搜档网
当前位置:搜档网 › [PIC16F877A+汇编语言]DS18B20温度采集程序

[PIC16F877A+汇编语言]DS18B20温度采集程序

[PIC16F877A+汇编语言]DS18B20温度采集程序
[PIC16F877A+汇编语言]DS18B20温度采集程序

DS18B20温度采集程序[PIC16F877A+汇编语言]

;六位数码管显示温度结果,其中整数部分2位,小数部分4位

;每次按下RB0键后进行一次温度转换。

;硬件要求:把DS18B20插在18B20插座上

; 拨码开关S10第1位置ON,其他位置OFF

; 拨码开关S5、S6全部置ON,其他拨码开关全部置OFF

;*****************以下是暂存器的定义*****************************

#INCLUDE

#DEFINE DQ PORTA,0 ;18B20数据口

__CONFIG

_DEBUG_OFF&_CP_ALL&_WRT_HALF&_CPD_ON&_LVP_OFF&_BODEN_OFF&_PWRTE_ON&_W DT_OFF&_HS_OSC

;调试模式关闭,写保护,一半ROM可在线改写,EEPROM加密,低压编程关闭,掉电检测关闭,上电延时开,看门狗关,4M晶振HS振荡

CBLOCK 20H

DQ_DELAY1

DQ_DELAY2

TEMP

TEMP1

TEMP2 ;存放采样到的温度值

TEMP3

COUNT

COUNT1

ENDC

TMR0_VALUE EQU 0AH ;寄存器初值为6,预分频比1:4,中断一次时间为4*(256-6)=1000us DQ_DELAY_VALUE1 EQU 0FAH

DQ_DELAY_VALUE2 EQU 4H

;**********************以下是程序的开始************************

ORG 00H

NOP

GOTO MAIN ;入口地址

ORG 04H

RETFIE ;在中断入口出放置一条中断返回指令,防止干扰产生中断

TABLE

ADDWF PCL,1

RETLW 0C0H ;0的编码(公阳极数码管)

RETLW 0F9H ;1的编码

RETLW 0A4H ;2的编码

RETLW 0B0H ;3的编码

RETLW 99H ;4的编码

RETLW 92H ;5的编码

RETLW 082H ;6

RETLW 0F8H ;7

RETLW 080H ;8

RETLW 090H ;9

;***************************主程序*******************************

MAIN

CLRF PORTA

CLRF PORTB

BANKSEL TRISA

CLRF TRISA ;A口所有先设置为输出

CLRF TRISD

MOVLW 01H

MOVWF TRISB ;B0口为输入,其他为输出

MOVLW 06H

MOVWF ADCON1 ;关闭所有A/D口

MOVLW 01H

MOVWF OPTION_REG ;分频比1:4,定时器,内部时钟源 BCF STATUS,RP0

CLRF TEMP

CLRF TEMP1

CLRF TEMP2 ;清零临时寄存器

MOVLW 8H

MOVWF COUNT

MOVLW 38H

MOVWF FSR

CLRF INDF

INCF FSR,1

DECFSZ COUNT,1

GOTO $-3

;****************************循环处理部分************************

;先启动18B20温度转换程序,在判断温度转换是否完成(需750us);未完成则调用显示子程序,直到完成温度转换

;完成后读取温度值

;送LCD显示

LOOP

BTFSC PORTB,0 ;判断温度转换按键是否按下

GOTO LOOP1 ;否,转显示

CALL DELAY ;消抖

BTFSC PORTB,0 ;再次判断

GOTO LOOP1

CALL RESET_18B20 ;调用复位18B20子程序

MOVLW 0CCH

MOVWF TEMP

CALL WRITE_18B20 ;SKIP ROM命令

MOVLW 44H

MOVWF TEMP

CALL WRITE_18B20 ;温度转换命令

CLRF STATUS

CALL DELAY_750MS ;调用温度转换所需要的750MS延时NOP

CALL RESET_18B20

MOVLW 0CCH

MOVWF TEMP

CALL WRITE_18B20 ;SKIP ROM命令

MOVLW 0BEH

MOVWF TEMP

CALL WRITE_18B20 ;读温度命令

CALL READ_18B20 ;调用读温度低字节

MOVFW TEMP

MOVWF TEMP1 ;保存到TEMP1

CALL READ_18B20 ;调用读温度高字节

MOVFW TEMP

MOVWF TEMP2 ;保存到TMEP2

CALL RESET_18B20

LOOP1

CALL TEMP_CHANGE ;调用温度转换程序

CALL DISPLAY ;调用LCD显示程序

GOTO LOOP ;循环工作

;*********************复位DS18B20子程序************************** RESET_18B20

;根据DATASHEET介绍,写数据时应遵照如下规定:

