搜档网
当前位置:搜档网 › Caris分子图谱介绍

Caris分子图谱介绍

知识图谱 概念与技术:第8章 图数据库系统

《知识图谱: 概念与技术》 第8 讲 知识图谱管理系统

Knowledge Graph Serving Systems

Outline ?Knowledge graph serving scenarios ?General design principles of knowledge graph serving systems ?Real-time query processing ?Representative graph systems ?Demo

Knowledge Serving Scenarios

A real-life relation search scenario A News Headline Tom Cruise Admits Katie Holmes Divorced Him To Protect Suri From Scientology 1Tom Cruise –people.person.marriage–(marriage ) –time.event.person –Katie Holmes 2Tom Cruise –people.person.children–(Suri Cruise) –people.person.parent –Katie Holmes 3Tom Cruise –film.actor.film–(Bambi Verleihung2007) –film.filmactor –Katie Holmes 4...

Relation search in knowledge graph Multi-hop Relation Search Discover the hidden relations between entities Enable more than what entity indexes can support Entity A Entity B

知识图谱概述与应用

导读:知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年纷纷推出了自己的知识图谱产品以作为回应。比如在国,互联网巨头百度和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业 - 互联网金融,知识图谱可以有哪方面的应用呢? 目录: 1. 什么是知识图谱? 2. 知识图谱的表示 3. 知识图谱的存储 4. 应用 5. 挑战 6. 结语 1.什么是知识图谱? 知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里

输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。 另外,对于稍微复杂的搜索语句比如”Who is the wife of Bill Gates“,Google能准确返回他的妻子Melinda Gates。这就说明搜索引擎通过知识图谱真正理解了用户的意图。 上面提到的知识图谱都是属于比较宽泛的畴,在通用领域里解决搜索引擎优化和问答系统(Question-Answering)等方面的问题。接下来我们看一下特定领域里的 (Domain-Specific) 知识图谱表示方式和应用,这也是工业界比较关心的话题。 2.知识图谱的表示 假设我们用知识图谱来描述一个事实(Fact) - “三是四的父亲”。这里的实体是三和四,关系是“父亲”(is_father_of)。当然,三和四也可能会跟其他人存在着某种类型的关系(暂时不考虑)。当我们把也作为节点加入到

(完整版)领域应用知识图谱的技术和应用

领域应用 | 知识图谱的技术与应用 本文转载自公众号:贪心科技。 领域应用 | 知识图谱的技术与应用 李文哲开放知识图谱 1周前 本文转载自公众号:贪心科技。 作者 | 李文哲,人工智能、知识图谱领域专家 导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。对于读者,我们不要求有任何AI相关的背景知识。 目录: 1.概论 2.什么是知识图谱 3.知识图谱的表示 4.知识抽取 5.知识图谱的存储 6.金融知识图谱的搭建 1.定义具体的业务问题 2.数据收集 & 预处理 3.知识图谱的设计 4.把数据存入知识图谱 5.上层应用的开发 7.知识图谱在其他行业中的应用 8.实践上的几点建议 9.结语 1. 概论

随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。在一项任务中,只要有关系分析的需求,知识图谱就“有可能”派的上用场。 2. 什么是知识图谱? 知识图谱是由Google公司在2012年提出来的一个新的概念。从学术的角度,我们可以对知识图谱给一个这样的定义:“知识图谱本质上是语义网络(Semantic Network)的知识库”。但这有点抽象,所以换个角度,从实际应用的角度出发其实可以简单地把知识图谱理解成多关系图(Multi-relational Graph)。 那什么叫多关系图呢?学过数据结构的都应该知道什么是图(Graph)。图是由节点(Vertex)和边(Edge)来构成,但这些图通常只包含一种类型的节点和边。但相反,多关系图一般包含多种类型的节点和多种类型的边。比如左下图表示一个经典的图结构,右边的图则表示多关系图,因为图里包含了多种类型的节点和边。这些类型由不同的颜色来标记。

知识图谱概述及应用

导读:知识图谱(Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头百度和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业- 互联网金融,知识图谱可以有哪方面的应用呢? 目录: 1. 什么是知识图谱? 2. 知识图谱的表示 3. 知识图谱的存储 4. 应用 5. 挑战 6. 结语 1.什么是知识图谱? 知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。

