搜档网
当前位置:搜档网 › 试验一Matlab和Simulink中传递函数的建立

试验一Matlab和Simulink中传递函数的建立

试验一Matlab和Simulink中传递函数的建立
试验一Matlab和Simulink中传递函数的建立

目录

实验一Matlab和Simulink中传递函数的建立 (2)

实验二Matlab和Simulink中控制系统时域分析 (15)

实验三转速反馈控制直流调速系统的仿真 (23)

实验四转速、电流反馈控制直流调速系统的仿真 (31)

实验一 Matlab 和Simulink 中传递函数的建立

一. 实验目的

1. 掌握在Matlab 中建立系统传递函数的方法。

2. 掌握在Simulink 中建立系统的传递函数及结构图的方法。

二.实验设备及仪器

计算机、Matlab 软件

三.实验内容

Matlab 是由美国Mathworks 推出的一个科技应用软件,已经发展成为一个适用于多学科多工作平台的大型软件。它涉及领域广泛,在本课程的实验中主要使用该软件的控制系统工具箱,以加深对控制理论及其应用的理解。Simulink 是该公司专门为Matlab 设计提供的结构图编程与系统仿真的专用软件工具,该仿真环境下的用户程序其外观就是系统的结构图,使得系统仿真变得简便直观。

1. Matlab 中建立系统传递函数

Matlab 启动后的用户界面如图1-1所示,工作空间窗口可以显示Matlab 中的各个变量。命令窗口可以输入各种命令,这也是输入系统传递函数的窗口。

图1-1 Matlab 启动界面

(1). Matlab 中求解微分方程

求解微分方程所用的命令为dslove(“方程1”, “方程2”,…),该函数最多可同时求解12个方程。方程中的各阶导数项以大写的D 表示,后面跟阶数,在接变量名,例如:D2y 代表22dx y

d 。

例1:在Matlab 中求解下列微分方程,变量初始值为0)0(=c ,0)0(=c t

d 22222=++c dt

dc dt c

d 解:在命令窗口中键入命令如图1-2所示。可见方程的解)cos(*22t y +-=,通过ezplot 命令可以绘制该微分方程解的曲线如图1-3所示。

图1-2 Matlab 中输入微分方程

图1-3 ezplot 命令绘制图形

(2). Matlab 中输入传递函数常用的命令有:tf ,printsys ,zpk 。

命令tf ,prinfsys 可以输入多项式形式的传递函数,首先根据传递函数写出分子多项式的系数向量num ,分母多项式的系数向量den 。然后输入命令tf(num ,den )或printsys(num,den,’s ’)即可得到传递函数。

例2:在Matlab 中输入如下系统传递函数

64239

2)(234+++++=s s s s s s G

解:在Matlab 中输入如下命令,注意多项式系数输入时最高项系数在前,然后空格,次高项系数,直到常数项,如果某一项系数为零,在输入系数向量时补零。在Matlab 中输入如下命令。可以看到 tf 和 prinfsys 的执行结果是相同的。

图1-4 输入多项式传递函数

例3:在Matlab 中输入如下传递函数 )10)(3)(2()5)(1(5)(+++++=s s s s s s s G 解:使用zpk 命令可以输入零极点式传递函数。命令输入方法及结果如1-5图。参数第一项为零点向量,第二项为极点向量,第三项为增益。

图1-5 输入零极点式传递函数

(3)Matlab 中结构图的建立

前面讨论了如何输入系统传递函数,下一步是如何将各个模块连接起来形成系统的结构图,Matlab 中有如下用于搭建系统结构图的命令:

● conv :用于求两个多项式的卷积。当需要两个多项式相乘时,使用该函数。例如:(s+1)*(s+2)。在Matlab 中输入num1=[1 1],num2=[1 2],num=conv(num1,num2),得到num=[1 3 2]。Num 为乘积后的多项式系数向量。

● series: 用于将两个传递函数串联。具体形式为series(num1,den1,num2,den2),num1,den1为第一个模块的分子,分母多项式系数向量。num2,den2为第二个模块的分子,分母多项式系数向量。或者series(sys1,sys2),sys 为使用tf 命令生成的传递函数。

● parallel: 用于将两个传递函数并联。使用方法可采用分子分母多项式向量输入或传递函数输入,parallel(num1,den1,num2,den2)或parallel(sys1,sys2)。

● cloop: 用于求单位反馈系统的传递函数。使用方法为cloop(num,den,sign),或cloop(sys,sign),Sign=1是正反馈Sign=-1是负反馈。

● feedback :用于求一般反馈系统传递函数。使用方法为feedback(num1,den1,num2,den2,sign)或者feedback(sys1,sys2,sign)。Sys2为反馈环节传递函数。

例4:系统结构图如图1-6所示。使用Matlab 求如下系统的传递函数。其中,

101)(1+=

s s G ,325)(22+++=s s s s G ,s s H 211)(+=

图1-6 例4系统结构图

解:步骤1,输入各环节传递函数如图1-7所示:

图1-7 输入个环节传递函数

步骤2,求)(1s G 和)(2s G 串联后的传递函数如图1-8所示:

图1-8 串联G 1和G 2

步骤3,求反馈后的传递函数如图1-9所示:

图1-9 反馈后传递函数

例5:求1-10图中的传递函数。

图1-10 例5系统结构图

解:在Matlab中输入如下命令,步骤1,求取内环部分传递函数如图1-11:

图1-11 例5内环部分传递函数

步骤2,求系统传递函数如图1-12所示。

图1-12 例5系统传递函数

2. Simulink 中建立系统结构图

在Matlab工具栏中点击simulink选项,即可启动Simulink。如图1-13所示。

图1-13 启动simulink

Simulink启动后的界面如图1-14所示,可以看到simulink包括许多用于不同领域仿真的功能模块组。本课程实验中常用的功能有Continuous,Sources,Sinks,control system toolbox。

Continous包括用于连续系统仿真的功能模块,用来建立系统的结构图。

Sinks包括用于显示输出结果的功能模块。

Sources包括各种信号源,可以为系统提供输入信号。

Control system toolbox中的input point和output point在系统性能分析时经常用到。

图1-14 simulink启动界面

在Simulink中点击Create new model项,出现建立系统模型窗口。在continous组中用鼠标左键选择Transfer Fcn项,按住鼠标左键不放将其拖到系统模型建立窗口,在模型建立窗口中可以建立一个环节的方框图,如图1-15所示。

