搜档网
当前位置:搜档网 › iris数据集下的朴素贝叶斯

iris数据集下的朴素贝叶斯

iris数据集下的朴素贝叶斯
iris数据集下的朴素贝叶斯

数据挖掘

(计科一班——杨平——1025115034)

题目:iris 数据集下的朴素贝叶斯实现

一.问题描述:

Iris 数据集是在分类和模式识别研究中常用的基准数据。它是根据花瓣和萼片的长度和宽度来对Iris 进行分类。Iris 数据集包含3类4维样本,分别标为1, 2, 3。其中, 每类样本数目为50, 且服从正态分布,每个数据样本有4个特征向量,分别代表萼片长度, 萼片宽度, 花瓣长度和花瓣宽度。

分类是利用预定的已分类数据集构造出一个分类函数或分类模型(也称作分类器),并利用该模型把未分类数据映射到某一给定类别中的过程。

原理描述: 贝叶斯公式1(|)()(|)max ()

m i i i j P X P P X P X ωωω==的实质是通过观察样本将状态的先验概率转化为状态的后验概率,给定一个未知类别的数据样本X ,贝叶斯分类法将预测X 属于具有最高后验概率的类。本问题可以数学描述为多元正态概率型下的最小错误率贝叶斯分类。

1)先验概率

设数据库表有d 个属性,因此,可以用一个d 维列向量12[,,...,]T d x x x x =来表示。同时,假定有c 个类12,,...c ωωω。如果类的先验概率未知,则可以假定这些类是等概率的,即

12()()...()c P P P ωωω===,且()i i S P S

ω= 其中,i S 是类i ω中的训练样本数,而S 是训练样本总数。

2)参数估计

对于多变量正态分布,估计其均值和方差:

11?N k k x N

μ==∑ 11??()()N T k k k N x x μμ==--∑∑

其中,k x 为多元正态分布总体中第K 个抽样,是d 维向量,?μ

是均值向量μ的最大似然估计,∑是协方差矩阵的最大似然估计。

二.利用python 调用matlab 函数,实现联合开发 .m 文件见于附录

下面是python 调用matlab 方法实现

from win32com.client import Dispatch

h = Dispatch("Matlab.application")#启动MATLAB 自动化服务器

h.execute("Iris_import.m")

h.execute("compare3.m")

三.附录

(1). “compare3.m ”文件

function max=compare3(a,b,c)

max=a;

if max

max=b;

end

if max

max=c;

End

(2).“Iris_import.m ”文件

clc;

clear all;

d=4;c=3;N=50;

D=load('Iris_data.txt');

data=zeros(150,d);

G1=zeros(50,d);

G2=zeros(50,d);

G3=zeros(50,d);

for i=1:1:4

data(:,i)=D(:,i+1);

end

for i=1:1:N

G1(i,:)=data(i,:);

G2(i,:)=data(i+N,:);

G3(i,:)=data(i+2*N,:);

end

disp(G1);

disp(G2);

disp(G3);

%计算各组的均值向量和协方差矩阵

miu1=mean(G1,1)

miu2=mean(G2,1)

miu3=mean(G3,1)

sigma1=zeros(d,d);

sigma2=zeros(d,d);

sigma3=zeros(d,d);

for i=1:1:N

sigma1=sigma1+(G1(i,:)-miu1)'*(G1(i,:)-miu1);

sigma2=sigma2+(G2(i,:)-miu2)'*(G2(i,:)-miu2);

sigma3=sigma3+(G3(i,:)-miu3)'*(G3(i,:)-miu3);

end

sigma1=sigma1/N

sigma2=sigma2/N

sigma3=sigma3/N

%代入判别函数,实现分类

R=zeros(150,3);

fid=fopen('classifier_result.txt','wt');

for i=1:1:150

R(i,1)=-1/2*(data(i,:)-miu1)*inv(sigma1)*((data(i,:)-miu1)')-1/2*log(det(sigma1)); R(i,2)=-1/2*(data(i,:)-miu2)*inv(sigma2)*((data(i,:)-miu2)')-1/2*log(det(sigma2)); R(i,3)=-1/2*(data(i,:)-miu3)*inv(sigma3)*((data(i,:)-miu3)')-1/2*log(det(sigma3));

switch (compare3(R(i,1),R(i,2),R(i,3)))

case R(i,1)

fprintf(fid,'第%-2d个样本属于第1类\n',i);

case R(i,2)

fprintf(fid,'第%-2d个样本属于第2类\n',i);

otherwise R(i,3)

fprintf(fid,'第%-2d个样本属于第3类\n',i);

end

end

fclose(fid);

(3).”Iris_data”

四.实验结果

得到每一类的协方差矩阵如下:

最终实现的分类(部分截图)如下:

