx~温度型NO浓度(mg/Nm3),通常取70ppm,即93.8mg/Nm3。第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。 GNOx=1.63×B×(N×β+0.000938)

GNOx—氮氧化物排放量,kg; B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为

18.64kg。 第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(%),取0.85%; a—氮氧化物转化为二氧化氮的效率(%),取70%。 B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为

环境监测中氮氧化物分子量的采用

环境监测中氮氧化物分子量的采用 90年代末期推出的产品。是按照国家标准《固定污染源排放气中颗粒物测定与气态污染物采样方法》GB/T16157-1996(目前仍为使用标准)要求设计的,但这个标准中没有监测氮氧化物的计算方法。为了满足用户的需要,国产在监测仪中增加了氮氧化物监测项目。设计人员按照书本中的公式,根据实际生产经验,采用: NOX = NO×1.05 进行计算, 1.05的含义为:NOX = NO + NO2 (通常烟气中NO2约占NOX 的5%),因此上式又可写为:NOX = NO + NO×5% 即:NOX = NO×1.05 ---------(1)(注:监测仪上只安装了NO传感器)。 2.在2001年后推出的产品。设计时,按照国家行业标准《固定污染源排放烟气连续监测系统技术要求及检测方法》HJ/T76-2001(其中第12页8. 3.1标准气体…NOX(以NO2计)?及第18页表6下注:…氮氧化物以NO2计?)的要求进行设计。按照规范,采用的计算公式为:NOX =。NO+NO2 NO用NO2表示则公式为:NOX = NO(NO2/NO)+ NO2 NO分子量为30,NO2分子量为46则公式为:NOX = NO(46/30)+ NO2 即:NOX = NO×1.53 + NO2 国家规范中氮氧化物注明…NOX(以NO2计)?,未给出详细演算方法。 国家规范对固定污染源气态污染物监测,二氧化硫和颗粒物有着明确的要求,氮氧化物监测方式的监测值计算公式长期以来未给出详细演

算方法。国家标准《固定污染源排放气中颗粒物测定与气态污染物采样方法》GB/T16157-1996没有提到氮氧化物监测的计算方式,2007年8月1日实施的HJ/T76-2007《固定污染源烟气排放连续监测系统技术要求及检测方法》替代了HJ/T76-2001,其中第15页8.3.1注明…NOX(以NO2计)?第25页表Ⅱ-1下注:…氮氧化物以NO2计?也未给出详细氮氧化物演算方法。其它有关固定污染源监测的规范如:HJ/T373-2007《固定污染源监测质量保证与质量控制技术规范》、HJ/T397-2007《固定源废气监测技术规范》、HJ/T75-2007《固定污染源烟气排放连续监测技术规范》等均未给出氮氧化物公式演算方法。 . 据了解,目前市场上运行的烟气监测仪器所用的氮氧化物计算公式各厂家也不尽相同,归纳起来有以下几种计算公式: NO×1.05 = NOX mg/m3 --------(氮氧化物以NO计) NO×1.53 + NO2 = NOX mg/m3---------(氮氧化物以NO2计)NO + NO2 = NOX mg/m3--------(氮氧化物以NO计)(NO ppm + NO2 ppm)2.05 = NOX mg/m3-----(氮氧化物以NO2计) 因此两种计算方法也是市场上运行的烟气监测仪器所普遍采用的。. 作为一种污染物应考虑该污染物对环境污染的贡献率,从已发表的资料证明,一氧化氮是不稳定污染气体。当一氧化氮从缺氧的烟囱中排放到空气中,遇到含氧量为21%的大气将迅速氧化成二氧化氮,