图1-15 在simulink中输入环节方框图

双击该方框图,可以输入该方框图的分子分母多项式系数向量,设置该环节的参数,如图1-16所示。

图1-16 输入传递函数系数向量

方框图的两边有用于连线的端子,可以将方框图连接起来组成复杂的系统。

例6:在simulink中构造图1-17所示的系统结构图。

图1-17 例6系统结构图

解:在continous 功能模块组中选择Tansfer fcn 输入5.0210+s ,1101+s 。选择Integrator 输入s

1,选择Derivative 输入s 。在Math Operations 选择Sum 进行信号的反馈求和运算,选择gain 输入增益0.2。在Sources 中选择Step 阶越信号,作为系统的输入信号。Sinks 中选择scope 示波器显示系统输出。

将所有模块用线连接起来组成系统结构图,如图1-18所示:

图1-18 在simulink 中输入系统结构图

虽然,该结构图与图1-17有些差别,但是表示的系统是相同的。将模块拖到窗口中时,有时需要改变模块的方向,可以选中该模块,点击鼠标左键,选择Rotate block 可以旋转该模块。如图1-19所示。

图1-19 simulink 中旋转方框图命令

四.实验总结与练习

1.在Matlab 中输入传递函数的方法都有那些,分别使用何种命令?

2.练习在Matlab 中用多种方法输入下面的传递函数,并写出相应命令。 64239)(231++++=s s s s s G )10)(3)(2()1(10)(2++++=s s s s s s G 3.练习在Simulink 中输入下面系统的结构框图。

图1-20 控制系统框图

实验二 Matlab 和Simulink 中控制系统时域分析

一. 实验目的

1. 掌握在Matlab 中控制系统的时域分析方法。

2. 掌握在Simulink 中控制系统的时域分析方法。

二.实验设备及仪器

计算机、Matlab 软件

三.实验内容

1.Matlab 中控制系统时域分析

Matlab 中可以通过Step ,impulse 命令分析控制系统的阶越响应,脉冲响应。使用方法为Step(num,den),impulse(num ,den)。

应用lsim 可以求任意输入函数下系统的响应,使用方法为lsim(num ,den ,u ,t)。 例1:应用Matlab 分析如下一阶系统的阶越响应,脉冲响应,输入为正弦信号时系统的响应。 11)(+=

Φs s 解:1)输入命令如图2-1所示。

图2-1 时域分析命令输入

可以看到一阶系统的阶越响应波形如图2-2,脉冲响应波形如图2-3。

图2-2 一阶系统阶越响应波形

图2-3 一阶系统脉冲响应波形

2)输入为正弦信号时的波形,输入命令如图2-4所示:

图2-4 输入为正弦信号时的时域分析命令输入

可以看到输出波形如图2-5所示。

例2:二阶系统传递函数

2222)(n

n n s s s ωξωω++=Φ 设2=n ω,求1.0=ξ,0.5,707.0,0.9,2.0时系统的阶越响应。

解:Matlab 命令窗口中,输入命令如图2-6所示。

步骤1,输入传递函数系数向量

图2-5 输入为正弦信号时一阶系统响应波形

图2-6 输入传递函数系数向量

步骤2,计算阶越响应如图2-7所示。

图2-7 计算阶跃响应

不同ξ时,二阶系统阶越响应如图2-8所示,阶越响应的调节时间和超调量差别较大,当707.0=ξ时响应调节时间最短,超调量最小。

例3:比较如下一型系统如图2-9和二型系统如图2-10在跟踪速度信号时的差别。

图2-9 一型系统图图2-10 二型系统图解:对一型系统进行速度信号响应分析,在Matlab中输入命令如图2-11所示。

图2-11 一型系统速度响应分析命令输入

)2

(

2

+

s

s)2

(

)1

(2

2+

+

s

s

s

图2-8 二阶系统阶越响应波形

求得一型系统跟踪速度信号的波形如图2-12所示。

对二型系统进行速度信号响应分析,在Matlab中输入命令如图2-13所示。

图2-13 二型系统速度响应分析命令输入

得到二型系统跟踪速度信号的波形如图2-14所示。

图2-12 一型系统跟踪速度信号波形

图2-14 二型系统跟踪速度信号波形

2.Simulink 中控制系统时域分析

Simulink 中同样可以进行系统的响应分析。一种方法是在Simulink 中输入系统的结构图,施加需要的输入信号,将输出信号连接到示波器观察系统响应。另一种方法是使用LTI viewer 观察系统的阶越响应和脉冲响应。

例4:一型系统与二型系统如例3所示,试用Simulink 观察系统跟踪速度信号的差别。 输入系统结构图需要如下模块,comtinous 模块组中的Transfer fcn 模块,Math Operation 中的Sum 模块,source 中的Ramp 模块和Sinks 中的scope 模块。将各个模块拖入新建结构图窗口中后,用线连接各个模块,如图2-15所示。