从实验结果可以看出,贝叶斯分类基本可以实现将Iris数据集正确分类。其中,黑色方框圈出的是错误的分类结果。

基于朴素贝叶斯的短文本分类研究

基于朴素贝叶斯的短文本分类研究 自然语言处理是目前智能科学领域中的一个非常热门的方向,文本的分类同样也是自然语言处理中的一项关键的技术。随着深度学习发展,朴素贝叶斯算法也已经在文本的分类中取得到了良好的分类效果。本文针对短文本的分类问题,首先对短文本数据进行了预处理操作,其中包括中文分词、去除停用词以及特征的提取,随后阐明了朴素贝叶斯算法构建分类器的过程,最后将朴素贝叶斯算法与逻辑回归和支持向量机分类算法的分类效果进行了对比分析,得出朴素贝叶斯算法在训练所需的效率上及准确率上有较为优异的表现。 标签:自然语言处理文本分类机器学习朴素贝叶斯 引言 文本分类问题是自然语言处理中的一个非常经典的问题。文本分类是计算机通过按照一定的分类标准进行自动分类标记的有监督学习过程。在文本特征工程中,和两种方法应用最为广泛[1] 。在分類器中,使用普遍的有朴素贝叶斯,逻辑回归,支持向量机等算法。其中朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法,有着坚实的数学基础,以及稳定的分类效率。基于此,本文采用基于的特征提取的朴素贝叶斯算法进行文本分类,探求朴素贝叶斯算法在短文本分类中的适用性。 1数据预处理 1.1中文分词 中文分词是指将一个汉字序列切分成一个个单独的词。中文分词是中文文本处理的一个基础步骤,也是对中文处理较为重要的部分,更是人机自然语言交流交互的基础模块。在进行中文自然语言处理时,通常需要先进行中文分词处理[2] 。 1.2停用词处理 去除停用词能够节省存储空间和计算时间,降低对系统精度的影响。对于停用词的处理,要先对语料库进行分词、词形以及词性的类化,为区分需求表述和信息内容词语提供基础。去停用词后可以更好地分析文本的情感极性,本文采用广泛使用的哈工大停用词表进行去停用词处理。 1.3特征提取 文本数据属于非结构化数据,一般要转换成结构化的数据,一般是将文本转换成“文档-词频矩阵”,矩阵中的元素使用词频或者。它的计算为,

朴素贝叶斯分类算法及其MapReduce实现

最近发现很多公司招聘数据挖掘的职位都提到贝叶斯分类,其实我不太清楚他们是要求理解贝叶斯分类算法,还是要求只需要通过工具(SPSS,SAS,Mahout)使用贝叶斯分类算法进行分类。 反正不管是需求什么都最好是了解其原理,才能知其然,还知其所以然。我尽量简单的描述贝叶斯定义和分类算法,复杂而有全面的描述参考“数据挖掘:概念与技术”。贝叶斯是一个人,叫(Thomas Bayes),下面这哥们就是。 本文介绍了贝叶斯定理,朴素贝叶斯分类算法及其使用MapReduce实现。 贝叶斯定理 首先了解下贝叶斯定理 P X H P(H) P H X= 是不是有感觉都是符号看起来真复杂,我们根据下图理解贝叶斯定理。 这里D是所有顾客(全集),H是购买H商品的顾客,X是购买X商品的顾客。自然X∩H是即购买X又购买H的顾客。 P(X) 指先验概率,指所有顾客中购买X的概率。同理P(H)指的是所有顾客中购买H 的概率,见下式。

X P X= H P H= P(H|X) 指后验概率,在购买X商品的顾客,购买H的概率。同理P(X|H)指的是购买H商品的顾客购买X的概率,见下式。 X∩H P H|X= X∩H P X|H= 将这些公式带入上面贝叶斯定理自然就成立了。 朴素贝叶斯分类 分类算法有很多,基本上决策树,贝叶斯分类和神经网络是齐名的。朴素贝叶斯分类假定一个属性值对给定分类的影响独立于其他属性值。 描述: 这里有个例子假定我们有一个顾客X(age = middle,income=high,sex =man):?年龄(age)取值可以是:小(young),中(middle),大(old) ?收入(income)取值可以是:低(low),中(average),高(high) ?性别(sex)取值可以是:男(man),女(woman) 其选择电脑颜色的分类标号H:白色(white),蓝色(blue),粉色(pink) 问题: 用朴素贝叶斯分类法预测顾客X,选择哪个颜色的分类标号,也就是预测X属于具有最高后验概率的分类。 解答: Step 1 也就是说我们要分别计算X选择分类标号为白色(white),蓝色(blue),粉色(pink)的后验概率,然后进行比较取其中最大值。 根据贝叶斯定理