柴油机氮氧化物排放预测研究

北京,2009年10月 A P C联合学术年会论文集 241 柴油机氮氧化物排放预测研究 邓成林1,2,杨福源1,资新运2,欧阳明高1 (1.清华大学 汽车安全与节能国家重点实验室,北京 100084; 2.军事交通学院 汽车工程系, 天津 300161) 摘要:采用误差反向传播(Error Back Propagation, BP)神经网络预测柴油机氮氧化物(NOx)排放浓度,选取柴油机转速和排气温度作为网络输入量,将试验数据分为训练数据和测试数据,得到预测模型最佳网络结构为8-17-1。对BP网络预测模型进行试验,预测绝对误差为7.9%,优于绝对误差为27.0%的回归分析预测模型。考虑选择性催化还原(Selective Catalytic Reduction, SCR)催化器对还原剂的存贮能力,该模型预测误差可降低到3%以下。将BP神经网络预测模型应用于嵌入式系统中,采用A Tmega128单片机,运算时间为25ms,能够满足SCR还原剂喷射实时控制要求。 关键词:BP神经网络;选择性催化还原;排放预测;氮氧化物 Prediction of NOx Emissions from Diesel Engine DENG Cheng-lin1,2 YANG Fu-yuan1 ZI Xin-yun2 OUYANG Ming-gao1 (1. State Key Laboratory of Automotive Safety and Energy; Tsinghua University, Beijing 100084, China; 2. Department of Automobile Engineering, Institute of Military Transportation, Tianjin 300161,China) Abstract: The application of a BP neural network is proposed for prediction of NOx emission of a diesel engine. The engine rotate speed and the exhaust temperature were selected as the network input. The experimental data was split into two part, one for the network training and the other for prediction ability testing. The best network architecture is 8-17-1. The absolute prediction error of BP neural network is 7.9%, which is much batter than the regression analysis prediction 27.%. When considering the buffering of SCR catalyst, the error will be below 3%. The BP neural network prediction algorithm was used in the embedded system, using ATmea128, the computing time is 25ms, which can satisfy the control of reductant dosing. Key Words: BP Neural Network, SCR, Emission Prediction, NOx 引言 我国自2007年7月1日起实施机动车国Ⅲ排放标准,北京市自2008年3月1日起实施国Ⅳ排放标准。有研究表明,依靠机内净化技术仅能满足国Ⅲ排放法规要求,且许多机内净化措施牺牲了发动机的动力性及燃油经济性[1]。因此柴油车达到国Ⅳ排放标准需要采取柴油机后处理技术。 通过优化喷射系统降低PM排放,然后应用SCR技术降低NOx排放是实现柴油机国Ⅳ排放标准的有效方法之一。还原剂精确喷射控制技术是SCR技术应用重点研究内容,喷射量决定因素有NOx排放量、SCR催化器反应特性和排气条件等。 在车载条件下NOx排放量的测量需要使用车用NOx传感器,目前该传感器只有国外两家公司生产,且价格高昂。因此论文提出基于BP神经网络的方法,根据柴油机机状态参数来预测NOx排放量,从而在控制器上实现了柴油机NOx的软测量。 1B P神经网络 在工业控制过程中,由于缺乏稳定、可靠、经济的在线测量设备,反馈量如NOx浓度等通常难以直接得到。有学者提出软测量技术,其基本思想是:选择一组与目标变量(又称主导变量或一次变量) 基金项目:国家863资助项目(2006AA060304) 作者简介:邓成林(1979-),男,讲师,博士研究生,主要研究方向为柴油机排放控制技术,E-mail:dcl07@https://www.sodocs.net/doc/542825404.html,。