;主控制器把总线拉低至少480us,

;18B20等待15-60us后,把总线拉低做为返回给控制器的应答信号

BANKSEL TRISA

BCF TRISA,0

BCF STATUS,RP0

BCF DQ

MOVLW 0A0H

MOVWF COUNT ;160US

DECFSZ COUNT,1

GOTO $-1 ;拉低480us

BSF DQ ;释放总线

MOVLW 14H

MOVWF COUNT

DECFSZ COUNT,1

GOTO $-1 ;等待60us

BANKSEL TRISA

BSF TRISA,0 ;DQ设置为输入

BCF STATUS,RP0

BTFSC DQ ;数据线是否为低

GOTO RESET_18B20 ;否则继续复位

MOVLW 4H

MOVWF COUNT

DECFSZ COUNT,1 ;延时一段时间后再次判断

GOTO $-1

BTFSC DQ

GOTO RESET_18B20

MOVLW 4BH

MOVWF COUNT

DECFSZ COUNT,1

GOTO $-1

BANKSEL TRISA

BCF TRISA,0 ;DQ设置为输出

BCF STATUS,RP0

RETURN

;*********************写DS18B20子程序**************************** WRITE_18B20

;根据DATASHEET介绍,写数据时应遵照如下规定:

;写数据0时,主控制器把总线拉低至少60us

;写数据1时,主控制器把总线拉低,但必须在15us内释放 MOVLW 8H

MOVWF COUNT ;8位数据

BANKSEL TRISA

BCF TRISA,0

BCF STATUS,RP0

BCF STATUS,C

WRITE_18B20_1

BSF DQ ;先保持DQ为高

MOVLW 5H

MOVWF COUNT1

BCF DQ ;拉低DQ15us

DECFSZ COUNT1,1

GOTO $-1

RRF TEMP,1

BTFSS STATUS,C ;判断写的数据为0还是1 GOTO WRITE_0

BSF DQ ;为1,立即拉高数据线

GOTO WRITE_END

WRITE_0

BCF DQ ;继续保持数据线为低WRITE_END

MOVLW 0FH

MOVWF COUNT1 ;保持45ms

DECFSZ COUNT1,1

GOTO $-1

BSF DQ ;释放总线

DECFSZ COUNT,1 ;是否写完8位数据

GOTO WRITE_18B20_1

RETURN

;**********************读DS18B20子程序**************************** READ_18B20

;根据DATASHEET介绍,读数据时应遵照如下规定:

;读数据0时,主控制器把总线拉低后,18B20再把总线拉低60us

;读数据1时,主控制器把总线拉低后,保持总线状态不变

;主控制器在数据线拉低后15us内读区数据线上的状态。

MOVLW 8H ;一次读8位数据

MOVWF COUNT

READ_18B20_1

BANKSEL TRISA

BCF TRISA,0 ;数据线先设为输出

BCF STATUS,RP0

BCF DQ ;先拉低数据线

MOVLW 1H

MOVWF COUNT1

DECFSZ COUNT1,1 ;拉低总线3us

GOTO $-1

BSF DQ ;释放总线

BANKSEL TRISA

BSF TRISA,0 ;数据线设为输入

BCF STATUS,RP0

MOVLW 2H

MOVWF COUNT1

DECFSZ COUNT1,1 ;延时6ms

GOTO $-1

BSF STATUS,C

BTFSS DQ ;判断数据线状态

BCF STATUS,C

RRF TEMP,1 ;移位到TEMP中

MOVLW 12H

MOVWF COUNT1

DECFSZ COUNT1,1

GOTO $-1 ;读一位数据至少需要60us DECFSZ COUNT,1 ;是否读完8位

GOTO READ_18B20_1

RETURN

基于DS18B20的多点温度测量系统设计

一、绪论 1.1 课题来源 温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一,同时它也是一种最基本的环境参数。人民的生活与环境温度息息相关,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,在电力、化工、石油、冶金、机械制造、大型仓储室、实验室、农场塑料大棚甚至人们的居室里经常需要对环境温度进行检测,并根据实际的要求对环境温度进行控制。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行。炼油过程中,原油必须在不同的温度和压力条件下进行分流才能得到汽油、柴油、煤油等产品;没有合适的温度环境,许多电子设备不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。可见,研究温度的测量具有重要的理论意义和推广价值。 随着现代计算机和自动化技术的发展,作为各种信息的感知、采集、转换、传输相处理的功能器件,温度传感器的作用日益突出,成为自动检测、自动控制系统和计量测试中不可缺少的重要技术工具,其应用已遍及工农业生产和日常生活的各个领域。本设计就是为了满足人们在生活生产中对温度测量系统方面的需求。 本设计要求系统测量的温度的点数为4个,测量精度为0.5℃,测温范围为-20℃~+80℃。采用液晶显示温度值和路数,显示格式为:温度的符号位,整数部分,小数部分,最后一位显示℃。显示数据每一秒刷新一次。 1.2 课题研究的意义 21世纪科学技术的发展日新月异,科技的进步带动了测量技术的发展,现代控制设备的性能和结构发生了巨大的变化,我们已经进入了高速发展的信息时代,测量技术也成为当今科技的主流之一,被广泛地应用于生产的各个领域。对于本次设计,其目的在于: (1)掌握数字温度传感器DS18B20的原理、性能、使用特点和方法,利用C51对系统进行编程。

基于DS18B20的温度采集显示系统的设计

《单片机技术》课程设计任务书(三) 题目:基于DS18B20的温度采集显示系统的设计 一、课程设计任务 传统的温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点。但由于其输出的是模拟量,而现在的智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂。硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵。新兴的IC温度传感器如DS18B20,由于可以直接输出温度转换后的数字量,可以在保证测量精度的情况下,大大简化系统软硬件设计。这种传感器的测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度的测量。DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量。 本课题要求设计一基于DS18B20的温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块。所设计的系统可以从键盘输入设定温度值,当所采集的温度高于设定温度时,进行报警,同时能实时显示温度值。 二、课程设计目的 通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机的接口及DS18B20的编程;2)矩阵式键盘的设计与编程;3)经单片机为核心的系统的实际调试技巧。从而提高学生对微机实时控制系统的设计和调试能力。 三、课程设计要求 1、要求可以从键盘上接收温度设定值,当所采集的温度高于设定值时,进行报警(可以是声音报警,也可是光报警) 2、能实时显示温度值,若用Proteus做要求保留一位小数; 四、课程设计内容 1、人机“界面”设计; 2、单片机端口及外设的设计; 3、硬件电路原理图、软件清单。 五、课程设计报告要求 报告中提供如下内容:

基于AT89C51单片机的测温系统

引言 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程,并介绍了利用C语言编程对DS18B20的访问,该系统可以方便的实现实现温度采集和显示,使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量。数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LED数码管实现温度值显示。 .

一、设计要求 通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,C语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为0.5摄氏度。温度显示采用3位LED数码管显示,两位整数,一位小数。具有键盘输入上下限功能,超过上下限温度时,进行声音报警。 二、基本原理 原理简述:数字温度传感器DS1820把温度信息转换为数字格式;通过“1-线协议”,单片机获取指定传感器的数字温度信息,并显示到显示设备上。通过键盘,单片机可根据程序指令实现更灵活的功能,如单点检测、轮转检测、越数字温度传感器的温度检测及显示的系统原理图如图DS1820限检测等。基于 图 2.1 基于DS1820的温度检测系统框图 三:主要器件介绍(时序图及各命令序列,温度如何计算等) 系统总体设计框图 由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 测温电路设计总体设计框图如图所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 .. . 测温电路设计总体设计框图图3.11.控制模块 AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公

ds18b20详解及程序

最近都在学习和写单片机的程序, 今天有空又模仿DS18B20温度测量显示实验写了一个与DS18B20基于单总线通信的程序. DS18B20 数字温度传感器(参考:智能温度传感器DS18B20的原理与应用)是DALLAS 公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计。DS18B20 产品的特点: (1)、只要求一个I/O 口即可实现通信。 (2)、在DS18B20 中的每个器件上都有独一无二的序列号。 (3)、实际应用中不需要外部任何元器件即可实现测温。 (4)、测量温度范围在-55 到+125℃之间; 在-10 ~ +85℃范围内误差为±5℃; (5)、数字温度计的分辨率用户可以从9 位到12 位选择。将12位的温度值转换为数字量所需时间不超过750ms; (6)、内部有温度上、下限告警设置。 DS18B20引脚分布图 DS18B20 详细引脚功能描述: 1、GND 地信号; 2、DQ数据输入出引脚。开漏单总线接口引脚。当被用在寄生电源下,此引脚可以向器件提供电源;漏极开路, 常太下高电平. 通常要求外接一个约5kΩ的上拉电阻. 3、VDD可选择的VDD 引脚。电压范围:3~5.5V; 当工作于寄生电源时,此引脚必须接地。 DS18B20存储器结构图 暂存储器的头两个字节为测得温度信息的低位和高位字节;