大数据挖掘(8):朴素贝叶斯分类算法原理与实践

数据挖掘(8):朴素贝叶斯分类算法原理与实践 隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方

程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。 后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式: 这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1 680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是 有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

朴素贝叶斯算法详细总结

朴素贝叶斯算法详细总结 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是经典的机器学习算法之一,处理很多问题时直接又高效,因此在很多领域有着广泛的应用,如垃圾邮件过滤、文本分类等。也是学习研究自然语言处理问题的一个很好的切入口。朴素贝叶斯原理简单,却有着坚实的数学理论基础,对于刚开始学习算法或者数学基础差的同学们来说,还是会遇到一些困难,花费一定的时间。比如小编刚准备学习的时候,看到贝叶斯公式还是有点小害怕的,也不知道自己能不能搞定。至此,人工智能头条特别为大家寻找并推荐一些文章,希望大家在看过学习后,不仅能消除心里的小恐惧,还能高效、容易理解的get到这个方法,从中获得启发没准还能追到一个女朋友,脱单我们是有技术的。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。 ▌分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。 既然是贝叶斯分类算法,那么分类的数学描述又是什么呢? 从数学角度来说,分类问题可做如下定义: 已知集合C=y1,y2,……,yn 和I=x1,x2,……,xn确定映射规则y=f(),使得任意xi∈I有且仅有一个yi∈C,使得yi∈f(xi)成立。 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。 分类算法的内容是要求给定特征,让我们得出类别,这也是所有分类问题的关键。那么如何由指定特征,得到我们最终的类别,也是我们下面要讲的,每一个不同的分类算法,对

朴素贝叶斯在文本分类上的应用

2019年1月 取此事件作为第一事件,其时空坐标为P1(0,0,0,0),P1′(0,0,0,0),在Σ′系经过时间t′=n/ν′后,Σ′系中会看到第n个波峰通过Σ′系的原点,由于波峰和波谷是绝对的,因此Σ系中也会看到第n个波峰通过Σ′系的原点,我们把此事件记为第二事件,P2(x,0,0,t),P2′(0,0,0,t′).则根据洛伦兹变换,我们有x=γut′,t=γt′。在Σ系中看到t时刻第n个波峰通过(x, 0,0)点,则此时该电磁波通过Σ系原点的周期数为n+νxcosθ/c,也就是: n+νxcosθc=νt→ν=ν′ γ(1-u c cosθ)(5)这就是光的多普勒效应[2],如果ν′是该电磁波的固有频率的话,从式(5)可以看出,两参考系相向运动时,Σ系中看到的光的频率会变大,也就是发生了蓝移;反之,Σ系中看到的光的频率会变小,也就是发生了红移;θ=90°时,只要两惯性系有相对运动,也可看到光的红移现象,这就是光的横向多普勒效应,这是声学多普勒效应中没有的现象,其本质为狭义相对论中的时间变缓。3结语 在本文中,通过对狭义相对论的研究,最终得到了光的多普勒效应的表达式,并通过与声学多普勒效应的对比研究,理解了声学多普勒效应和光学多普勒效应的异同。当限定条件为低速运动时,我们可以在经典物理学的框架下研究问题,比如声学多普勒效应,但如果要研究高速运动的光波,我们就需要在狭义相对论的框架下研究问题,比如光的多普勒效应。相对论乃是当代物理学研究的基石,通过本次研究,使我深刻的意识到了科学家为此做出的巨大贡献,为他们献上最诚挚的敬意。 参考文献 [1]肖志俊.对麦克斯韦方程组的探讨[J].通信技术,2008,41(9):81~83. [2]金永君.光多普勒效应及应用[J].现代物理知识,2003(4):14~15.收稿日期:2018-12-17 朴素贝叶斯在文本分类上的应用 孟天乐(天津市海河中学,天津市300202) 【摘要】文本分类任务是自然语言处理领域中的一个重要分支任务,在现实中有着重要的应用,例如网络舆情分析、商品评论情感分析、新闻领域类别分析等等。朴素贝叶斯方法是一种常见的分类模型,它是一种基于贝叶斯定理和特征条件独立性假设的分类方法。本文主要探究文本分类的流程方法和朴素贝叶斯这一方法的原理并将这种方法应用到文本分类的一个任务—— —垃圾邮件过滤。 【关键词】文本分类;监督学习;朴素贝叶斯;数学模型;垃圾邮件过滤 【中图分类号】TP391.1【文献标识码】A【文章编号】1006-4222(2019)01-0244-02 1前言 随着互联网时代的发展,文本数据的产生变得越来越容易和普遍,处理这些文本数据也变得越来越必要。文本分类任务是自然语言处理领域中的一个重要分支任务,也是机器学习技术中一个重要的应用,应用场景涉及生活的方方面面,如网络舆情分析,商品评论情感分析,新闻领域类别分析等等。 朴素贝叶斯方法是机器学习中一个重要的方法,这是一种基于贝叶斯定理和特征条件独立性假设的分类方法。相关研究和实验显示,这种方法在文本分类任务上的效果较好。2文本分类的流程 文本分类任务不同于其他的分类任务,文本是一种非结构化的数据,需要在使用机器学习模型之前进行一些适当的预处理和文本表示的工作,然后再将处理后的数据输入到模型中得出分类的结论。 2.1分词 中文语言词与词之间没有天然的间隔,这一点不同于很多西方语言(如英语等)。所以中文自然语言处理首要步骤就是要对文本进行分词预处理,即判断出词与词之间的间隔。常用的中文分词工具有jieba,复旦大学的fudannlp,斯坦福大学的stanford分词器等等。 2.2停用词的过滤 中文语言中存在一些没有意义的词,准确的说是对分类没有意义的词,例如语气词、助词、量词等等,去除这些词有利于去掉一些分类时的噪音信息,同时对降低文本向量的维度,提高文本分类的速度也有一定的帮助。 2.3文本向量的表示 文本向量的表示是将非结构化数据转换成结构化数据的一个重要步骤,在这一步骤中,我们使用一个个向量来表示文本的内容,常见的文本表示方法主要有以下几种方法: 2.3.1TF模型 文本特征向量的每一个维度对应词典中的一个词,其取值为该词在文档中的出现频次。 给定词典W={w1,w2,…,w V},文档d可以表示为特征向量d={d1,d2,…,d V},其中V为词典大小,w i表示词典中的第i个 词,t i表示词w i在文档d中出现的次数。即tf(t,d)表示词t在文档d中出现的频次,其代表了词t在文档d中的重要程度。TF模型的特点是模型假设文档中出现频次越高的词对刻画文档信息所起的作用越大,但是TF有一个缺点,就是不考虑不同词对区分不同文档的不同贡献。有一些词尽管在文档中出现的次数较少,但是有可能是分类过程中十分重要的特征,有一些词尽管会经常出现在众多的文档中,但是可能对分类任务没有太大的帮助。于是基于TF模型,存在一个改进的TF-IDF模型。 2.3.2TF-IDF模型 在计算每一个词的权重时,不仅考虑词频,还考虑包含词 论述244