世界各地NOx排放标准

6.3NOx排放标准 6.3.1美国 美国1971年颁布的新源性能标准规定,1971年8月17日以后新建的热功率超过73MW的电站锅炉NOx排放量不得超过0.7 lb/MBtu (约折合860mg/m3)。 1977年对该标准进行了修改,颁布了修改后的新源性能标准,要求1978年9月18日以后新建的热功率超过73MW的电站锅炉NOx排放量不得超过0.5~0.6 lb/MBtu (约折合615~740mg/m3),去除率不得小于65%。 1997年对该标准中的NOx指标进行了修订,分别对新建、扩建和改建电站锅炉进行规定,同时对新建电站锅炉改为基于电量输出的排放限值,对扩建和改建电站锅炉仍采用基于热量输入的排放限值。修改后的标准规定1997年7月9日以后新建的电站锅炉不得超过1.6 lb/MWh (约折合218mg/m3)。 2005年又对该排放标准进行了修订,规定2005年2月28日后新建的电站锅炉MOx 排放不得超过1.0 lb/MWh,扩建和修改电站锅炉采用达到基于电量输出排放限值和热量输入排放限值两者之一即可。扩建电站锅炉不得超过 1.0 lb/MWh或0.11 lb/MBtu (约折合135mg/m3),改建的电站锅炉不得超过1.4 lb/MWh或0.15 lb/MBtu (约折合184mg/m3)。 6.3.2欧盟 与SO2相同,欧盟对NOx也是通过88/609/EEC指令和2001/80/EC指令控制的。88/609/EEC指令规定,1987年7月1日后获得许可证的新建厂,燃用一般固体燃料的装置执行650mg/m3的排放限值,燃用挥发份低于10%的固体燃料的装置执行1300mg/m3的排放限值。 现行的《大型燃烧企业大气污染物排放限值指令(2001/80/EC)》替代了88/609/EEC 指令。2001/80/EC指令中是区分三类燃烧企业进行管理的,对这三类企业规定了不同排放限值。成员国可以采用更为严格的排放限值。 (1)2002年11月27日后获得许可证的新建燃烧装置,对于热功率大于300MW,燃用固体燃料的大型新建燃烧装置,执行200mg/m3的限值:热功率在100~300MW之间的,执行300mg/m3的限值:热功率在50~100MW之间的,执行400mg/m3的限值。 (2)1987年7月1日后,2002年11月27日前获得许可证的新建燃烧装置,仍执行88/609/EEC指令中规定的限值。 (3)1987年7月1日前获得许可证的新建燃烧装置,也即88/609/EEC指令生效前获得许可证的新建燃烧装置。各成员国在2008年1月1日前可以采用下面两种措施之一:①采取必要的方法使排放达到88/609/EEC指令中规定的限值。②或者按照2001/80/EC中规定的各国排放总量上限的要求,制定和实施国家排放削减计划,成员国应该在保证国家排放削减计划的削减量不少于采用方法①中的限值减少的排放量。 在2001/80/EC指令中规定了15个成员国的总量削减目标,在成员国增加后,欧盟分别于2003年和2006年对2001/80/EC进行了修订,给出了27个成员国的总量削减目标。 欧盟于1996年颁布《综合污染防治和控制》指令(Integrated pollution prevention and control,IPPC),对工业装置的排污许可证和控制做了规定,并与2008年正式写入法典。在欧盟成员国,约有52000套装置涵盖在IPPC指令中。 IPPC指令基于以下几个法则:1.综合方法:2.最佳可行技术:3.机动性:4.公众参与。IPPC指令中对最佳可行技术定义为指所开展的活动及其运作方式已达到最有效和最先进的阶段,从而表明该特定技术原则上具有切实适宜性,可为旨在采用排放限值防止和难以切实可行地防止时,从总体上减少排放及其对整个环境的影响奠定基础。最佳可行技术涉及的工业包括:能源工业,金属制造和加工,采矿业,化学工业,废物处理,其他行为。其中对能源工业,2006年7月发布了《大型燃烧装置最佳可行技术》。

NOX形成机理,如何控制NOX浓度

NOX形成机理,如何控制NOX浓度 1、NOx的危害: 氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。氮氧化物的环境危害有二种,在阳光的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。 2、NOx生成机理和特点 2.1 NOx生成机理 在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种: (1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即 O2+N→2O+N, O+N2→NO+N, N+O2→NO+O 在高温下总生成式为 N2+O2→2NO, NO+0.5O2→NO2 随着反应温度T的升高,其反应速率按指数规律增加。当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。 (2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。

(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。 2.2 NOx生成特点 在这3种途径中,快速型NOx所占的比例不到5%,在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。由NOx的生成机理可以看出,NOx的生成及破坏与以下因素有关:⑴煤的燃烧方式、燃烧工况,其生成量依赖于燃烧温度水平;⑵煤种特性,如煤的含氮量,挥发份含量等; ⑶炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO和CHi的含量;⑷燃料及燃烧产物在火焰高温区和炉膛内的停留时间。 3、降低NOx的主要控制技术 降低NOx排放措施分为一级脱氮技术和二级脱氮技术。一级脱氮技术主要是采用低NOx 燃烧器以及通过燃烧优化调整,有效控制NOx的产生,从源头上减少NOx生成量;二级脱氮技术则是利用各种措施,尽可能减少已生成NOx的排放,属于烟气脱硝范畴,目前主要有两种成熟技术选择性催化还原法(SCR)和选择性非催化还原法(SNCR)。 3.1、级脱氮技术 3.1.1、气分级 3.1.1.1、根据NOx的生成机理,燃烧区的氧浓度对各种类型的NOx生成都有很大影响。当过量空气系数α<1,燃烧区处于“缺氧燃烧”状态时,抑制NOx的生成量有明显效果[6]。根据这一原理,将燃料的燃烧过程分阶段完成,把供给燃烧区的空气量减少到全部燃