第3, 4字节是TH和TL的易失性拷贝, 在每次电复位时都会被刷新; 第5字节是配置寄存器的易失性拷贝, 同样在电复位时被刷新; 第9字节是前面8个字节的CRC检验值. 配置寄存器的命令内容如下: MSB LSB R0和R1是温度值分辨率位, 按下表进行配置.默认出厂设置是R1R0 = 11, 即12位. 温度值分辨率配置表 4种分辨率对应的温度分辨率为0.5℃, 0.25℃, 0.125℃, 0.0625℃(即最低一位代表的温度值) 12位分辨率时的两个温度字节的具体格式如下: 其中高字节前5位都是符号位S, 若分辨率低于12位时, 相应地使最低为0, 如: 当分辨 , 高字节不变.... 一些温度与转换后输出的数字参照如下:

基于DS18B20的温度测量系统设计

课程设计(论文) 题目名称基于DS18B20温度测量系统设计 课程名称单片机原理及应用 学生姓名尹彬涛 学号1341301075 系、专业电子信息工程 指导教师江世民 2015年 6 月12 日

摘要 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于STC89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与STC89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机; DS18B20; 温度传感器; 数字温度计; STC89C52

目录 摘要 (1) 引言 (3) 一、方案介绍 (3) 1、显示部分 (3) 2、温度采集 (5) 3、方案流程图 (5) 二、总体方案设计 (6) 1、硬件设计 (6) 1.1 温度采集设计 (6) 1.2温度显示设计 (6) 2、软件设计 (7) 2.1 DS18B20程序设计 (7) 2.2显示部分程序设计 (8) 三、实验调试过程 (10) 1、软件调试 (10) 1.1 显示部分调试........................................ . (10) 四、心得体会 (10) 五、致谢 (11) 六、参考文献 (12) 七、附录 (12) 附录一程序代码 (12) 附录二仿真电路图 (18)

DS18B20温度采集程序代码

/******************************************************************** * 文件名:温度采集DS18B20.c * 描述: 该文件实现了用温度传感器件DS18B20对温度的采集,并在数码管上显示出来。 * 创建人:东流,2012年2月10日 * 版本号:2.0 ***********************************************************************/ #include #define uchar unsigned char #define uint unsigned int #define jump_ROM 0xCC #define start 0x44 #define read_EEROM 0xBE sbit DQ = P2^3; //DS18B20数据口 unsigned char TMPH,TMPL; uchar code table[10] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; /******************************************************************** * 名称: delay() * 功能: 延时函数 * 输入: 无 * 输出: 无 ***********************************************************************/ void delay(uint N) { int i; for(i=0; i

基于DS18B20的多点温度测量系统(毕业设计)

目录 中文摘要......................................................................................................... III 英文摘要......................................................................................................... I V 1 绪论. (1) 1.1课题来源 (1) 1.2课题研究的目的意义 (1) 1.3国内外现状及水平 (2) 1.4课题研究内容 (2) 2 系统方案设计 (3) 2.1基于模拟温度传感器设计方案 (3) 2.2基于数字温度传感器设计方案 (4) 2.3方案论证 (4) 3 电路设计 (6) 3.1工作原理 (6) 3.2DS18B20与单片机接口技术 (7) 3.3键盘电路设计 (14) 3.4显示电路设计 (15) 3.5报警电路设计 (16) 3.6电源电路设计 (17) 4 程序设计 (18) 4.1系统资源分配 (18) 4.2系统流程设计 (18) 4.3程序设计 (24) 5 系统仿真 (34) 5.1PROTEUS仿真环境介绍 (34) 5.2原理图绘制 (35) 5.3程序加载 (35) 5.4系统仿真 (36) 5.5仿真结果分析 ............................................................................................... 错误!未定义书签。 6 PCB板设计 (39) 6.1PCB板设计 (39)

DS18B20的测温原理

3.2.3 DS18B20的测温原理 DS18B20的测温原理如图3-2-2-6所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在 -55 ℃ 所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。 另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。各种操作的时序图与DS1820相同。 图3-2-3-1 DS18B20与处理器连接图 3.2.4 DS18B20与单片机的典型接口设计 以MCS51单片机为例,图3-2-3-1中采用寄生电源供电方式,P1 1口接