图2-15 Simulink 中控制系统时域分析图

点击工具栏中的Start 项,开始仿真。双击两个示波器,可以看到两个系统的斜波响应如图2-16所示。

(a )一型系统跟踪速度信号波形 (b )二型系统跟踪速度信号波形

图2-16 控制系统跟踪速度信号波形

例5:在Simulink 中分析如下系统阶越响应的差别。

10210

)(21++=s s s G ,10210

2)(22+++=s s s s G ,)102)(1(10

)(23+++=s s s s G

实验六、用窗函数法设计FIR滤波器

实验六 用窗函数法设计 FIR 滤波器 一、实验目的 (1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 (2) 熟悉线性相位FIR 数字滤波器特性。 (3) 了解各种窗函数对滤波特性的影响。 二、实验原理 滤波器的理想频率响应函数为H d (e j ω ),则其对应的单位脉冲响应为: h d (n) = ?-π π ωωωπ d e e H n j j d )(21 窗函数设计法的基本原理是用有限长单位脉冲响应序列h(n)逼h d (n)。由于h d (n)往往是无 限长序列,且是非因果的,所以用窗函数。w(n)将h d (n)截断,并进行加权处理: h(n) = h d (n) w(n) h(n)就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数H(e j ω )为: H(e j ω ) = ∑-=-1 )(N n n j e n h ω 如果要求线性相位特性,则h (n )还必须满足: )1()(n N h n h --±= 可根据具体情况选择h(n)的长度及对称性。 用窗函数法设计的滤波器性能取决于窗函数w(n)的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。 三、实验步骤 1. 写出理想低通滤波器的传输函数和单位脉冲响应。 2. 写出用四种窗函数设计的滤波器的单位脉冲响应。 3. 用窗函数法设计一个线性相位FIR 低通滤波器,用理想低通滤波器作为逼近滤波器,截止频率ωc =π/4 rad ,选择窗函数的长度N =15,33两种情况。要求在两种窗口长度下,分别求出h(n),打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和阻带衰减; 4 用其它窗函数(汉宁窗(升余弦窗)、哈明窗(改进的升余弦窗)、布莱克曼窗) 设计该滤波器,要求同1;比较四种窗函数对滤波器特性的影响。 四、实验用MATLAB 函数 可以调用MATLAB 工具箱函数fir1实现本实验所要求的线性相位FIR-DF 的设计,调用一维快速傅立叶变换函数fft 来计算滤波器的频率响应函数。

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现 2013-12-16 13:58 2296人阅读评论(0) 收藏举报 分类: Matlab(15) 数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。 泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。 频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。表1 是几种常用的窗函数的比较。 如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。

MATLAB命令画出simulink示波器图形

毕业论文答辩已经结束很长时间了,现在总结一下我在做毕业论文时的用MATLAB命令画出simulink示波器图形的一点方法,我也是MATLAB初学者,所用方法不算高明方法,并且这些方法在论坛应该都能找到,请大家见谅。 第一步,将你的示波器的输出曲线以矩阵形式映射到MATLAB的工作空间内。 如图1所示,双击示波器后选择parameters目录下的Data history,将Save data to workspace勾上,Format选择Array,Variable name即你输入至工作空间的矩阵名称,这里我取名aa。在这之后运行一次仿真,那么你就可以在MATLAB的工作空间里看到你示波器输出曲线的矩阵aa。如图2所示。 第二步,用plot函数画出曲线 双击曲线矩阵aa,将可以看到详细情况,我这里的aa矩阵是一个1034行,3 列的矩阵,观察这个矩阵即可以发现,这个矩阵的第一列是仿真时间,而由于我仿真时示波器内输出的是两条曲线,所以第二列和第三列即分别代表了这2条曲线。同时大家要注意,在simulink中我们有时往往在示波器中混合输出曲线,那么就要在示波器前加一个MUX混合模块,因此示波器内曲线映射到的工作空间的矩阵是和你的MUX的输入端数有关,如果你设置了3个MUX输入端,而实际上你只使用了2个,那么曲线矩阵仍然会有4列,并且其中一列是零,而不是3列。 理解曲线矩阵的原理之后,我们就可以用plot函数画出示波器中显示的图形了。 curve=plot(aa(:,1),aa(:,2),aa(:,1),aa(:,3),'--r') %aa(:,1)表示取aa的第一列,仿真时间 %aa(:,2)表示取aa的第二列,示波器的输入一 %aa(:,3)表示取aa的第三列,示波器的输入二 %--r表示曲线2显示的形式和颜色,这里是(red) set(curve(1),'linewidth',3) %设置曲线1的粗细 set(curve(2),'linewidth',3) %设置曲线2的粗细 legend('Fuzzy','PID') %曲线名称标注 xlabel('仿真时间(s)') %X坐标轴名称标注 ylabel('幅值') %Y轴坐标轴标注 title('Fuzzy Control VS PID') %所画图的名称 grid on %添加网格 运行上述命令后即可以看到用MATLAB命令画出的图形了,你可以在图形出来之后继续进行编辑。

实验11 用MATLAB设计FIR数字滤波器

实验11 用MATLAB 设计FIR 数字滤波器 一、实验目的: 1、加深对窗函数法设计FIR 数字滤波器的基本原理的理解。 2、学习用MA TLAB 语言的窗函数法编写设计FIR 数字滤波器的程序。 3、了解MATLAB 语言有关窗函数法设计FIR 数字滤波器的常用函数用法。 二、实验内容及步骤 2、选择合适的窗函数设计FIR 数字低通滤波器,要求: w p =0.2π,R p =0.05dB ; w s =0.3π,A s =40dB 。描绘该滤波器的脉冲响应、窗函数及滤波器的幅频响应曲线和相频响应曲线。 分析:根据设计指标要求,并查表11-1,选择汉宁窗。程序清单如下: function hd=ideal_lp(wc,N) wp=0.2*pi;ws=0.3*pi;deltaw=ws-wp; tao=(N-1)/2; n=[0:(N-1)]; m=n-tao+eps; hd=sin(wc*m)./(pi*m); function[db,mag,pha,grd,w]=freqz_m(b,a); [H,w]=freqz(b,a,1000,'whole'); H=(H(1:501))';w=(w(1:501))'; mag=abs(H); db=20*log10((mag+eps)/max(mag)); pha=angle(H); grd=grpdelay(b,a,w); wp=0.2*pi;ws=0.3*pi;deltaw=ws-wp; wc=(ws+wp)/2; 课程名称:数字信号处理 实验成绩: 指导教师: 实 验 报 告 院系: 信息工程学院 班级: 电信二班 学号: 姓名: 日期:

MATLAB编程与SIMULINK仿真简介

348 数字信号处理 MATLAB编程与SIMULINK仿真简介 A.1 MATLAB编程基础 MATLAB6.5提供了丰富的编程语句结构和实用函数,MATLAB产品组是支持你从概念设计、算法开发、建模仿真到实时实现的理想的集成环境。无论是进行科学研究还是产品开发,MATLAB产品族都是必不可少的工具。这里介绍一些常用的编程技巧和方法,以便同学们能尽快地启动起来,更好地应用MATLAB。 1. MATLAB文件的编写与调试环境 M文件的编写与调试在MATLAB Editor/Debugger下进行(图B1-1),这个集成环境可以方便地进行新建、修改、存储,选择Debug菜单中的Run命令就可以运行程序,运行结果显示在MATLAB Command Window 中。程序的调试应用Debug菜单就可以进行调试,其他高级语言中的Set/Clear Breakpoint、Single Step、Stop if error等选项都有,可以方便的调试程序。 图B1-1 M文件的编写与调试窗口 在MATLAB Editror/Debugger下按照MATLAB编程的规则键入相关的语句并存盘,就可以得到一个后缀为.m的文本文件。

2. MATLAB脚本文件和函数文件 在MATLAB中,无论是问题的提出还是结果的表达都采用你习惯的数学描述方法,而不需要用传统的编程语言进行处理。应用MATLAB编写出来的程序可以是M脚本文件(Script 。file),也可以是M函数文件(Function file),这些文件都由纯ASCII字符构成,其后缀m MATLAB下 M脚本文件是一串按用户意图排列而成的(包括控制流向指令在内)MATLAB 指令集合,可以直接执行,用户只需在Command Window中MATLAB提示符>>后键入文件名即可执行。脚本文件运行后所产生的所有变量都驻留在MATLAB的基本工作空间(Base workspace)中,只要用户不加以清除且MATLAB指令窗不关闭,则这些变量将一直保存在基本工作空间。与脚本文件不同,函数文件犹如一个“黑箱”,从外界只看到传给它的输入量和送出来的计算结果,内部运作是看不见的,并且函数文件的第一行总是以“function”引导的“函数申明行”。M函数文件必须由其它的语句来调用,在一般情况下用户不能单独键入其文件名来运行一个M函数。 MATLAB下的大多数的应用程序由M函数文件形式给出,例如求取系统特征方程的根的root ()函数和绘制零极点图的pzmap ()函数等。除了M函数文件之外,MATLAB还提供了大量的底层函数(内部),这类文件是不可读的,与M函数一起统称为函数。 3. M文件的一般结构 从结构上看脚本文件只是比函数文件少一个“函数申明行”,所以脚本文件和函数文件除第一行不同外,其余的结构都是一样的。 典型M函数文件的基本结构可由以下几部分构成: (1)函数申明行(Function declaration line),位于函数文件的首行,以MATLAB 关键字function 开头,函数名以及函数的输入输出宗量都在这一行中定义; (2)H1行(The first help text line):紧随函数申明行之后以%开头的第一行注释行。H1行包括大写体的函数名和运用关键词简要描述的函数功能,该行供lookfor关键词查询和help在线帮助查询使用; (3)在线帮助文本(Help text)区:H1行及其之后的连续以%开头的第一行的所有注释行构成在线帮助文本; (4)编写和修改记录:标志编写及修改该M文件的作者、日期,便于档案管理; (5)函数体(Function body):该部分由实现M函数功能的MATLAB指令组成。它接收输入宗量,进行程序流程控制,得到输出宗量。从运算角度看“函数申明行”和“函数体”两部分是构成M函数文件所必不可少的。 函数文件(Function file)由function()语句引导,其基本格式为: function 返回变量名=函数名(输入变量列表) 注释说明语句段 函数体语句 在编制程序的过程中输入和返回的变量分别由nargin和nargout两个MATLAB的保留参数给出,返回变量要多于1个,应该用方括号括起来,输入变量用逗号隔开。注释语句

Matlab中的Simulink和SimMechanics做仿真

这里我们利用Matlab中的Simulink和SimMechanics做仿真,那么先来看看相关的资料。 SimMechanics ——机械系统建模和仿真 SimMechanics 扩展Simscape? 在三维机械系统建模的能力。用户可以不进行方程编程,而是借助该多刚体仿真工具搭建模型,这个模型可以由刚体、铰链、约束以及外力组成。自动化3-D动画生成工具可做到仿真的可视化。用户也可通过从CAD系统中直接导入模型的质量、惯量、约束以及三维几何结构。Real-Time Workshop可以对SimMchanics模型进行自动化C代码生成,并在硬件在回路仿真过程中可以使用生成的代码而不是硬件原型测试嵌入式控制器。 SimMechanics可以用于开发悬架、机器手臂、外科医疗设备、起落架和大量的其它机械系统。用户也可以在SimMechanics环境下集成其它的MathWorks物理建模工具,这样做可以实现更加复杂跨领域的物理建模。 特点: ?提供了三维刚体机械系统的建模环境 ?包含了一系列分析机械运动和设计机械元件尺寸的仿真技术 ?三维刚体可视化仿真 ?SimMechanics Link utility,提供Pro/ENGINEER 和SolidWorks CAD平台的接口并且也提供了API函数和其它CAD平台的接口

?能够把模型转化为C代码(使用Real-Time Workshop) ?由于集成在Simulink环境中,因此可以建立高精度、非线性的模型以支持控制系统的开发和测试。 强大功能: 搭建机械系统模型 使用SimMechanics用户仅需要收集物理系统信息即可建立三维机械系统模型。使用刚体、坐标系、铰链和作用力元素定义和其它Simulink模型直接相连的部分。这个过程可以重用Simulink模型以及扩展了SimMechanics工具的能力。用户还可把Simulink模型和SimMechnics模型集成为一个模块,并可封装成可在其它模型中复用的子系统。 机械系统建模仿真和分析 SimMechanics包含如下子系统: ?使用Simulink查表模块和SimMechanics传感器和作动器定义的非线性的弹性单元 ?用来定义航空器件压力分布的空气动力学拖曳模块,例如副翼和方向舵 ?车辆悬架系统,例如防侧翻机械装置和控制器 ?轮胎模型