船用柴油机氮氧化物排放控制技术规则修正案详解

船用柴油机氮氧化物排放控制技术规则修正案 (2008年氮氧化物技术规则) 引言 前言 1997年9月26日,《经1978年议定书修正的〈1973年国际防止船舶造成污染公约〉》(MARPOL 73/78)当事国大会以大会决议2通过了《船用柴油机氮氧化物排放控制技术规则》(《氮氧化物技术规则》)。《防污公约》附则VI-《防止船舶造成空气污染规则》于2005年5月19日生效后,该附则第13条适用的所有船用柴油机都必须符合本规则的规定。2005年7月,环保会第53届会议同意修订《防污公约》附则VI和《氮氧化物技术规则》。2008年10月,环保会第58届会议完成了审议,本《氮氧化物技术规则》(以下简称本规则)就是该过程取得的结果。 作为一般性的背景信息,在燃烧过程中形成氮氧化物的先决条件是氮和氧。这些成分一起构成柴油机吸入空气的99%。在燃烧过程中氧气将被消耗,多余氧气的数量是空气/燃料比的函数,柴油机在此情况下运转。氮在燃烧过程中大多未起反应;但有很小一部分将被氧化形成多种形式的氮氧化物。能够形成的氮氧化物(NO X)包括一氧化氮(NO)和二氧化氮(NO2),其总量主要是火焰或燃烧温度的函数,以及存在于燃料中有机氮(如果存在)数量的函数,氮氧化物的形成还是氮和多余氧气在柴油机燃烧过程中暴露在高温下时间的函数。换句话说,燃烧温度愈高(如高峰值压力、高压缩比、高供油比率等),所形成的氮氧化物总量就越大。通常低速柴油机所形成的氮氧化物量比高速机要大。氮氧化物能引起酸化,形成对流层臭氧,营养富集等不良环境影响,对全球人类健康造成危害。 本规则旨在为船用柴油机试验、检验和发证规定强制性程序,以使柴油机制造厂、船东和主管机关能够确保所有适用的船用柴油机符合附则VI第13条规定的关于氮氧化物排放限值。在制定一系列简单实用的要求(其中对确保符合氮氧化物排放允许值的措施作了定义)时,已认识到精确制定船用柴油机实际加权平均氮氧化物排放量的困难。 鼓励主管机关在适当受控条件下能进行精确试验的试验台上,对船用推进系统和辅柴油机的排放性能进行评估。本规则的一个重要特点就是在这个初始阶段确保符合附则VI第13条。其后的船上试验将不可避免地受限于范围和精确度两方面,其目的应为推理或推断排放性能和证实柴油机的安装、操作和维护遵循了制造厂的规范,以及任何调整或改装没有偏离制造厂初次试验和发证确立的排放性能。

氮氧化物的计算方法

氮氧化物的计算方法 燃烧产生的氮氧化物根实际燃烧条件关系密切,所以要准确估算是非常困难的。如果条件允许,尽量类比具备可比性同类型项目实测数据;在无实测情况下最好查阅相关书籍或相关研究成果计算方式,根据相关条件选择相近情况公式的计算结果准确率稍高,而且符合导则要求可找到依据出处;切记别拍脑袋。以下几种方法供大家参考。 传统方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一 产生10m3烟气。致的,假设了燃烧1kg煤 GNOx=1.63×B×(N×β+0.000938) 氮氧化物排放量,kg; GNOx— B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G,B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(,),取0.85,; a—氮氧化物转化为二氧化氮的效率(%),取70%。

B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。 第四种计算方法: 采用《产排污系数手册》第十册:按燃烧1t煤来计算: 烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页) 锅炉燃烧氮氧化物排放量 燃料燃烧生成的氮氧化物量可用下式核算: GNOx,1.63B(β?n+10,6Vy?CNOx) 式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg); ); B ~煤或重油消耗量(kg β ~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n?0.4%),燃油锅炉为32~40%,煤粉炉取20~25%; n ~燃料中氮的含量(%); Vy ~燃料生成的烟气量(Nm3,kg); CNOx ~温度型NO浓度(mg,Nm3),通常取70ppm,即93.8mg,Nm3。 固定污染源监测质量保证与质量控制技术规范,试行,,HJ/T 373-2007, 中核定氮氧化物排放量 5.3.5 核定氮氧化物排放量