知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。 另外,对于稍微复杂的搜索语句比如”Who is the wife of Bill Gates“,Google能准确返回他的妻子Melinda Gates。这就说明搜索引擎通过知识图谱真正理解了用户的意图。

人工智能-知识图谱机器大脑中的知识库

知识图谱技术原理介绍 ?莫扎特 ?2016-01-09 17:31:55 ?大数据技术 ?评论(0) ? 作者:王昊奋 近两年来,随着Linking Open Data[1] 等项目的全面展开,语义Web数据源的数量激增,大量RDF数据被发布。互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web)。在这个背景下,Google、百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为Knowledge Graph、知心和知立方,来改进搜索质量,从而拉开了语义搜索的序幕。下面我将从以下几个方面来介绍知识图谱:知识图谱的表示和在搜索中的展现形式,知识图谱的构建和知识图谱在搜索中的应用等,从而让大家有机会了解其内部的技术实现和各种挑战。 知识图谱的表示和在搜索中的展现形式

正如Google的辛格博士在介绍知识图谱时提到的:“The world is not made of strings , but is made of things.”,知识图谱旨在描述真实世界中存在的各种实体或概念。其中,每个实体或概念用一个全局唯一确定的ID来标识,称为它们的标识符(identifier)。每个属性-值对(attribute-value pair,又称AVP)用来刻画实体的内在特性,而关系(relation)用来连接两个实体,刻画它们之间的关联。知识图谱亦可被看作是一张巨大的图,图中的节点表示实体或概念,而图中的边则由属性或关系构成。上述图模型可用W3C提出的资源描述框架RDF[2] 或属性图(property graph)[3] 来表示。知识图谱率先由Google提出,以提高其搜索的质量。 为了更好地理解知识图谱,我们先来看一下其在搜索中的展现形式,即知识卡片(又称Knowledge Card)。知识卡片旨在为用户提供更多与搜索内容相关的信息。更具体地说,知识卡片为用户查询中所包含的实体或返回的答案提供详细的结构化摘要。从某种意义来说,它是特定于查询(query specific)的知识图谱。例如,当在搜索引擎中输入“姚明”作为关键词时,我们发现搜索结果页面的右侧原先用于置放广告的地方被知识卡片所取代。广告被移至左上角,而广告下面则显示的是传统的搜索结果,即匹配关键词的文档列表。这个布局上的微调也预示着各大搜索引擎在提高用户体验和直接返回答案方面的决心。 【三大搜索引擎关于姚明的知识卡片(略)】 虽说三大搜索引擎在知识卡片的排版和内容展现上略有不同,但是它们都列出了姚明的身高、体重、民族等属性信息。此外,它们均包含“用户还搜索了”或“其他人还搜”的功能来展现相关的人物。该功能允许用户去浏览其他与姚明相关的人物的详细信息。细心的读者也发现Google在其知识卡片中也展示了很多与姚明相关的图片,以图文并茂的方式来展示姚明的方方面面。百度则结合了百度风云榜的信息,列出了姚明的类别(体坛人物)及其百度指数(今日排名和今日搜索热度等信息)。在搜索结果页面的左上角(在图中未给出),百度还展示了其特有的专题搜索,包含了与姚明相关的百科、图片、微博、新闻、音乐、贴吧和视频等七大类的结果,基本涵盖了用户最基本的需求。搜狗在列出与姚明相关的百科、图片,电影和最新相关消息等专题的同时,其知识卡片额外显示了诸如“主持电视节目”、“效力篮球队”、“人物关系”等各种细粒度的语义关系。当遇到含有歧义的用户查询时,知识卡片还会列出其他可能的查询目标对象。在上面的例子中,搜狗还列出了一项“您是否要找”的功能,列出一位也叫姚明的一级作曲家。该功能用于去歧义,在显示最相关实体的同时也给出其他可能的对象,达到去歧义的作用。当搜索“李娜”或“长城”时,Google和百度也在其知识卡片下方展现了类似的功能。除了给出著名网球运动员李娜和万里长城之外,它们还列出歌手李娜和长城汽车供用户选择和浏览。更值得一提的是,当在搜狗知立方中输入“姚明的老婆的女儿的身高”如此复杂的查询时,其会直接返回其女儿的姓名(姚沁蕾)以及其身高(110cm),并给出推理说明“叶莉的女儿是姚沁蕾”。如此详实的说明不仅为返回的答案提供了很好的解释,从另一个侧面也展示了知识图谱的强大,其不仅能识别出运动员姚明,也能抽取出关系“老婆”和“女儿”和属性“身高”等信息。当我