DS18B20温度计C程序

温度值精确到0.1度,lcd1602显示 仿真电路图如下: c程序如下: #include #define uchar unsigned char #define uint unsigned int sbit DQ=P3^7;//ds18b20与单片机连接口 sbit RS=P3^0; sbit RW=P3^1; sbit EN=P3^2; unsigned char code str1[]={"temperature: "}; unsigned char code str2[]={" "};

uchar data disdata[5]; uint tvalue;//温度值 uchar tflag;//温度正负标志 /*************************lcd1602程序**************************/ void delay1ms(unsigned int ms)//延时1毫秒(不够精确的){unsigned int i,j; for(i=0;i

DS18B20中文资料

第一部分:DS18B20的封装和管脚定义 首先,我们来认识一下DS18B20这款芯片的外观和针脚定义,DS18B20芯片的常见封装为TO-92,也就是普通直插三极管的样子,当然也可以找到以SO(DS18B20Z)和μSOP(DS18B20U)形式封装的产品,下面为DS18B20各种封装的图示及引脚图。 了解了这些该芯片的封装形式,下面就要说到各个管脚的定义了,如下表即

为该芯片的管脚定义: 上面的表中提到了一个“奇怪”的词——“寄生电源”,那我有必要说明一下了,DS18B20芯片可以工作在“寄生电源模式”下,该模式允许DS18B20工作在无外部电源状态,当总线为高电平时,寄生电源由单总线通过VDD 引脚,此时DS18B20可以从总线“窃取”能量,并将“偷来”的能量储存到寄生电源储能电容(Cpp)中,当总线为低电平时释放能量供给器件工作使用。所以,当DS18B20工作在寄生电源模式时,VDD引脚必须接地。 第二部分:DS18B20的多种电路连接方式 如下面的两张图片所示,分别为外部供电模式下单只和多只DS18B20测温系统的典型电路连接图。 (1)外部供电模式下的单只DS18B20芯片的连接图

(2)外部供电模式下的多只DS18B20芯片的连接图 这里需要说明的是,DS18B20芯片通过达拉斯公司的单总线协议依靠一个单线端口通讯,当全部器件经由一个三态端口或者漏极开路端口与总线连接时,控制线需要连接一个弱上拉电阻。在多只DS18B20连接时,每个DS18B20都拥有一个全球唯一的64位序列号,在这个总线系统中,微处理器依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址,从而允许多只DS18B20同时连接在一条单线总线上,因此,可以很轻松地利用一个微处理器去控制很多分布在不同区域的DS18B20,这一特性在环境控制、探测建

ds18b20多路温度采集程序

本程序为ds18b20的多路温度采集程序,是我自己参考其他程序后改写而成,可显示4路正负温度值,并有上下限温度报警(声音、灯光报警)。 亲测,更改端口即可使用。(主要器件:51单片机,ds18b20,lcd显示器) 附有proteus仿真图,及序列号采集程序 /****上限62度下限-20度****/ #include #define uchar unsigned char #define uint unsigned int sbit ds=P1^1; sbit rs=P1^4; sbit e=P1^6;

sbit sp=P1^0; sbit d1=P1^2; sbit d2=P1^3; uchar lcdrom[4][8]={{0x28,0x30,0xc5,0xb8,0x00,0x00,0x00,0x8e}, {0x28,0x31,0xc5,0xb8,0x00,0x00,0x00,0xb9}, {0x28,0x32,0xc5,0xb8,0x00,0x00,0x00,0xe0}, {0x28,0x33,0xc5,0xb8,0x00,0x00,0x00,0xd7}}; unsigned char code table0[]={"TEMPERARTURE:U "}; unsigned char code table1[]={"0123456789ABCDEF"}; int f[4]; int tvalue; float ftvalue; uint warnl=320; uint warnh=992; /****lcd程序****/ void delayms(uint ms)//延时 { uint i,j; for(i=ms;i>0;i--) for(j=110;j>0;j--);

DS18B20中文全套资料

温度传感器DS18B20资料 2008-08-28 16:06 美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。目前DS18B20批量采购价格仅10元左右。 在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。 新的"一线器件"DS18B20体积更小、适用电压更宽、更经济。 DS18B20、DS1822的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。 继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 DS18B20、DS1822 "一线总线"数字化温度传感器 同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C 范围内,精度为±0.5°C。DS1822的精度较差为±2°C。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 一、DS18B20的主要特性 (1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 (2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯 (3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温 (4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内 (5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃ (6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,