浅谈空气中的氮氧化物的污染及其治理

浅谈空气中的氮氧化物的污染及其治理 摘 要 氮氧化物是只由氮、氧两种元素组成的化合物,包括氧化二氮,一氧化氮,三氧化二氮,二氧化氮,四氧化二氮,五氧化二氮。氮氧化物是大气的主要污染物之一, 是治理大气污染的一大难题。本文介绍了氮氧化物的来源以及治理氮氧 化物的主要方法,分析了这些方法处理氮氧化物的优点或缺点,并预测未来处理氮氧化物方法的发展趋势。 关键词 氮氧化物 产生 危害 治理 天然排放的氮氧化物,主要来自土壤和海洋中有机物的分解,属于自然界的氮循环过程。人为活动排放的氮氧化物,大部分来自化石燃料的燃烧过程,如汽车、飞机、内燃机及工业窑炉的燃烧过程;也来自生产、使用硝酸的过程,如氮肥厂、有机中间体厂、有色及黑色金属冶炼厂等。据80年代初估计,全世界每年由于人类活动向大气排放的氮氧化物,约5300万吨。 氮氧化物对环境的损害作用极大,它既是形成酸雨的主要物质之一,也是形成大气中光化学烟雾的重要物质和消耗臭氧的一个重要因子。其危害主要包括: 1.NOx 对人体及动物的致毒作用。NO 对血红蛋白的亲和力非常强,是氧的数十万倍。一旦NO 进入血液中,就从氧化血红蛋白中将氧驱赶出来,与血红蛋白牢固地结合在一起。长时间暴露在NO 环境中较易引起支气管炎和肺气肿等病变。这些毒害作用还会促使早衰、支气管上皮细胞发生淋巴组织增生,甚至是肺癌等症状的产生。 2.对植物的损害作用,氮氧化物对植物的毒性较其它大气污染物要弱,一般不会产生急性伤害,而慢性伤害能抑制植物的生长。危害症状表现为在叶脉间或叶缘出现形状不规则的水渍斑,逐渐坏死,而后干燥变成白色、黄色或黄褐色斑点,逐步扩展到整个叶片。 3.NOx 是形成酸雨、酸雾的主要原因之一。高温燃烧生成的NO 排人大气后大部分转化成NO ,遇水生成HNO 3、HNO 2,并随雨水到达地面,形成酸雨或者酸雾。

氮氧化物排放指标

“十二五”增加减排指标控制氮氧化物排放难度大新闻中心-中国网 https://www.sodocs.net/doc/542825404.html, 时间: 2011-03-12 责任编辑: 训迪 环境保护部副部长张力军

环境保护部环境影响评价司司长程立峰

环境保护部污染防治司司长赵华林 中国网3月12日讯十一届全国人大四次会议新闻中心今天上午举行记者会,环境保护部副部长张力军、环境保护部环境影响评价司司长程立峰、环境保护部污染防治司司长赵华林就“加强环境保护”的相关问题回答中外记者提问。中国网进行了现场直播。 张力军在发布会上表示,“十一五”我国环保确实取得了非常明显的进步,环境质量也得到了有效改善,但是环境形势依然严竣。突出表现在以下几个方面: 一是传统污染物排放量仍然很大,超过环境容量,致使一些地区环境质量达不到国家规定的标准。 二是随着经济快速发展,一些新的环境问题也不断产生,特别是危险化学品、持久性有机污染物、电子垃圾等。这些污染物的产生带来一些新问题,特别是损害人体健康方面的污染物危害更大。 三是水和大气的环境问题还没有完全解决好,土壤的污染问题现在又凸显。必须把土壤污染防治作为环保工作又一重点。 张力军表示,我国仍是发展中国家,人们的生活水平还不算太高,就业形势严竣。所以