MATLAB各种“窗函数”定义及调用

MATLAB窗函数大全 1.矩形窗(Rectangle Window)调用格式:w=boxcar(n),根据长度n 产生一个矩形窗w。 2.三角窗(Triangular Window)调用格式:w=triang(n),根据长度n 产生一个三角窗w。 3.汉宁窗(Hanning Window)调用格式:w=hanning(n),根据长度n 产生一个汉宁窗w。 4.海明窗(Hamming Window)调用格式:w=hamming(n),根据长度n 产生一个海明窗w。 5.布拉克曼窗(Blackman Window)调用格式:w=blackman(n),根据长度n 产生一个布拉克曼窗w。 6.恺撒窗(Kaiser Window)调用格式:w=kaiser(n,beta),根据长度n 和影响窗函数旁瓣的β参数产生一个恺撒窗w。 窗函数: 1.矩形窗:利用w=boxcar(n)的形式得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,它的元素由窗函数的值组成。‘w=boxcar(n)’等价于‘w=ones(1,n)’. 2.三角窗:利用w=triang(n)的形式得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,它的元素由窗函数的值组成。 w=triang(N-2)等价于bartlett(N)。

3.汉宁窗:利用w=hanning(n)得到窗函数,其中n为窗函数的长度,而返回值w 为一个n 阶的向量,包含了窗函数的n个系数。 4.海明窗:利用w=hamming(n)得到窗函数,其中n为窗函数的长度,而返回值w 为一个n 阶的向量,包含了窗函数的n个系数。它和汉宁窗的主瓣宽度相同,但是它的旁瓣进一步被压低。 5.布拉克曼窗:利用w=blackman(n)得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,包含了窗函数的n个系数。它的主瓣宽度是矩形窗主瓣宽度的3倍,为12*pi/N,但是它的最大旁瓣值比主瓣值低57dB。 6.切比雪夫窗:它是等波纹的,利用函数w=chebwin(N,R)方式设计出N阶的切比雪夫2窗函数,函数的主瓣值比旁瓣值高RdB,且旁瓣是等波纹的。 7.巴特里特窗:利用w=bartlett(n)的形式得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,包含了窗函数的n个系数。 8.凯塞窗:利用w=kaiser(n,beta)的形式得到窗函数。

matlabsimulink初级教程

S i m u l i n k仿真环境基础学习Simulink是面向框图的仿真软件。 7.1演示一个Simulink的简单程序 【例7.1】创建一个正弦信号的仿真模型。 步骤如下: (1)在MATLAB的命令窗口运行simulink命令,或单击工具栏中的图标,就可以打开Simulink模块库浏览器(SimulinkLibraryBrowser)窗口,如图7.1所示。

图7.1Simulink界面 (2)单击工具栏上的图标或选择菜单“File”——“New”——“Model”,新建一个名为“untitled”的空白模型窗口。 (3)在上图的右侧子模块窗口中,单击“Source”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink下的Source子模块库,便可看到各种输入源模块。 (4)用鼠标单击所需要的输入信号源模块“SineWave”(正弦信号),将其拖放到的空白模型窗口“untitled”,则“SineWave”模块就被添加到untitled窗口;也可以用鼠标选中“SineWave”模块,单击鼠标右键,在快捷菜单中选择“addto'untitled'”命令,就可以将“SineWave”模块添加到untitled窗口,如图7.2所示。

(5) Scope ”模块(示波器)拖放到“untitled ”窗口中。 (6)在“untitled ”窗口中,用鼠标指向“SineWave ”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope ”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。如图7.3所示。 (7)开始仿真,单击“untitled ”模型窗口中“开始仿真”图标 ,或者选择菜单“Simulink ”——“Start ”,则仿真开始。双击“Scope ” 模块出现示波器显示屏,可以看到黄色的正弦波形。如图7.4所示。 图7.2Simulink 界面

实验四 窗函数法设计FIR数字滤波器

实验四 窗函数法设计FIR 数字滤波器 一、实验目的 1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。 2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。 3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。 二、实验环境 计算机、MATLAB 软件 三、实验基础理论 窗函数设计FIR 滤波器 1.基本原理 窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω ,然后 用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。 2.设计步骤 (1)给定理想滤波器的频率响应()j d H e ω ,在通带上具有单位增益和线性相位, 在阻带上具有零响应。一个带宽为()c c ωωπ<的低通滤波器由下式给定: π ωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H 其中α为采样延迟,其作用是为了得到一个因果系统。 (2)确定这个滤波器的单位脉冲响应 ) ()) (sin()(a n a n n h c d --= πω 为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令 2 1 -= N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择 常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等 表4-1 MATLAB 中产生窗函数的命令

matlab-simulink 初级教程

Simulink仿真环境基础学习 Simulink是面向框图的仿真软件。 7.1演示一个Simulink的简单程序 【例7.1】创建一个正弦信号的仿真模型。 步骤如下: (1) 在MATLAB的命令窗口运行simulink命令,或单击工具栏中的图标,就可以打开Simulink模块库浏览器(Simulink Library Browser) 窗口,如图7.1所示。

(2) 单击工具栏上的图标或选择菜单“File ”——“New ”——“Model ”,新建一个名为“untitled ”的空白模型窗口。 (3) 在上图的右侧子模块窗口中,单击“Source ”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink 下的Source 子模块库,便可看到各种输入源模块。 (4) 用鼠标单击所需要的输入信号源模块“Sine Wave ”(正弦信号),将其拖放到的空白模型窗口“untitled ”,则“Sine Wave ”模块就被添加到untitled 窗口;也可以用鼠标选中“Sine Wave ”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave ”模块添加到untitled 窗口,如图7.2所示。 图7.1 Simulink 界面

(5) 用同样的方法打开接收模块库“Sinks”,选择其中的“Scope”模块(示波器)拖放到“untitled”窗口中。 (6) 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。如图7.3所示。 (7) 开始仿真,单击“untitled ”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。双击“Scope”模块出现示波器显示屏, 可以看到黄色的正弦波形。如图7.4所示。 图7.2 Simulink界面