DS18B20温度检测

目录1引言1 2系统描述2 2.1系统功能2 2.2系统设计指标3 3系统的主要元件3 3.1单片机3 3.2温度传感元件4 3.3LCD显示屏7 4硬件电路8 4.1系统整体原理图8 4.2单片机晶振电路8 4.3温度传感器连接电路9 4.4LCD电路10 4.5报警和外部中断电路11

5结论12

温度监测系统硬件设计 摘要:利用DS18B20为代表的新型单总线数字式温度传感器实现温度的监测,可以 简化硬件电路,也可以实现单线的多点分布式温度监测,而不会浪费单片机接口,提供了单片机接口的利用率。同时提高了系统能够的抗干扰性,使系统更灵活、方 便。本系统主要实现温度的检测、显示以及高低温的报警。也可以通过单总线挂载 多个DS18B20实现多点温度的分布式监测。 关键词:DS18B20,单总线,温度,单片机 1引言 在科技广泛发展的今天,计算机的发展已经越来越快,它的应用已经越来越广泛。而单片机的发展和应用是其中的重要一方面。单片机在工业生产(机电、化工、轻纺、自控等等)和民用家电各方面有广泛的应用。其中,单片机在工业生产中的应用尤其广泛。 单片机具有集成度高,处理能力强,可靠性高,系统结构简单,价格低廉的优点,因此被广泛应用。在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要测量参数。例如:在冶金工业、化工工业、电力工程、机械制造和食品加工等许多领域中,人们都需要对各类加热炉、热处理炉、反映炉和锅炉,尤其是热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中的温度进行测量,并经常会对其进行控制。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过A/D转换环节获得数字信号后才能够被单片机等微处理器接收处理,使得硬件电路结构复杂,制作成本较高。

DS18B20中文资料+C程序

18B20温度传感器应用解析 温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B 20更受欢迎。对于我们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工作原理和应用可以拓宽您对单片机开发的思路。 DS18B20的主要特征: ?? 全数字温度转换及输出。 ?? 先进的单总线数据通信。 ?? 最高12位分辨率,精度可达土0.5摄氏度。

?? 12位分辨率时的最大工作周期为750毫秒。 ?? 可选择寄生工作方式。 ?? 检测温度范围为–55°C ~+125°C (–67°F ~+257°F) ?? 内置EEPROM,限温报警功能。 ?? 64位光刻ROM,内置产品序列号,方便多机挂接。 ?? 多样封装形式,适应不同硬件系统。 DS18B20芯片封装结构: DS18B20引脚功能: ·GND 电压地·DQ 单数据总线·VDD 电源电压·NC 空引脚 DS18B20工作原理及应用: DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。18B20共有三种形态的存储器资源,它们分别是: ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。 RAM 数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,DS18B20共9个字节RAM,每个字节为8位。第1、2个字节是温度转换后的数据值信息,第3、4个字节是用户EEPROM(常用于温度报警值储存)的镜像。在上电复位时其值将被刷新。第5个字节则是用户第3个EEPROM的镜像。第6、7、8个字节为计数寄存器,是为了让用户得到更高的温度分辨率而设计的,同样也是内部温度转换、计算的暂存单元。第9个字节为前8个字节的CRC码。EEPROM 非易失性记忆体,用于存放长期需要保存的数据,上下限温度报警值和校验数据,DS18B20共3位EEPROM,并在RAM都存在镜像,以方便用户操作。RAM及EEPROM结构图: 图2 我们在每一次读温度之前都必须进行复杂的且精准时序的处理,因为DS18B20的硬件简单结果就会导致软件的巨大开消,也是尽力减少有形资产转化为无形资产的投入,是一种较好的节约之道。 控制器对18B20操作流程: 1,复位:首先我们必须对DS18B20芯片进行复位,复位就是由控制器(单片机)给DS18B20单总线至少480uS的低电平信号。当18B20接到此复位信号后则会在15~60uS后回发一个芯片的存在脉冲。 2,存在脉冲:在复位电平结束之后,控制器应该将数据单总线拉高,以便于在15~60uS后接收存在脉冲,存在脉冲为一个60~240uS的低电平信号。至此,通信双方已经达成了基本的协议,接下来将会是控制器与18B20间的数据通信。如果复位低电平的时间不足或是单总线的电路断路都不会接到存在脉冲,在设计时要注意意外情况的处理。 3,控制器发送ROM指令:双方打完了招呼之后最要将进行交流了,ROM指令共有5条,每一个工作周期只能发一条,ROM指令分别是读ROM数据、指定匹配芯片、跳跃ROM、芯片搜索、报警芯片搜索。ROM指令为8位长度,功能是对片内的64位光刻ROM进行操作。其主要目的是为了分辨一条总线上挂接的多个器件并作处理。诚然,单总线上可以同时挂接多个器件,并通过每个器件上所独有的ID号来区别,一般只挂接单个18B20芯片时可以跳过ROM指令(注意:此处指的跳过ROM指令并非不发送ROM指令,而是用特有的一条“跳过指令”)。ROM指令在下文有详细的介绍。 4,控制器发送存储器操作指令:在ROM指令发送给18B20之后,紧接着(不间断)就是发送存储器操作指令了。操作指令同样为8位,共6条,存储器操作指令分别是写RAM数据、读RAM数据、将R AM数据复制到EEPROM、温度转换、将EEPROM中的报警值复制到RAM、工作方式切换。存储器操作指令的功能是命令18B20作什么样的工作,是芯片控制的关键。 5,执行或数据读写:一个存储器操作指令结束后则将进行指令执行或数据的读写,这个操作要视存储器操作指令而定。如执行温度转换指令则控制器(单片机)必须等待18B20执行其指令,一般转换时间为500uS。如执行数据读写指令则需要严格遵循18B20的读写时序来操作。数据的读写方法将有下文有详细介绍。 若要读出当前的温度数据我们需要执行两次工作周期,第一个周期为复位、跳过ROM指令、执行温度转换存储器操作指令、等待500uS温度转换时间。紧接着执行第二个周期为复位、跳过ROM指令、执行读