朴素贝叶斯python代码实现

朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 贝叶斯准则: 使用朴素贝叶斯进行文档分类 朴素贝叶斯的一般过程 (1)收集数据:可以使用任何方法。本文使用RSS源 (2)准备数据:需要数值型或者布尔型数据 (3)分析数据:有大量特征时,绘制特征作用不大,此时使用直方图效果更好 (4)训练算法:计算不同的独立特征的条件概率 (5)测试算法:计算错误率 (6)使用算法:一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴素贝叶斯分类器,不一定非要是文本。 准备数据:从文本中构建词向量 摘自机器学习实战。 [['my','dog','has','flea','problems','help','please'], 0 ['maybe','not','take','him','to','dog','park','stupid'], 1 ['my','dalmation','is','so','cute','I','love','him'], 0

['stop','posting','stupid','worthless','garbage'], 1 ['mr','licks','ate','my','steak','how','to','stop','him'], 0 ['quit','buying','worthless','dog','food','stupid']] 1 以上是六句话,标记是0句子的表示正常句,标记是1句子的表示为粗口。我们通过分析每个句子中的每个词,在粗口句或是正常句出现的概率,可以找出那些词是粗口。 在bayes.py文件中添加如下代码: [python]view plaincopy 1.# coding=utf-8 2. 3.def loadDataSet(): 4. postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please' ], 5. ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], 6. ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], 7. ['stop', 'posting', 'stupid', 'worthless', 'garbage'], 8. ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], 9. ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] 10. classVec = [0, 1, 0, 1, 0, 1] # 1代表侮辱性文字,0代表正常言论 11.return postingList, classVec 12. 13.def createVocabList(dataSet): 14. vocabSet = set([]) 15.for document in dataSet: 16. vocabSet = vocabSet | set(document) 17.return list(vocabSet) 18. 19.def setOfWords2Vec(vocabList, inputSet): 20. returnVec = [0] * len(vocabList) 21.for word in inputSet: 22.if word in vocabList: 23. returnVec[vocabList.index(word)] = 1 24.else: 25.print"the word: %s is not in my Vocabulary!" % word 26.return returnVec