实验3 用MATLAB窗函数法设计FIR滤波器

实验10 用MATLAB 窗函数法设计FIR 滤波器 一、实验目的 ㈠、学习用MA TLAB 语言窗函数法编写简单的FIR 数字滤波器设计程序。 ㈡、实现设计的FIR 数字滤波器,对信号进行实时处理。 二、实验原理 ㈠、运用窗函数法设计FIR 数字滤波器 与IIR 滤波器相比,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。设FIR 滤波器单位脉冲响应)(n h 长度为N ,其系统函数)(z H 为 ∑-=-=1 0)()(N n n z n h z H )(z H 是1-z 的)1(-N 次多项式,它在z 平面上有)1(-N 个零点,原点0=z 是)1(-N 阶重极点。因此,)(z H 永远是稳定的。稳定和线性相位特性是FIR 滤波器突出的优点。 FIR 滤波器的设计任务是选择有限长度的)(n h ,使传输函数)(ωj e H 满足技术要求。主要设计方法有窗函数法、频率采样法和切比雪夫等波纹逼近法。本实验主要介绍用窗函数法设计FIR 数字滤波器。 图7-10-1 例1 带通FIR 滤波器特性 ㈡、 用MATLAB 语言设计FIR 数字滤波器 例1:设计一个24阶FIR 带通滤波器,通带为0.35<ω<0.65。其程序如下 b=fir1(48,[0.35 0.65]); freqz(b,1,512)

可得到如图7-10-1 所示的带通FIR滤波器特性。由程序可知,该滤波器采用了缺省的Hamming窗。 例2:设计一个34阶的高通FIR滤波器,截止频率为0.48,并使用具有30dB波纹的Chebyshev窗。其程序如下 Window=chebwin(35,30); b=fir1(34,0.48,'high',Window); freqz(b,1,512) 可得到如图7-10-2 所示的高通FIR滤波器特性。 图7-10-2 例2 高通FIR滤波器特性 例3:设计一个30阶的低通FIR滤波器,使之与期望频率特性相近,其程序如下 f=[0 0.6 0.6 1]; m=[1 1 0 0]; b=fir2(30,f,m); [h,w]=freqz(b,1,128); plot(f,m,w/pi,abs(h)) 结果如图7-10-3所示。 图7-10-3 例3 理想和实际滤波器特性 例4:使用Hamming窗设计一个50阶的FIR带通滤波器,通带为0.3<ω<0.7,试用绝对和相对两种形式显示其幅频特性。 w1=0.3;w2=0.7;n=50; Window=hamming(n+1); b=fir1(n,[w1 w2],Window); [h,w]=freqz(b,1); GB=real(20*log10(h)); subplot(2,1,1);plot(w/pi,abs(h),'linewidth',2 );

基于matlab的FIR数字滤波器设计(多通带,窗函数法)

数字信号处理 课程设计报告 设计名称:基于matlab的FIR数字滤波器设计 彪

一、课程设计的目的 1、通过课程设计把自己在大学中所学的知识应用到实践当中。 2、深入了解利用Matlab设计FIR数字滤波器的基本方法。 3、在课程设计的过程中掌握程序编译及软件设计的基本方法。 4、提高自己对于新知识的学习能力及进行实际操作的能力。 5、锻炼自己通过网络及各种资料解决实际问题的能力。 二、主要设计内容 利用窗函数法设计FIR滤波器,绘制出滤波器的特性图。利用所设计的滤波器对多个频带叠加的正弦信号进行处理,对比滤波前后的信号时域和频域图,验证滤波器的效果。 三、设计原理 FIR 滤波器具有严格的相位特性,对于信号处理和数据传输是很重要的。 目前 FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。本实验中的窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求高的时候是比较灵活方便的。 如果 FIR 滤波器的 h(n)为实数, 而且满足以下任意条件,滤波器就具有准确的线性相位: 第一种:偶对称,h(n)=h(N-1-n),φ (ω)=-(N-1)ω/2 第二种:奇对称,h(n)=-h(N-1-n), φ(ω)=-(N-1)ω/2+pi/2 对称中心在n=(N-1)/2处 四、设计步骤 1.设计滤波器 2.所设计的滤波器对多个频带叠加的正弦信号进行处理 3.比较滤波前后信号的波形及频谱 五、用窗函数设FIR 滤波器的基本方法 基本思路:从时域出发设计 h(n)逼近理想 hd(n)。设理想滤波器的单位响应在时域表达为hd(n),则Hd(n) 一般是无限长的,且是非因果的,不能

Matlab与Simulink系统仿真学习心得PDF.pdf

Matlab与Simulink系统仿真学习心得 班级:07610 学号:072019 姓名:马楠 第一部分:Matlab学习心得以及实践 Matlab是迄今为止我所见到过的功能最为强大实用范围宽广的软件。的确Matlab适用于教学,航天,网络仿真等等。而且提供了很多功能强大的工具箱,并且最为突出的是它自带的很全面细致的帮助文档,无论你是初学者还是老手都会惊叹于此,你也不必去花很多时间去熟悉那些繁杂的命令,并且很容易通过这些帮助文档得到关于这些函数最精准的用法。 Matlab是一个建立在矩阵操作上的软件,我想要想真正懂得并理解Matlab与一般的语言比如C或者java的区别,那么你就应该真正理解矩阵的思想。而且要熟悉Matlab对矩阵存储的方式(在下文中我会详细解释与之相关的内容),这样对提高你的代码执行效率与易懂性都有很大的帮助。 但是Matlab究竟应该怎么定位呢?一个编程软件,一个数学工具,一个工具箱,一个开发引擎,一个仿真工具,一个虚拟现实软件……的确要精准的说出Matlab的作用很难,或许去定义这个东西到底是用来干什么的并不重要,It is just a tool。 关于Matlab的学习方法,我想与别的语言有很大不同,对于汇编或者C,我们应当很注重底层的一些操作,比如栈或者队列存储数据的方式,int或者double类型转换的时候产生的数据丢失,或者指针方面很头疼的一些东西,但是对于Matlab你根本不必去注重这些东西,也不必去清除的记得那个函数的具体调用方式,那个函数的内容与结构等等。你需要的只是相当用一个笔记本写下你一步一步实现目标的步骤而已。一种草稿纸式的语言。你所学的东西很大部分都是为你要做的目标来服务的,也许这就是当初面向对象式语言产生的原因,但是Matlab就是这种语言的一个代表。 好了,就说到这里了,接下来是我自己学习中对Matlab的一些应用中所遇到的问题以及思考方式和解决办法。 1 离散信号卷积: N1=input('N1=');%输入N1 N2=input('N2=');%输入N2 k1=0:(N1-1);%定义序列f1的对应序号向量 k2=0:(N2-1);% 序列f2的对应序号向量 f1=ones(1,N1);%f1为阶跃序列 f2=0.5*k2;%f2为斜坡序列 [f,k]=dconv(f1,f2,k1,k2)%求离散卷积 其中dconv函数的代码为: function [f,k]=dconv(f1,f2,k1,k2) %The function of compute f=f1*f2 % f: 卷积和序列f(k)对应的非零样值向量 % k:序列f(k)的对应序号向量 % f1: 序列f1(k)非零样值向量 % f2: 序列f2(k)的非零样值向量 % k1: 序列f1(k)的对应序号向量 % k2: 序列f2(k)的对应序号向量