基于51单片机——Ds18B20温度采集-LCD显示汇编程序(附带proteus仿真图)

TEMP_ZH EQU 24H ;实测温度值存放单元 TEMPL EQU 25H TEMPH EQU 26H TEMP_TH EQU 27H ;高温报警值存放单元 TEMP_TL EQU 28H ;低温报警值存放单元 TEMPHC EQU 29H ;正、负温度值标记 TEMPLC EQU 2AH TEMPFC EQU 2BH K1 EQU P1.4 ;查询按键 K2 EQU P1.5 ;设置/调整键 K3 EQU P1.6 ;调整键 K4 EQU P1.7 ;确定键 BEEP EQU P3.7 ;蜂鸣器 RELAY EQU P1.3 ;指示灯 LCD_X EQU 2FH ;LCD 字符显示位置 LCD_RS EQU P2.0 ;LCD 寄存器选择信号 LCD_RW EQU P2.1 ;LCD 读写信号 LCD_EN EQU P2.2 ;LCD 允许信号 FLAG1 EQU 20H.0 ;DS18B20是否存在标志 KEY_UD EQU 20H.1 ;设定按键的增、减标志 DQ EQU P3.3 ;DS18B20数据信号

ORG 0000H LJMP MAIN ORG 0030H MAIN: MOV SP,#60H MOV A,#00H MOV R0,#20H ;将20H~2FH 单元清零 MOV R1,#10H CLEAR: MOV @R0,A INC R0 DJNZ R1,CLEAR LCALL SET_LCD LCALL RE_18B20 START: LCALL RST ;调用18B20复位子程序 JNB FLAG1,START1 ;DS1820不存在 LCALL MENU_OK ;DS1820存在,调用显示正确信息子程序 MOV TEMP_TH,#055H ;设置TH初值85度 MOV TEMP_TL,#019H ;设置TL初值25度 LCALL RE_18B20A ;调用暂存器操作子程序 LCALL WRITE_E2 ;写入DS18B20 LCALL TEMP_BJ ;显示温度标记 JMP START2

DS18B20介绍、流程图和程序源代码

DS18B20单线数字温度传感器 DALLAS半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器,体积更小、适用电压更宽、更经济。一线总线独特而且经济的特点,使用户可轻松地组建温度传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822 “一线总线”数字化温度传感器同DS1820一样,支持“一线总线”接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C,而DS1822的精度较差为± 2°C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性,适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C,分辨率设定,以及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 1、 DS18B20性能特点 DS18B20的性能特点:①采用单总线专用技术,既可通过串行口线,也可通过其它I/O口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位),②测温范围为-55℃-+125℃,测量分辨率为0.0625℃,③内含64位经过激光修正的只读存储器ROM,④适配各种单片机或系统机,⑤用户可分别设定各路温度的上、下限,⑥内含 寄生电源。 2、 DS18B20内部结构 DS18B20内部结构主要由四部分组成:64位光刻 ROM,温度传感器,非挥发的温度报警触发器TH和 TL,高速暂存器。DS18B20的管脚排列如图1所示。64 位光刻ROM是出厂前被光刻好的,它可以看作是该 DS18B20的地址序列号,不同的器件地址序列号不同。 8位产品系列号48位产品序号8位CRC编码DS18B20高速暂存器共9个存储单元,如表所示: 序号寄存器名称作用序号寄存器名称作用 0 温度低字节 以16位补码形式存放4、5 保留字节1、2 1 温度高字节 6 计数器余值 2 TH/用户字节1 存放温度上限7 计数器/℃ 3 HL/用户字节2 存放温度下限8 CRC CRC校验 图1 DS18B20引脚分布图