基于朴素贝叶斯的文本分类算法

基于朴素贝叶斯的文本分类算法 摘要:常用的文本分类方法有支持向量机、K-近邻算法和朴素贝叶斯。其中朴素贝叶斯具有容易实现,运行速度快的特点,被广泛使用。本文详细介绍了朴素贝叶斯的基本原理,讨论了两种常见模型:多项式模型(MM)和伯努利模型(BM),实现了可运行的代码,并进行了一些数据测试。 关键字:朴素贝叶斯;文本分类 Text Classification Algorithm Based on Naive Bayes Author: soulmachine Email:soulmachine@https://www.sodocs.net/doc/5317236099.html, Blog:https://www.sodocs.net/doc/5317236099.html, Abstract:Usually there are three methods for text classification: SVM、KNN and Na?ve Bayes. Na?ve Bayes is easy to implement and fast, so it is widely used. This article introduced the theory of Na?ve Bayes and discussed two popular models: multinomial model(MM) and Bernoulli model(BM) in details, implemented runnable code and performed some data tests. Keywords: na?ve bayes; text classification 第1章贝叶斯原理 1.1 贝叶斯公式 设A、B是两个事件,且P(A)>0,称 为在事件A发生的条件下事件B发生的条件概率。 乘法公式P(XYZ)=P(Z|XY)P(Y|X)P(X) 全概率公式P(X)=P(X|Y 1)+ P(X|Y 2 )+…+ P(X|Y n ) 贝叶斯公式 在此处,贝叶斯公式,我们要用到的是

朴素贝叶斯分类器应用

朴素贝叶斯分类器的应用 作者:阮一峰 日期:2013年12月16日 生活中很多场合需要用到分类,比如新闻分类、病人分类等等。 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。 一、病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。 某个医院早上收了六个门诊病人,如下表。 症状职业疾病 打喷嚏护士感冒 打喷嚏农夫过敏 头痛建筑工人脑震荡 头痛建筑工人感冒 打喷嚏教师感冒 头痛教师脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大? 根据贝叶斯定理: P(A|B) = P(B|A) P(A) / P(B)

可得 P(感冒|打喷嚏x建筑工人) = P(打喷嚏x建筑工人|感冒) x P(感冒) / P(打喷嚏x建筑工人) 假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了 P(感冒|打喷嚏x建筑工人) = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) / P(打喷嚏) x P(建筑工人) 这是可以计算的。 P(感冒|打喷嚏x建筑工人) = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 = 0.66 因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。 这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。 二、朴素贝叶斯分类器的公式 假设某个体有n项特征(Feature),分别为F1、F2、...、F n。现有m个类别(Category),分别为C1、C2、...、C m。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值: P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C) / P(F1F2...Fn) 由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求 P(F1F2...Fn|C)P(C) 的最大值。

机器学习实验报告-朴素贝叶斯学习和分类文本

机器学习实验报告 朴素贝叶斯学习和分类文本 (2015年度秋季学期) 一、实验内容 问题:通过朴素贝叶斯学习和分类文本 目标:可以通过训练好的贝叶斯分类器对文本正确分类二、实验设计

实验原理与设计: 在分类(classification)问题中,常常需要把一个事物分到某个类别。一个事物具有很多属性,把它的众多属性看做一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物。类别也是有很多种,用集合Y=y1,y2,…ym表示。如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别。 这就是所谓的分类(Classification)。x的集合记为X,称为属性集。一般X和Y 的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属于类y1,这时可以把X和Y看做是随机变量,P(Y|X)称为Y的后验概率(posterior probability),与之相对的,P(Y)称为Y的先验概率(prior probability)1。在训练阶段,我们要根据从训练数据中收集的信息,对X和Y的每一种组合学习后验概率P(Y|X)。分类时,来了一个实例x,在刚才训练得到的一堆后验概率中找出所有的P(Y|x),其中最大的那个y,即为x所属分类。根据贝叶斯公式,后验概率为 在比较不同Y值的后验概率时,分母P(X)总是常数,因此可以忽略。先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例容易地估计。 在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到China,即打上china标 签。 我们期望用某种训练算法,训练出一个函数γ,能够将文档映射到某一个类别:γ:X→C这种类型的学习方法叫做有监督学习,因为事先有一个监督者(我们事先给出了一堆打好标签的文档)像个老师一样监督着整个学习过程。朴素贝叶斯分类器是一种有监督学习。 实验主要代码: 1、 由于中文本身是没有自然分割符(如空格之类符号),所以要获得中文文本的特征变量向量首先需要对文本进行中文分词。这里采用极易中文分词组件