各级政府发展经济的劲头还是很大。经济在“十二五”会有一个比较可观的增长速度。 要做到环境和经济发展相协调,需要落实地方政府责任制。地方政府既要负责经济发展,也要负责环境保护,既要完成经济增长、职工就业、民生保障任务,也要落实改善环境、保护人民健康责任。 谈到如何应对,张力军表示:第一,是要深化总量减排,把它作为约束性指标来考虑,这是一个方面,要减少污染物,不管是燃煤减少多少,二氧化硫和氮氧化物都要在2010年的基础上继续下降,不要让它影响环境质量。 第二,突出重点流域、重点区域治理。重点流域,仍然是“十一五”提出的“三湖三河”,加上三峡库区、小浪底库区,南水北调沿线。重点区域包括长三角、珠三角和京津冀,再加上这些地方的污染防治。 第三,要把重金属的污染、危险化学品的污染防治放在突出的位置上来抓,全面落实国务院批准的重金属污染防治“十二五”规划。 第四,要加强农村的污染防治工作,要贯彻好“以奖促治”政策。 第五,全面落实各级政府的环保目标责任制。要把责任落实给地方政府,考核地方政府不仅是要考核GDP,也要考核地方各级政府的环境质量改善情况。 第六,要充分发挥市场的作用,出台有利于环境保护的经济政策。 第七,不断提高广大人民群众的环境意识,充分让人们群众参与到环境保护的工作中来。 谈到环保“十二五”规划问题,张力军表示,党中央、国务院高度重视环境保护的“十二五”规划,把环境保护“十二五”规划列入国务院审批的专项规划,环境保护部在充分调查研究、征求各方意见的基础上,现在规划编制已经基本完成,待国务院批准之后才能公布。 “环保十二五规划可概括为两个重点、四个战略、八个特点。”张力军介绍说。 两个重点,是解决影响可持续发展的环境问题和解决损害群众健康的环境问题。 四个战略,一是深化总量减排,二是强化环境质量的改善,三是防范环境风险,四是保障城乡平衡发展。 八个特点,一是紧紧围绕科学发展主题,围绕转变经济发展方式主线,围绕提高生态文明水平这个新要求来展开。二是深化总量控制工作,这次在原有两项控制污染物指标的情况下又增加了两个,就是把原来“十一五”二氧化硫和化学需氧量两项主要污染物继续安排减排之外,又增加了氨氮和氮氧化物。三是解决关系民生的突出环境问题,把改善环境质量放在了更突出的位置上。四是强化重点领域的治污工作,即突出了重金属污染、危险废物、持久性有机污染物和危险化学品的污染防治。五是大力推进环境公共服务体系的建设,保障城乡

氮氧化物的计算

LS的是一种途径。 此外,《排污收费制度》P122页中 燃料(固体和液体燃料)中的N和输入空气中的N,在燃烧时会产生NOx,一般在燃烧时产生的NOx中的约90% 为NO ,其余主要是NO2。燃料燃烧时产生氮氧化物量可用下列公式估算: GNOx= 1.63 ×B ×(N ×β+ 0.000938) GNOx—氮氧化物排放量,kg ; B –消耗的燃煤(油)量,kg ; N –燃料中的含氮量,%,见表7 ; β—燃料中氮的转化率,%,见表8。 表7 燃料中氮的含量 燃料名称含氮质量百分比(%) 数值平均值 煤 0.5—2.5 1.5 劣质重油 0.2—0.4 0.2 一般重油 0.08—0.4 0.14 劣质轻油 0.005—0.08 0.02 表8 燃料中氮的NOx转化率 炉型 NOx的转化率(%) 层燃煤 50 煤粉炉 25 燃油炉 40 不同燃料、不同炉型燃烧时氮氧化物产污系数见表9。 表9 不同燃料、不同炉型燃烧时氮氧化物产污系数(kg/t煤) 燃料及炉型含氮量(%) NOx的转化率(%) GNOx 层燃煤 1.5 50 13.8 煤粉炉 1.5 25 7.6 劣质重油 0.2 40 2.8 一般重油 0.14 40 2.4 劣质轻油 0.02 40 1.7 燃料燃烧可以用以下计算: GNOx= 1.63 ×B ×(N ×β+10—https://www.sodocs.net/doc/542825404.html,ox) GNOx—氮氧化物排放量,kg ; B –消耗的燃煤(油)量,kg ; N –燃料中的含氮量,%,见表7 ; β—燃料中氮的转化率,燃煤层燃为25%—50% (N≥0.4%),粉煤炉取20%—25%