领域知识图谱的技术与应用

领域应用知识图谱的技术与应用 本文转载自公众号:贪心科技。 领域应用I知识图谱的技术与应用 李文哲开放知识图谱1周前 本文转载自公众号:贪心科技。 作者I李文哲,人工智能、知识图谱领域专家 导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。对于读者,我们不要求有任何AI相关的背景知识。 目录: 1.概论 2.什么是知识图谱 3.知识图谱的表示 4.知识抽取 5.知识图谱的存储 6.金融知识图谱的搭建 1.定义具体的业务问题 2.数据收集&预处理 3.知识图谱的设计 4.把数据存入知识图谱 5.上层应用的开发 7.知识图谱在其他行业中的应用 8.实践上的几点建议 9.结语 1.概论 随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。在一

项任务中,只要有关系分析的需求,知识图谱就有可能”派的上用场。

2. 什么是知识图谱? 知识图谱是由Google 公司在2012年提出来的一个新的概念。从学术的角度,我们可以 对知识图谱给一个这样的定义: 知识图谱本质上是语义网络(Sema ntic Network )的 知识库”但这有点抽象,所以换个角度,从实际应用的角度出发其实 可以简单地把知识 图谱理解成多关系图(Multi-relational Graph 那什么叫多关系图呢? 学过数据结构的都应该知道什么是图(Graph )。图是由节点 (Vertex )和边(Edge )来构成,但这些图通常只包含一种类型的节点和边。但相反, 多关系图一般包含多种类型的节点和多种类型的边 。比如左下图表示一个经典的图结构, 右边的图则表示多关系图,因为图里包含了多种类型的节点和边。这些类型由不同的颜 色来标记。 在知识图谱 里, 我们通常用 实体(Entity ) ”来表达图里的节点、用 关系(Relation )”来表达图里的 边”实体指的是现实世界中的事物比如人、地名、概念、药物、公司等 ,关系则用来 表达不同实体之间的某种联系, 比如人-居住在”北京、张三和李四是 朋友”逻辑回归 是深度学习的先导知识”等等。 现实世界中的很多场景非常适合用知识图谱来表达。 比如一个社交网络图谱里,我们既 可以有 人”的实体,也可以包含 公司”实体。人和人之间的关系可以是 朋友”,也可以是 同 事”关系。人和公司之间的关系可以是 现任职”或者曾任职”的关系。类似的,一个风控 知识图谱可以包含 电话”公司”的实体,电话和电话之间的关系可以是 通话”关系,而 且每个公司它也会有固定的电话。 3. 知识图谱的表示 知识图谱应用的前提是已经构建好了知识图谱 ,也可以把它认为是一个知识库。这也是 为什么它可以用来回答一些搜索相关问题的原因,比如在 Google 搜索引擎里输入“ Who is the wife of Bill Gates?,我们直接可以得到答案-“Melinda Gates 。这是因为我们在系 )。 包含一种类型的节点和边 包含多种类型的节点和边 (不同<^状扣師色代憑不岡评奥断节点和边) 节点 节点 边 边 节点 节点 边

第14章 知识图谱的落地与实践

《知识图谱: 概念与技术》 第14 讲 知识图谱落地与实践 肖仰华 复旦大学 shawyh@https://www.sodocs.net/doc/543024796.html,

概述

知识图谱产业概览 产业化概览 KW 构建大规模通用知识图谱和领域图谱, 为机器认知提供背景知识 百科图谱 商情图谱 垂直图谱 知识图谱数据与服务 提供领域知识图谱构建与应用咨询 服务或落地解决方案,给华为、电 信、移动、阿里巴巴、滴滴等数十 家应用单位提供了知识图谱解决方 案。 知识图谱咨询与方案 1)支撑知识图谱运作的混合型系 统,提供高效稳定的查询; 2)领域知识图谱构建的工具集成 系统,提供知识图谱构建能力 智能数据获取系统 图数据库系统 知识库构建工具集 底层支撑系统与产品

系统 技术体系 智能信息获取 图数据管理 数据 商情图谱 工商、产品、投融资、诉讼、专利软著、商标 百科图谱 人物、字词、地理、经济、军事、科学、社会 其他图谱 影视、音乐法律、食物 服务 百科问答 知识库验证码 实体链接 信息抽取 智能水军