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

统计学习_朴素贝叶斯分类器实验报告

作业6 编程题实验报告 (一)实验内容: 编程实现朴素贝叶斯分类器,假设输入输出都是离散变量。用讲义提供的训练数据进行试验,观察分类器在 121.x x m ==时,输出如何。如果在分类器中加入Laplace 平滑(取?=1) ,结果是否改变。 (二)实验原理: 1)朴素贝叶斯分类器: 对于实验要求的朴素贝叶斯分类器问题,假设数据条件独立,于是可以通过下式计算出联合似然函数: 12(,,)()D i i p x x x y p x y =∏ 其中,()i p x y 可以有给出的样本数据计算出的经验分布估计。 在实验中,朴素贝叶斯分类器问题可以表示为下面的式子: ~1*arg max ()()D i y i y p y p x y ==∏ 其中,~ ()p y 是从给出的样本数据计算出的经验分布估计出的先验分布。 2)Laplace 平滑: 在分类器中加入Laplace 平滑目的在于,对于给定的训练数据中,有可能会出现不能完全覆盖到所有变量取值的数据,这对分类器的分类结果造成一定误差。 解决办法,就是在分类器工作前,再引入一部分先验知识,让每一种变量去只对应分类情况与统计的次数均加上Laplace 平滑参数?。依然采用最大后验概率准则。 (三)实验数据及程序: 1)实验数据处理: 在实验中,所用数据中变量2x 的取值,对应1,2,3s m I === 讲义中所用的两套数据,分别为cover all possible instances 和not cover all possible instances 两种情况,在实验中,分别作为训练样本,在给出测试样本时,输出不同的分类结果。 2)实验程序: 比较朴素贝叶斯分类器,在分类器中加入Laplace 平滑(取?=1)两种情况,在编写matlab 函数时,只需编写分类器中加入Laplace 平滑的函数,朴素贝叶斯分类器是?=0时,特定的Laplace 平滑情况。 实现函数:[kind] =N_Bayes_Lap(X1,X2,y,x1,x2,a) 输入参数:X1,X2,y 为已知的训练数据; x1,x2为测试样本值; a 为调整项,当a=0时,就是朴素贝叶斯分类器,a=1时,为分类器中加入Laplace 平滑。 输出结果:kind ,输出的分类结果。

朴素贝叶斯分类的改进

朴素贝叶斯分类器的改进 摘要:朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,以及它的被动学习策略,影响了它的分类性能。本文从不同的角度出发,讨论并分析了三种改进朴素贝叶斯分类性能的方法。为进一步的研究打下坚实的基础。 关键词:朴素贝叶斯;主动学习;贝叶斯网络分类器;训练样本;树增广朴素贝叶斯 1 问题描述 随着计算机与信息技术的发展,人类获取的知识和能够及时处理的数据之间的差距在加大,从而导致了一个尴尬的境地,即“丰富的数据”和“贫乏的知识”并存。在数据挖掘技术中,分类技术能对大量的数据进行分析、学习,并建立相应问题领域中的分类模型。分类技术解决问题的关键是构造分类器。分类器是一个能自动将未知文档标定为某类的函数。通过训练集训练以后,能将待分类的文档分到预先定义的目录中。常用的分类器的构造方法有决策树、朴素贝叶斯、支持向量机、k近邻、神经网络等多种分类法,在各种分类法中基于概率的贝叶斯分类法比较简单,在分类技术中得到了广泛的应用。在众多的分类器的构造方法与理论中,朴素贝叶斯分类器(Naive Bayesian Classifiers)[1]由于计算高效、精确度高。并具有坚实的理论基础而得到了广泛的应用。文献朴素贝叶斯的原理、研究成果进行了具体的阐述。文章首先介绍了朴素贝叶斯分类器,在此基础上分析所存在的问题。并从三个不同的角度对朴素贝叶斯加以改进。 2 研究现状 朴素贝叶斯分类器(Na?ve Bayesian Classifier)是一种基于Bayes理论的简单分类方法,它在很多领域都表现出优秀的性能[1][2]。朴素贝叶斯分类器的“朴素”指的是它的条件独立性假设,虽然在某些不满足独立性假设的情况下其仍然可能获得较好的结果[3],但是大量研究表明此时可以通过各种方法来提高朴素贝叶斯分类器的性能。改进朴素贝叶斯分类器的方式主要有两种:一种是放弃条件独立性假设,在NBC的基础上增加属性间可能存在的依赖关系;另一种是重新构建样本属性集,以新的属性组(不包括类别属性)代替原来的属性组,期望在新的属性间存在较好的条件独立关系。 目前对于第一种改进方法研究得较多[2][4][5]。这些算法一般都是在分类精度和算法复杂度之间进行折衷考虑,限制在一定的范围内而不是在所有属性构成的完全网中搜索条件依赖关系。虽然如