Vy——燃料生成的烟气量(Nm3/Kg) Cnox——温度型NO 的浓度(mg/Nm3)通常取70ppm 既是93.8 mg/Nm3。 高人总结了几种计算氮氧化物的计算方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。 GNOx=1.63×B×(N×β+0.000938) GNOx—氮氧化物排放量,kg; B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(%),取0.85%; a—氮氧化物转化为二氧化氮的效率(%),取70%。 B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化

氮氧化物的计算方法

燃烧产生的氮氧化物根实际燃烧条件关系密切,所以要准确估算是非常困难的。如果条件允许,尽量类比具备可比性同类型项目实测数据;在无实测情况下最好查阅相关书籍或相关研究成果计算方式,根据相关条件选择相近情况公式的计算结果准确率稍高,而且符合导则要求可找到依据出处;切记别拍脑袋。以下几种方法供大家参考。 传统方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。 GNOx=1.63×B×(N×β+0.000938) GNOx—氮氧化物排放量,kg; B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(%),取0.85%; a—氮氧化物转化为二氧化氮的效率(%),取70%。 B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。 第四种计算方法: 采用《产排污系数手册》第十册:按燃烧1t煤来计算: 烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页)

NOx生成及控制措施

一概述 中国是一个以煤炭为主要能源的国家,煤在一次能源中占75%,其中84%以上是通过燃烧方法利用的。煤燃烧所释放出废气中的氮氧化物(NOx),是造成大气污染的主要污染源之一。氮氧化物(NOx)引起的环境问题和人体健康的危害主要有以下几方面:氮氧化物(NOx)的主要危害: (1)NOx对人体的致毒作用,危害最大的是NO2,主要影响呼吸系统,可引起支气管炎和肺气肿等疾病;(2)NOx对植物的损害;(3)NOx是形成酸雨、酸雾的主要污染物;(4)NOx与碳氢化合物可形成光化学烟雾;(5)NOx参与臭氧层的破坏。 (2)不同浓度的NO2对人体健康的影响 二、燃煤锅炉NOx生成机理 氮氧化物(NOx)是造成大气污染的主要污染源之一。通常所说的NOx有多种不同形式:N2O、NO、NO2、N2O3、N2O4和N2O5,其中NO 和NO2是重要的大气污染物,另外还有少量N2O。我国氮氧化物的排放量中70%来自于煤炭的直接燃烧,电力工业又是我国的燃煤大户,因此火力发电厂是NOx排放的主要来源之一。

煤的燃烧过程中产生的氮氧化物(NOx )主要是一氧化氮(NO )和二氧化氮(NO2),在煤燃烧过程中氮氧化物的生成量和排放量与煤的燃烧方式,特别是燃烧温度和过量空气系数等密切相关。燃烧形成的NOx 生成途径主要由以下三个:为燃料型、热力型和快速型3种。其中快速型NOx 生成量很少,可以忽略不计。 1. 热力型NOx 指空气中的氮气(N2)和氧(O2)燃料燃烧时所形成的高温环境下生成的NO 和NO2的总和,其总反应式为: 2 2222NO O NO NO O N ?+?+ 当燃烧区域温度低于1000℃时,NO 的生成量较少,而温度在1300℃—1500℃时,NO 的浓度约为500—1000ppm ,而且随着温度的升高,NOx 的生成速度按指数规律增加,当温度足够高时热力型NOx 可达20%。因此,温度对热力型NOx 的生成具有绝对性的作用,过量空气系数和烟气停留时间对热力型NOx 的生成有很大影响。 根据热力型NOX 的生成过程,要控制其生成,就需要降低锅炉炉膛燃烧温度,并避免产生局部高温区,以降低热力型NOX 的生成。 2. 燃料型NOx 燃料型NOx 的生成是燃料中的氮化合物在燃烧过程中氧化反应而生成的NOx ,称为燃料型NOx 。燃煤电厂锅炉中产生的NOx 中大约75%~90%是燃料型NOx ,因此燃料型NOx 是燃煤电厂锅炉产生NOx 的主要途径。研究燃料型NOx 的生成和破坏机理,对于控制燃烧过程中NOx 的生成和排放,具有重要的意义。在燃料燃烧生成NOx 的过程中,

相关主题