基于CC2430和DS18B20的无线测温系统设计

基于CC2430和DS18B20的无线测温系统设计 关键字: CC2430 DS18B20 无线测温系统 目前,很多场合的测温系统采用的还是有线测温设备,由温度传感器、分线器、测温机和监控机等组成,各部件之间采用电缆连接进行数据传输。这种系统布线复杂、维护困难、成本高,可采用无线方案解决这些问题。无线测温系统是一种集温度信号采集、大容量存储、无线射频发送、LED(或LCD)动态显示、控制与通信等功能于一体的新型系统。 本文从低功耗、小体积、使用简单等方面考虑,基于射频SoC CC2430和数字温度传感器DS18B20设计了一个无线测温系统,整个系统由多个无线节点和1个基站组成。无线节点工作在各个测温地点,进行温度数据采集和无线发送。基站与多个节点进行无线通信,并通过数码管将数据显示出来,同时可以通过RS-232串口将数据发送给PC。 CC2430简介 CC2430是TI/ChipconAs公司最新推出的符合2.4G IEEE802.15.4标准的射频收发器.利用此芯片开发的无线通信设备支持数据传输率高达250 kbit/s可以实现多点对多点的快速组网。CC2430的主要性能参数如下: (1)工作频带范围:2.400~2.483 5 GHz;(2)采用IEEE802.15.4规范要求的直接序列扩频方式; (3)数据速率达250 kbit/s码片速率达2 MChip/s; (4)采用o-QPSK调制方式; (5)超低电流消耗(RX:19.7mA,TX:17.4mA)高接收灵敏度(-99 dBm); (6)抗邻频道干扰能力强(39 dB); (7)内部集成有VCO、LNA、PA以及电源整流器采用低电压供电(2.1~3.6V); (8)输出功率编程可控; (9)IEEE802.15.4 MAC层硬件可支持自动帧格式生成、同步插入与检测、16bit CRC 校验、电源检测、完全自动MAC层安全保护(CTR,CBC-MAC,CCM); (10)与控制微处理器的接口配置容易(4总线SPI接口); (11)采用QLP-48封装,外形尺寸只有7×7mm。CC2430只需要极少的外围元器件,其典型应用电路如图2所示。它的外围电路包括晶振时钟电路、射频输入/输出匹配电路和微控制器接口电路3个部分。

基于ARM的多片ds18b20 温度采集系统

基于ARM的多片ds18b20 温度采集系统 /****************************************************************************** 实验五多片ds18b20 温度采集 2005.1.13 *******************************************************************************/ #include #include "..\inc\option.h" #include "..\inc\44b.h" #include "..\inc\44blib.h" #include "..\inc\def.h" #include "..\inc\timer.h" /*************************************************************************** Timer5 初始化 入口参数:Timing_count=定时时间常数,定时时间=定时时间常数*0.02ms T5_int_Enable=1,T5 中断方式,T5_int_Enable=0,T5 查询方式 ****************************************************************************/ Timer_Init(U16 timing_count,U8 T5_int_Enable) { rINTMSK=BIT_GLOBAL|BIT_TIMER5; rTCFG0=0X0c70101;//prescaler=199 rTCFG0=0X010101;prescaler=1 rTCFG1=0X0100000; // DIV=4 rTCNTB5=timing_count; //rTCMPB5=(timing_count/2); havn't rTCMPB5!!! but T0--T4 have. rTCON=0X2000000; rTCON=0X1000000; if(T5_int_Enable) { rINTCON=0X05; rINTMOD=0X0; rINTMSK=~(BIT_GLOBAL|BIT_TIMER5); } } /********************************************************************************** 匹配ROM(命令55H),发8字节ROM代码 入口参数:*ROM_addr 为DS18B20-ID首地址 **********************************************************************************/ Match_Rom(U8 *ROM_addr) { U8 count; U8 *p; U8 temp=0x55; //匹配ROM 命令55H Write_Byte(temp);

相关主题