朴素贝叶斯分类算法代码实现

朴素贝叶斯分类算法 一.贝叶斯分类的原理 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。 贝叶斯分类器是用于分类的贝叶斯网络。该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式: P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 贝叶斯公式: P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x) 其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。 二.贝叶斯伪代码 整个算法可以分为两个部分,“建立模型”与“进行预测”,其建立模型的伪代码如下: numAttrValues 等简单的数据从本地数据结构中直接读取 构建几个关键的计数表 for(为每一个实例) { for( 每个属性 ){ 为 numClassAndAttr 中当前类,当前属性,当前取值的单元加 1 为 attFrequencies 中当前取值单元加 1 } } 预测的伪代码如下: for(每一个类别){ for(对每个属性 xj){ for(对每个属性 xi){

基于朴素贝叶斯分类器的文本分类算法

基于朴素贝叶斯分类器的文本分类算法(上) 2010-02-21 10:23:43| 分类:Lucene | 标签:|字号大中小订阅 转载请保留作者信息: 作者:phinecos(洞庭散人) Blog:https://www.sodocs.net/doc/5317236099.html,/ Email:phinecos@https://www.sodocs.net/doc/5317236099.html, Preface 本文缘起于最近在读的一本书-- Tom M.Mitchell的《机器学习》,书中第6章详细讲解了贝叶斯学习的理论知识,为了将其应用到实际中来,参考了网上许多资料,从而得此文。文章将分为两个部分,第一部分将介绍贝叶斯学习的相关理论(如果你对理论不感兴趣,请直接跳至第二部分<<基于朴素贝叶斯分类器的文本分类算法(下)>>)。第二部分讲如何将贝叶斯分类器应用到中文文本分类,随文附上示例代码。 Introduction 我们在《概率论和数理统计》这门课的第一章都学过贝叶斯公式和全概率公式,先来简单复习下: 条件概率 定义设A, B是两个事件,且P(A)>0 称P(B∣A)=P(AB)/P(A)为在条件A下发生的条件事件B发生的条件概率。 乘法公式设P(A)>0 则有P(AB)=P(B∣A)P(A) 全概率公式和贝叶斯公式 定义设S为试验E的样本空间,B1, B2, …Bn为E的一组事件,若BiBj=Ф, i≠j, i, j=1, 2, …,n; B1∪B2∪…∪Bn=S则称B1, B2, …, Bn为样本空间的一个划分。 定理设试验E的样本空间为,A为E的事件,B1, B2, …,Bn为的一个划分,且P(Bi)>0 (i=1, 2, …n),则P(A)=P(A∣B1)P(B1)+P(A∣B2)+ …+P(A∣Bn)P(Bn)称为全概率公式。 定理设试验俄E的样本空间为S,A为E的事件,B1, B2, …,Bn为的一个划分,则 P(Bi∣A)=P(A∣Bi)P(Bi)/∑P(A|Bj)P(Bj)=P(B|Ai)P(Ai)/P(A) 称为贝叶斯公式。说明:i,j均为下标,求和均是1到n 下面我再举个简单的例子来说明下。 示例1 考虑一个医疗诊断问题,有两种可能的假设:(1)病人有癌症。(2)病人无癌症。样本数据来自某化验测试,它也有两种可能的结果:阳性和阴性。假设我们已经有先验知识:在所有人口中只有0.008的人患病。此外,化验测试对有病的患者有98%的可能返回阳性结果,对无病患者有97%的可能返回阴性结果。 上面的数据可以用以下概率式子表示:

朴素贝叶斯分类matlab实现

实验二 朴素贝叶斯分类 一、实验目的 通过实验,加深对统计判决与概率密度估计基本思想、方法的认识,了解影响Bayes 分类器性能的因素,掌握基于Bayes 决策理论的随机模式分类的原理和方法。 二、实验内容 设计Bayes 决策理论的随机模式分类器,用matlab 实现。 三、方法手段 Bayes 分类器的基本思想是依据类的概率、概密,按照某种准则使分类结果从统计上讲是最佳的。换言之,根据类的概率、概密将模式空间划分成若干个子空间,在此基础上形成模式分类的判决规则。准则函数不同,所导出的判决规则就不同,分类结果也不同。使用哪种准则或方法应根据具体问题来确定。 四、Bayes 算法 朴素贝叶斯分类或简单贝叶斯分类的工作过程如下: (1)每个数据样本用一个n 维特征向量{}12,,...n X x x x =表示,分别描述对n 个属性A 1,A 2,…A n 样本的n 个度量。 (2)假定有m 个类C 1,C 2,…C m 。给定一个未知的数据样本X (即没有类标号),分类法将预测X 属于具有最高后验概率(条件X 下)的类。即是说,朴素贝叶斯分类将未知的样本分配给类C i ,当且仅当 》 ()(),1,i j P C X P C X j m j i >≤≤≠ () 这样,最大化()i P C X 。其()i P C X 最大的类C i 称为最大后验假定。根据贝叶斯定理 ()()()P X H P H P H X P X = , ()()() () i i i P X C P C P C X P X = () (3)由于P(X)对于所有类为常数,只需要()()i i P X C P C 最大即可。如果类的先验概率未知,则通常假定这些类是等概率的,即P(C 1)=P(C 2)=…=P(C m )。并据此只对()i P X 最大化。否则,最大化()()i i P X C P C 。注意,类的先验概率可以用()i i P C s s =计算其中 s i 是类C i 中的训练样本数,而s 是训练样本总数。 (4)给定具有许多属性的数据集,计算()i P X 的开销可能非常大。为降低计算 ()i P X 的开销,可以做类条件独立的朴素假定。给定样本的类标号,假定属性值相互条件