支构建 应用 知识图谱能力体系 文本理解 工商百度百科 中文维基音乐图管图嵌入 图划分查询分发关联查询 图缓存 社团查询 基于mongo 数据的管理 分布式爬虫 智能爬虫 移动端支持优先级调度 多语言支 持 屏蔽检测验证码智能枚举抽取 概念识别概念抽取 实体链接 中文OpenIE 纯文本事实抽取 关系分类体系构建 关系抽取 实体识别融合 冲突消解属性值归一化 属性融合 属性值分割标注 众包 样本优化远程监督 实体理解 文本相似性文本提问 文档标签化 文档摘要搜索推荐 AVP 检索Type 检索描述检索 领域数据标注 关系标注 概念标注 垂直领域 开放领域 半结构化数据抽取 清洗 补全 类别补全属性补全 三元组补全 纠错 众包反馈版本更迭 错误检测外链 DBpedia 类别链接中英文跨语言链接 SameAs 外链 更新 主动更新基于日志的更新 周期更新 局点同步意图理解 对答 知识库对话 知识库问答 实体同义词 同义实体识别 图片实体化 文本实体化推理 众包反馈版本更迭 传递性推理

领域应用--知识图谱的技术与应用新选.

领域应用| 知识图谱的技术与应用 本文转载自公众号:贪心科技。 领域应用| 知识图谱的技术与应用 李文哲开放知识图谱1周前 本文转载自公众号:贪心科技。 作者| 李文哲,人工智能、知识图谱领域专家 导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。对于读者,我们不要求有任何AI相关的背景知识。 目录: 1. 概论 2. 什么是知识图谱 3. 知识图谱的表示 4. 知识抽取 5. 知识图谱的存储 6. 金融知识图谱的搭建 1. 定义具体的业务问题 2. 数据收集& 预处理 3. 知识图谱的设计 4. 把数据存入知识图谱 5. 上层应用的开发 7. 知识图谱在其他行业中的应用 8. 实践上的几点建议 9. 结语 1. 概论

随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。在一项任务中,只要有关系分析的需求,知识图谱就“有可能”派的上用场。 2. 什么是知识图谱? 知识图谱是由Google公司在2012年提出来的一个新的概念。从学术的角度,我们可以对知识图谱给一个这样的定义:“知识图谱本质上是语义网络(Semantic Network)的知识库”。但这有点抽象,所以换个角度,从实际应用的角度出发其实可以简单地把知识图谱理解成多关系图(Multi-relational Graph)。 那什么叫多关系图呢?学过数据结构的都应该知道什么是图(Graph)。图是由节点(Vertex)和边(Edge)来构成,但这些图通常只包含一种类型的节点和边。但相反,多关系图一般包含多种类型的节点和多种类型的边。比如左下图表示一个经典的图结构,右边的图则表示多关系图,因为图里包含了多种类型的节点和边。这些类型由不同的颜色来标记。

2020-2021年中国知识图谱行业研究报告

中国知识图谱行业研究报告 2019-2020年

场中以金融领域和公安领域应用份额占比最大。 摘要 人工智能本质是解决生产力升级的问题,人类生产力可以归类为知识生产力和劳动生产力,人工智能走入产业后,可以分为感知智能、认知智能和行为智能,后两者更与生产力相对应,NLP 和知识图谱是发展认知智能的基础。 原始数据通过知识抽取或数据整合的方式转换为三元组形式,然后三元组数据再经过实体对齐,加入数据模型,形成标准的知识表示,过程中如产生新的关系组合, 通过知识推理形成新的知识形态,与原有知识共同经过质量评估,完成知识融合, 最终形成完整形态上的知识图谱。 在面对数据多样、复杂,孤岛化,且单一数据价值不高的应用场景时,存在关系深度搜索、规范业务流程、规则和经验性预测等需求,使用知识图谱解决方案将带来最佳的应用价值。 2019年涵盖大数据分析预测、领域知识图谱及NLP 应用的大数据智能市场规模约为 106.6亿元,预计2023年将突破300亿元,年复合增长率为30.8%,其中2019年市 随着整体市场数据基础的完善和需求唤醒,大数据智能领域规模持续走高,但在行业可落地性和理性建设的限制下,预计市场增速将呈现下降趋势,期间咨询性需求将会大量出现,从整体发展来看增速处于良性区间,对真正有价值的公司和产品有正向意义。 4 5 1 3 2