利用MATLAB进行基于窗函数的FIR数字滤波器的设计

西南石油大学实验报告 一实验目的: 学习利用MATLAB进行基于窗函数的FIR数字滤波器的设计。 二实验内容: 利用矩形窗、哈明窗、汉宁窗和布莱克曼窗设计一个FIR低通滤波器,已知ωc=0.25π,N=10 三实验步骤: 1、实验程序 N=10; M=128; b1=fir1(N,0.25,boxcar(N+1)); %用矩形窗作为冲激响应的窗函数 b2=fir1(N,0.25,hamming(N+1)); %用哈明窗作为冲激响应的窗函数 b3=fir1(N,0.25,blackman(N+1)); %用布莱克曼窗作为冲激响应的窗函数 b4=fir1(N,0.25,hanning(N+1)); %用汉宁窗作为冲激响应的窗函数 h1=freqz(b1,1,M); %矩形窗对应的频率响应 h2=freqz(b2,1,M); %哈明窗对应的频率响应 h3=freqz(b3,1,M); %布莱克曼窗对应的频率响应 h4=freqz(b4,1,M); %汉宁窗对应的频率响应 f=0:0.5/M:0.5-0.5/M; plot(f,abs(h1),'-.',f,abs(h2),f,abs(h3),'*',f,abs(h4),':'); legend('??D?′°','1t?÷′°','BLACKMAN','oo?t′°'); grid; ylabel('magnitude response'); xlabel('w/(2*pi)'); axis([0 0.5 0 1.2]); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5]); set(gca,'YTickMode','manual','XTick',[0,0.5,1]);

利用MATLAB窗函数法设计一个可实现的FIR低通滤波器。

一、实验目的 1.掌握在MATLAB中窗函数的使用方法,了解不同窗函数之间的差别。 2.使用窗函数法设计一个可实现的FIR低通滤波器。 3.观察在相同长度下,不同的窗函数设计出来的滤波器有什么差别。 4.观察同一个窗在不同长度下设计出来的滤波器有什么差别。 二、实验条件 PC机,MATLAB7.0 三、实验内容 1)通过help查找窗函数在MATLAB中如何实现

通过example了解MATLAB中窗函数的实现,并且利用矩形窗,汉宁窗,哈明窗,布莱克曼窗和凯塞窗来进行接下来的实验。 2)设计物理可实现的低通滤波器 设计思路:因为要设计FIR有限脉冲响应滤波器,通常的理想滤波器的单位脉冲响应h是无限长的,所以需要通过窗来截断它,从而变成可实现的低通滤波器。程序如下:clc;clear all; omga_d=pi/5; omga=0:pi/30:pi; for N=3:4:51; w1= window(@blackman,N); w2 = window(@hamming,N); w3= window(@kaiser,N,2.5); w4= window(@hann,N); w5 = window(@rectwin,N); M=floor(N/2); subplot(311);plot(-M:M,[w1,w2,w3,w4,w5]); axis([-M M 0 1]); legend('Blackman','Hamming','kaiser','hann','rectwin'); n=1:M; hd=sin(n*omga_d)./(n*omga_d)*omga_d/pi; hd=[fliplr(hd),1/omga_d,hd]; h_d1=hd.*w1';h_d2=hd.*w2';h_d3=hd.*w3';h_d4=hd.*w4';h_d5=hd.*w5'; m=1:M; H_d1=2*cos(omga'*m)*h_d1(M+2:N)'+h_d1(M+1); H_d2=2*cos(omga'*m)*h_d2(M+2:N)'+h_d2(M+1); H_d3=2*cos(omga'*m)*h_d3(M+2:N)'+h_d3(M+1); H_d4=2*cos(omga'*m)*h_d4(M+2:N)'+h_d4(M+1); H_d5=2*cos(omga'*m)*h_d5(M+2:N)'+h_d5(M+1); subplot(312);plot(omga,[H_d1,H_d2,H_d3,H_d4,H_d5]); legend('Blackman','Hamming','kaiser','hann','rectwin'); subplot(313);plot(abs([fft(h_d1);fft(h_d2);fft(h_d3);fft(h_d4);fft(h_d5)] )'); pause(); end 程序分析: 整个对称窗的长度为N,然而为了在MATLAB中看到窗函数在负值时的形状需将N 变为它的一半,即为2M+1个长度。窗长设置为从3开始以4为间隔一直跳动51。则长度相同的不同窗函数在时域[-M,M]的形状如第一个图所示。 对窗函数进行傅里叶变换时,将零点跳过去先构造一个一半的理想滤波器的脉冲响应hd,再将零点位置求导得出的数赋值进去。将生成的hd左右颠倒形成了一个理想的滤波器的脉冲响应。将构造的理想滤波器的脉冲响应依次与之前定义的窗函数相乘,相乘出来的为列向量,用转置将其变成行向量,形成的h_d就是非理想的低通滤波器的脉冲响应序列。因为h_d为对称奇数长度序列,它的DTFT可以是二倍的离散余弦变化,而零点的位置则直接带入求出,两者相加则是H_d。 则第二个图表示的是五个矩阵向量在频域的变化,而第三个图表示的是五个非理想低