基于朴素贝叶斯的分类算法

数据挖掘实验报告 一、数据集分析 本实验所使用的数据集名称为Abalone data,该数据集问题是一个分类的问题,需要我们做的是预测鲍鱼的年龄以及预测的准确率,由数据集可知,这个年龄是由“性别”,“长度”,“半径”,“重量”等八个属性所共同决定。 因为本次试验所使用的算法为朴素贝叶斯分类算法,所以属性一共是八个,但是年龄类别有29类,如果分为29类预测,正确率很低。这里我将29类归一化到了8类。二、朴素贝叶斯算法分析 2.1 摘要 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。 2.2 贝叶斯分类的基础——贝叶斯定理 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事 件A的条件概率。其基本求解公式为:。 贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。 下面不加证明地直接给出贝叶斯定理: 2.3 朴素贝叶斯分类 朴素贝叶斯分类的正式定义如下: 1、设为一个待分类项,而每个a为x的一个特征属性。

2、有类别集合。 3、计算。 4、如果,则。 那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做: 1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。 2、统计得到在各类别下各个特征属性的条件概率估计。即 。 3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导: 因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有: 根据上述分析,朴素贝叶斯分类的流程可以由下图表示

简单朴素贝叶斯分类器的思想与算法分析

简单朴素贝叶斯分类器的思想与算法分析 在数据仓库和数据挖掘应用中,分类是一种非常重要的方法.分类的概念是在已有数据的基础上学会一个分类函数或构造出一个分类模型,即我们通常所说的分类器(Classifier).该函数或模型能够把数据集合中的数据记录映射到给定类别中的某一个值,从而可以应用于数据预测.目前,分类的主要算法有贝叶斯算法、决策树算法(如ID3、C4.5等)、规则推导、人工神经网络、最近邻算法、支持向量机等等.这些算法在许多现实数据集合上具有较好的预测精度.其中朴素贝叶斯算法具有良好的可解释性等,在实践中的应用最为广泛. 朴素贝叶斯算法是基于统计理论的方法,它能够预测所属类别的概率.简单朴素贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的.这一假设称为给定类别条件下的独立性(Class Conditional Independence)假设,它可以有效减少在构造分类器时所需要的计算量. 简单朴素贝叶斯算法的分类模型是基于Bayes 定理的,下面就简单介绍一下Bayes 定理.设X 为一个类别未知的数据样本,H 为某个假设,C 表示类别集合,若数据样本X 属于一个特定的类别c ,那么分类问题就是决定P (H /X ),即在获得数据样本X 时,H 假设成立的概率.由于P (H ) , P (X ), P (X /H )的概率值可以从(供学习使用的)数据集合中得到,Bayes 定理描述了如何根据P (H ) , P (X ), P (X /H )计算获得的P (H /X ),有关的具体公式定义描述如下: (/)() (/)() P X H P H P H X P X = (1) 简单朴素贝叶斯分类器进行分类操作的步骤说明如下: 1. 每个数据样本均是由一个n 维特征向量X ={x 1,x 2, ……, x n }来描述其n 个属性(A 1, A 2, ……, A n )的具体取值. 2. 假设共有m 个不同类别,{C 1, C 2, ……, C n }.给定一个未知类别的数据样本X ,分类器在已知样本X 的情况下,预测X 属于事后概率最大的那个类别.也就是说,朴素贝叶斯分类器将未知类别的样本X 归属到类别C i ,当且仅当:P (C i /X )> P (C j /X ) 其中1≤j ≤m ,j ≠i . 也就是P (C i /X )最大.其中的类别C i 就称为最大事后概率的假设,根据Bayes 定理可知, (/)() (/)() i i i P X C P C P C X P X = (2) 3. 由于P (X )对于所有的类别均是相同的,所以,要使公式(2)取得最大值,只需要P (X /C i )P (C i )取最大即可.类别的事前概率P (C i )可以通过公式P (C i )=s i /s 进行估算,其中s i 为训练样本集合类别C i 的个数,s 为整个训练样本集合的大小.

相关主题