1知识图谱技术概述 中国知识图谱市场概述2中国知识图谱细分市场分析3中国数据智能代表企业案例展示4

人工智能技术分类和趋势 三种流派的融合应用,使人工智能向想象更进一步 人工智能是对一类能够实现机器模拟智慧生命某些特征的技术统称,从学术上可以分为,对人类已有知识进行组织编辑的 符号主义、通过数学理论公式推导聚类和预测问题的连接主义,以及利用机器模仿生物活体行为的行为主义三个流派,分 别以知识工程、机器学习和仿生机器人为时代代表,而知识图谱就是新一代知识工程的具体体现。2012年,深度学习在计算机视觉和智能语音上产生重大突破,打开了人工智能商业化的大门,使得连接主义一度成为人工智能的代名词,但随着 应用落地成为主旋律,缺位行业逻辑和理论概念的连接主义,往往找不到最佳的应用场景而止步于浅层尝试,在此背景下, 人工智能技术应当走向融合,符号主义需要连接主义提供强大的计算支撑,连接主义需要符号主义的逻辑指导,二者又共 同作用于行为主义,充当机器人的大脑和“记忆宫殿”,在多种技术综合利用下的垂直领域智能解决方案才是当今最符合 市场期待的方向。 人工智能三大流派分类与融合趋势 机器学习 控制论 知识图谱 智能机器人系统 信息理论 控制理论 知识工程 深度学习 神经系统 智 能 语 音计算机视觉 自然语言理解 …… 专家系统 控制逻辑 计算机 智能控制系统 生物控制论 启发式算法 自组织系统 工程 控制论 行为主义 符号主义 连接主义

质谱及综合谱图解析

质谱及综合谱图解析 1、在质谱中,一个化合物的M+和(M+2)+峰强度几乎相等,预示着它含有哪种元素( ) A. N B. O C. Br D. Cl 1、已知某化合物的化学式为C4H8O。现已测得它的各种谱图如下,试确证其结构。

2、未知物为无色液体,沸点144℃,其四谱数据如下: 质谱: m/z M的含量% 114(M) 100 115(M+1) 7.7 116(M+2) 0.46 可能分子式:Beynon表 分子式M+1 M+2 C4H10O2 6.72 0.59 C6H14N27.47 0.24 C7H14O 7.83 0.47 C7H2N38.36 0.37 紫外光谱: EtOH λmax/nm εmax/L?mol-1?cm-1 275 12 红外和核磁:

3、某化合物,分子式C10H14O,能溶于NaOH,不能溶于NaHCO3,能使溴水褪色,该化合物的IR和1H NMR如下: IR:3250 cm-1有宽峰,830 cm-1有吸收 1H NMR:δ1.3(s,9H),δ4.9(s,1H),δ7.0(m,4H) 4、某化合物,分子式为C8H10O,质谱得到m/z122(M+),IR在3600~3200 cm-1有强的宽峰,在3000 cm-1和750~700 cm-1处也有强的吸收,1H NMR显示:δ2.5(s,1H),δ2.7(t,2H),δ3.7(t,2H),δ7.5(m,5H),请推测其结构。 5、分子式为C9H10O的化合物有如下信号: 1H NMR:δ2.0(s,3H),δ3.75(s,2H),δ7.2(s,5H) IR:3100,3000,1720,740,700 cm-1和其他峰 试推断结构。

中文知识图谱构建的关键技术

Intelligent Search Engine and Recommender Systems based on Knowledge Graph 阳德青 复旦大学知识工场实验室 yangdeqing@https://www.sodocs.net/doc/543024796.html, 2017-07-13

Background ?Knowledge Graph exhibits its excellent performance through the intelligent applications built on it ?As typical AI systems,Search engine and recommender system are very popular and promising in the era of large data ?Many previous literatures and systems have proved KG’s merits on such AI’s applications

KG-based Search Engine

?The keyword of high click frequency are ranked higher ?The pages containing the keywords of more weights are ranked higher ?The pages having more important in-links are ranked higher ?1st:category-based ?Yahoo,hao123 ?2nd:IR-based ?Keyword-based,vector space,Boolean model ?3rd:link-based ?PageRank (Google) However,how to handle it if users want to search something new or the ones of long tail? result in