Matlab Simulink 仿真步骤

MATLAB基础与应用简明教程 张明等编著 北京航空航天大学出版社(2001.01) MATLAB软件环境是美国New Mexico大学的Cleve Moler博士首创的,全名为MATrix LABoratory(矩阵实验室)。它建立在20世纪七八十年代流行的LINPACK(线性代数计算)和ESPACK(特征值计算)软件包的基础上。LINPACK和ESPACK软件包是从Fortran语言开始编写的,后来改写为C语言,改造过程中较为复杂,使用不便。MATLAB是随着Windows环境的发展而迅速发展起来的。它充分利用了Windows环境下的交互性、多任务功能语言,使得矩阵计算、数值运算变得极为简单。MATLAB语言是一种更为抽象的高级计算机语言,既有与C语言等同的一面,又更为接近人的抽象思维,便于学习和编程。同时,它具有很好的开放性,用户可以根据自己的需求,利用MATLAB 提供的基本工具,灵活地编制和开发自己的程序,开创新的应用。 本书重点介绍了MATLAB的矩阵运算、符号运算、图形功能、控制系统分析与设计、SimuLink仿真等方面的内容。 Chap1 MATLAB入门与基本运算 本章介绍MATLAB的基本概念,包括工作空间;目录、路径和文件的管理方式;帮助和例题演示功能等。重点介绍矩阵、数组和函数的运算规则、命令形式,并列举了可能得到的结果。由于MATLAB的符号工具箱是一个重要分支,其强大的运算功能在科技领域有特殊的帮助作用。 1.1 MATLAB环境与文件管理 1.2 工作空间与变量管理 1.2.1 建立数据 x1=[0.2 1.11 3]; y1=[1 2 3;4 5 6]建立一维数组x1和二维矩阵y1。分号“;”表示不显示定义的数据。 MATLAB还提供了一些简洁方式,能有规律地产生数组: xx=1:10 %xx从1到10,间隔为1 xx=-2:0.5:1 %xx从-2到1,间隔为0.5 linespace命令等距离产生数组,logspace在对数空间中等距离产生数组。对于这一类命令,只要给出数组的两端数据和维数就可以了。 xx=linespace(d1,d2,n) %表示xx从d1到d2等距离取n个点 xx=logspace(d1,d2,n) %表明xx从10d1到10d2等距离取n个点 1.2.2 who和whos命令 who: 查看工作空间中有哪些变量名 whos: 了解这些变量的具体细节 1.2.3 exist命令 查询当前的工作空间内是否存在一个变量,可以调用exist()函数来完成。 调用格式:i=exist(‘A’); 式中,A为要查询的变量名。返回的值i表示A存在的形式: i=1 表示当前工作空间内存在一个变量名为A的矩阵; i=2 表示存在一个名为A.m的文件; i=3 表示MATLAB的工作路径下存在一个名为A.mex的文件;

(完整word版)MATLABsimulink中的基本模块的参数、含义、应用..

电力线路模块 PI Section Line 单项π型线路单相传输线模块。 电阻,电感和电容的传输线,沿着线是均匀分布的。级联几个相同的PI部分是通过以下方式获得一个近似的分布参数线路模型的Three-Phase PI Section Line 三相电力线路模块实现了一个平衡的三相传输线模型参数集中在π部分。相反,沿着线的电阻,电感和电容是均匀分布的分布参数线路模型,三相PI剖面线块肿块行参数在一个单一的π部分所示,在图中只有一相下代表。 被指定为正序和零序的,要考虑到的参数之间的感性和容性耦合的三相导体,以及地面参数的参数R,L,和C线。在此方法的指定行参数假设,这三个阶段是平衡的。 使用一个单一的PI部分的模型是适当的传输线或短,在感兴趣的频率范围是有限的基频周围建模。你可以得到更准确的模型通过级联多个相同的块。见PI剖面线的最大频率范围的说明,通过PI线模型,可以实现。

频率用于R L C规范 指定行参数所用的频率,以赫兹(Hz)。这通常是标称系统频率(50赫兹或60赫兹)。 正序和零序电阻 正序和零序电阻欧姆/公里(Ω/公里)。 正序和零序电感 正序和零序电感:亨利/公里(H/公里)。 正序和零序电容 正序和零序电容法拉/公里(F /公里)。 线路段长度(KM) 该生产线部分长度在千米(公里)。 Three-Phase Transformer (Two Windings) 三相变压器(两个绕组) 使用三个单相变压器,三相变压器三相变压器两个绕组块实现了。您可以模拟饱和的核心不是简单地通过在参数菜单中设置相应的复选框块。线性变压器块和可饱和变压器块部分的单相变压器的电气模型的详细说明,请参阅。 可以以下列方式连接的两个绕组的变压器: 1)Y 2)Y与中性点 3)接地Y 4)三角洲三角洲(D1),30度的滞后Y通过 5)D11)三角洲,三角洲领先的Y通过30度 Three-Phase V-I Measurement 三相电压-电流测量

matlab仿真命令集

simulink命令集(转载) 仿真命令: sim ---仿真运行一个simulink模块 sldebug ---调试一个simulink模块 simset ---设置仿真参数 simget ---获取仿真参数 线性化和整理命令: linmod ---从连续时间系统中获取线性模型(状态方程) linmod2 ---也是获取线性模型,采用高级方法 dinmod ---从离散时间系统中获取线性模型 trim ---为一个仿真系统寻找稳定的状态参数 构建模型命令: open_system --打开已有的模型 close_system --关闭打开的模型或模块 new_system --创建一个新的空模型窗口 load_system --加载已有的模型并使模型不可见 save_system --保存一个打开的模型 add_block --添加一个新的模块 add_line --添加一条线(两个模块之间的连线) delete_block --删除一个模块 delete_line --删除一根线 find_system --查找一个模块 hilite_system --使一个模块醒目显示 replace_block --用一个新模块代替已有的模块 set_param --为模型或模块设置参数 get_param --获取模块或模型的参数 add_param --为一个模型添加用户自定义的字符串参数delete_param --从一个模型中删除一个用户自定义的参数bdclose --关闭一个simulink窗口 bdroot --根层次下的模块名字 gcb --获取当前模块的名字 gcbh --获取当前模块的句柄 gcs --获取当前系统的名字 getfullname --获取一个模块的完全路径名 slupdate --将1.x的模块升级为3.x的模块 addterms --为未连接的端口添加terminators模块 boolean --将数值数组转化为布尔值 slhelp --simulink的用户向导或者模块帮助 封装命令: hasmask --检查已有模块是否封装

相关主题