综合谱图解析

1、某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。 1 : 2 : 9 [解] 从分子式C5H12O,求得不饱和度为零,故未知物应为饱和脂肪族化合物。 未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液的红外光谱在3640cm-1处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在3360cm-1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分

子中存在着羟基。 未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。 质谱中从分子离子峰失去质量31(-CH 2OH )部分而形成基峰m/e57的事实为上述看法提供了证据,因此,未知物的结构是 C CH 3 H 3C CH 3 CH 2OH 根据这一结构式,未知物质谱中的主要碎片离子得到了如下解释。 C CH 3 H 3C CH 3 CH 2OH +. C + CH 3 CH 3 H 3C CH 2 OH +m/e31m/e88 m/e57 -2H -CH 3 -CH 3-H CH 3 C CH 2 + m/e29 m/e73 m/e41 2、某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在210nm 以上没有吸收,确定此未知物。

2 2 6 3 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未知物分子含奇数个氮原子。根据未知物的光谱数据亚无伯或仲胺、腈、酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存在。 红外光谱中在1748 cm -1处有一强羰基吸收带,在1235 cm -1附近有1典型的宽强C -O -C 伸缩振动吸收带,可见未知物分子中含有酯基。1040 cm -1处的吸收带则进一步指出未知物可能是伯醇乙酸酯。 核磁共振谱中δ1.95处的单峰(3H ),相当1个甲基。从它的化学位移来看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子(CH 3C=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重峰,并且它们的裂距相等,相当于AA ’XX'系统。有理由认为它们是2个相连的亚甲-CH 2-CH 2,其中去屏蔽较大的亚甲基与酯基上的氧原子相连。 至此,可知未知物具有下述的部分结构: CH 2 CH 2 O C O CH 3 从分子量减去这一部分,剩下的质量数是44,仅足以组成1个最简单的叔胺基 CH 3CH 3 N ,正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子 上的甲基。因此,未知物的结构为 CH 2 CH 2 O C O CH 3 CH 3CH 3 N 此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个碎片为 CH 2 CH 3CH 3 N 3、待鉴定的化合物(I )和(II )它们的分子式均为C 8H 12O 4。它们的质谱、红外光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I)λmax 223nm ,

知识图谱概述及应用

导读:知识图谱(Knowledge Graph) 就是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界与工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头百度与搜狗分别推出”知心“与”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业- 互联网金融, 知识图谱可以有哪方面的应用呢? 目录: 1、什么就是知识图谱? 2、知识图谱的表示 3、知识图谱的存储 4、应用 5、挑战 6、结语 1、什么就是知识图谱? 知识图谱本质上就是语义网络,就是一种基于图的数据结构,由节点(Point)与边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱就是关系的最有效的表示方式。通俗地讲,知识图谱就就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。

知识图谱这个概念最早由Google提出,主要就是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。 另外,对于稍微复杂的搜索语句比如”Who is the wife of Bill Gates“,Google 能准确返回她的妻子Melinda Gates。这就说明搜索引擎通过知识图谱真正理解了用户的意图。

知识图谱技术原理介绍

知识图谱技术原理介绍 近两年来,随着Linking Open Data1等项目的全面展开,语义Web数据源的数量激增,大量RDF数据被发布。互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web)。在这个背景下,Google、百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为Knowledge Graph、知心和知立方,来改进搜索质量,从而拉开了语义搜索的序幕。下面我将从以下几个方面来介绍知识图谱:知识图谱的表示和在搜索中的展现形式,知识图谱的构建和知识图谱在搜索中的应用等,从而让大家有机会了解其内部的技术实现和各种挑战。 知识图谱的表示和在搜索中的展现形式 正如Google的辛格博士在介绍知识图谱时提到的:“The world is not made of strings , but is made of things.”,知识图谱旨在描述真实世界中存在的各种实体或概念。其中,每个实体或概念用一个全局唯一确定的ID来标识,称为它们的标识符(identifier)。每个属性-值对(attribute-value pair,又称A VP)用来刻画实体的内在特性,而关系(relation)用来连接两个实体,刻画它们之间的关联。知识图谱亦可被看作是一张巨大的图,图中的节点表示实体或概念,而图中的边则由属性或关系构成。上述图模型可用W3C提出的资源描述框架RDF2或属性图(property graph)3来表示。知识图谱率先由Google提出,以提高其搜索的质量。 为了更好地理解知识图谱,我们先来看一下其在搜索中的展现形式,即知识卡片(又称Knowledge Card)。知识卡片旨在为用户提供更多与搜索内容相关的信息。更具体地说,知识卡片为用户查询中所包含的实体或返回的答案提供详细的结构化摘要。从某种意义来说,它是特定于查询(query specific)的知识图谱。例如,当在搜索引擎中输入“姚明”作为关键词时,我们发现搜索结果页面的右侧原先用于置放广告的地方被知识卡片所取代。广告被移至左上角,而广告下面则显示的是传统的搜索结果,即匹配关键词的文档列表。这个布局上的微调也预示着各大搜索引擎在提高用户体验和直接返回答案方面的决心。图1从左到右依次是Google、百度和搜狗在搜索结果首页中所展现的与姚明相关的知识卡片。1https://www.sodocs.net/doc/543024796.html,/ 2https://www.sodocs.net/doc/543024796.html,/TR/rdf-concepts/ 3https://https://www.sodocs.net/doc/543024796.html,/tinkerpop/blueprints/wiki/Property-Graph-Model

知识图谱(星图)

知识图谱(星图) 产品简介 产品文档

【版权声明】 ?2013-2019 腾讯云版权所有 本文档著作权归腾讯云单独所有,未经腾讯云事先书面许可,任何主体不得以任何形式复制、修改、抄袭、传播全部或部分本文档内容。 【商标声明】 及其它腾讯云服务相关的商标均为腾讯云计算(北京)有限责任公司及其关联公司所有。本文档涉及的第三方主体的商标,依法由权利人所有。 【服务声明】 本文档意在向客户介绍腾讯云全部或部分产品、服务的当时的整体概况,部分产品、服务的内容可能有所调整。您所购买的腾讯云产品、服务的种类、服务标准等应由您与腾讯云之间的商业合同约定,除非双方另有约定,否则,腾讯云对本文档内容不做任何明示或模式的承诺或保证。

文档目录 产品简介 产品概述 应用场景

产品简介 产品概述 最近更新时间:2019-07-22 14:24:43 简介 腾讯知识图谱数据库(Tencent Knowledge Graph Database,即 TKGD),是集图数据库和图计算引擎为一体化的平台。在社交网络、金融业和物联网等领域中,不同实体通过各种不同的关系相关联,组成复杂的关系图数据,这些数据原生性的支持以图的形式表现,形成大量的图数据。知识图谱数据库平台支持对万亿关联关系图数据的快速检索、查找和浏览,并深度挖掘隐藏在关联关系中的知识。 知识图谱数据库提供一站式全域行业数据融合,高效治理异构异质数据,对图谱关联查询及视图进行归一化处理。知识图谱数据库支持与用户的业务模型对接,通过图挖掘算法、机器学习模型和规则集引擎对具体领域知识快速建模。知识图谱数据库基于腾讯海量社交场景下的黑产识别能力,在泛安全领域中提供关联解决方案,增强企业业务,催新商业模式。知识图谱数据库研发过程中产生的国内国际专利达20余项、国际领先学术论文达数10篇,主要覆盖在: 准实时响应可达性查询、最短路径查询和距离查询。 利用查询优化技术高速处理大图中子图匹配。 图分析算法如聚类、社区发现、PageRank 等批量迭代式处理。 产品优势 灵活的数据输入格式 对于不同业务形态的多样化数据源,知识图谱数据库支持结构化,非结构化的多种原始数据输入。 完备的图查询语言 在查询语言上,知识图谱数据库支持调用 JDBC 函数式提供服务,同时也支持类 SQL 结构化查询语言。 高级图查询低延时 知识图谱数据库使用更紧凑的数据存储和索引查找技术,对图查询操作及高级图查询可做到低延时响应,同时支持动态图数据库秒级更新操作和动态图数据库分钟级批量更新。 丰富的图查询功能 知识图谱数据库除了提供基本的按用户给定条件查点、查边、深/广图遍历和严格子图匹配,还能基于高效的图索引技术提供准实时响应的可达性查询、最短路径查询、按相关性排序的模糊子图匹配。知识图谱数据库的查询引擎提

相关主题