搜档网
当前位置:搜档网 › 基于ANSYS WORKBENCH的装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析
基于ANSYS WORKBENCH的装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析

模拟装配体的本质就是设置零件与零件之间的接触问题。

装配体的仿真所面临的问题包括:

(1)模型的简化。这一步包含的问题最多。实际的装配体少的有十几个零件,多的有上百个零件。这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。

(2)零件之间的联接。装配体的一个主要特征,就是零件多,而在零件之间发生了关系。我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢?

(3)材料属性的考虑。在一个复杂的装配体中所有的零件,其材料属性多种多样。我们在初次分析的时候,可以只考虑其线弹性属性。但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。(4)有限元网格的划分。我们知道,通过WORKBENCH,我们只需要按一个按钮,就可以得到一个粗糙的网格模型。但是如果从HYPERMESH的角度来看,ANSYS自动划分的网格,很多都是不合理的,质量较差而不能使用。那么对于装配体中的每个零件,我们该如何划分网格?对于每一个零件,我们是否要对之进行切割形成规则的几何体后,然后尽量使用六面体网格?如果

我们这样做的话,那么单单划分网格这一项,就要消耗我们大量的时间。而且,当这种网格划分完以后,我们还需要反复加密网格,反复计算,直到结果的收敛。就如同减速器这样的一个装配体,稍微粗略的划分网格,都是10万多个节点,如果我们网格划分得细密一些,很容易上百万个节点。这么大量的节点,一般的笔记本和台式机计算起来都很困难。这给我们的仿真工作带来了极大的困扰。

这些问题都是前处理中出现的。如何解决这些问题,恐怕要我们广大的CAE工程师和CAE研究人员共同努力,从各个侧面进行研究,得到一些个别的成果,然后在某些时候,再集成起来,得到具有普遍指导意义的方法和结论。

ANSYS WORKBENCH提供的六种接触类型

不少朋友提到了关于接触类型的问题,对于如何使用接触类型弄不清楚。为了帮助刚入门的朋友们了解这些接触类型,笔者首先翻译了ANSYS 关于接触类型的帮助,然后对之进行点评。

翻译的部分帮助如下:

ANSYS WORKBENCH提供了6种接触类型,这些接触类型大多只对面接触使适用。

(1)bonded.使用绑定以后,在接触面或者接触边之间不存在切向的相对滑动或者法向的相对分离。这是缺省的接触类型,适用于所有的接触区域(实体接触,面接触,线接触)。

(2)no separation.这与绑定类似。在接触面或者接触线之间不允许发生法向的相对分离,但是允许发生少量的切向无摩擦滑动。

(3)frictionless:用于模拟无摩擦的单边接触。所谓单边接触,就是说,一旦两个物体之间出现了分离,则法向力就为零。因此当外力发生改变时,接触面之间可能会分开,也可能会闭合。这种情况下假设摩擦系数为零,即当发生切向相对滑动时,没有摩擦力。

(4)rough:与无摩擦接触类型相似。它模拟非常粗糙的接触,保证两个物体之间只是发生静摩擦,而不会发生切向的滑移,从而不会产生滑动摩擦。它相当于在两个物体之间施加了无限大的摩擦系数。

(5)frictional:有摩擦的接触。这是最实际的情况,两个接触面之间既可以法向分离,也可以切向滑动。当切向外力大于最大静摩擦力后,发生切向滑动。一旦发生切向滑动后,会在接粗面之间出现滑动摩擦力,该滑动摩擦力要根据正压力和摩擦系数来计算。此时需要用户输入摩擦系数。

(6)forced frictional sliding:该选项只对刚体动力学适用。它与frictional类型类似,只是没有静摩擦阶段。此时,系统会在每个接触点上施加一个切向的阻力。该切向阻力正比于法向接触力。

到底使用哪种接触类型,取决于你需要解决的问题。如果(1)需要模拟两个物体之间轻微的分离(2)要获得接接触面附近的应力,那么可以考虑下列三种接触类型:frictionless,rough和frictional.它们可以模拟间隙,并能更精确的建模真实的接触区域。不过使用这三种接触会导致更长的求解时间,也可能会导致收敛问题。如果出现了收敛问题,那么可以对接触区域使用更细的网格。

笔者的点评如下:

装配体的分析中,如何对两个物体之间的连接关系进行建模是一个关键技术问题。对于连接关系,总体考虑如下:

(1)如果两个相邻物体在分析中始终不会有相对运动,最好直接在DM中用多体部件来表达,这最省事。

(2)如果两个相邻物体在分析中存在相对运动,而我们并不关注其连接点附近的应力情况,那么用运动副来表述更简单。

(3)如果相邻两物体在分析中有相对运动,而且我们对这种相对运动的接触面及其附近点的应力情况感兴趣,那么使用接触。

关于接触类型的分类问题。

实际上,接触就是依据两个物体之间是否有切向和法向的相对分离来进行划分的。在两个相互接触的物体之间,也只能发生这两种运动。要么,在法线方向上可以分开;要么在切线方向上可以发生相对移动。

如果

(1)法线方向不可分开,切线方向也不可发生相对滑动,则使用boneded。

(2)法线方向不可分开,切线方向可以发生轻微的无摩擦滑动,则使用no separation.

(3) 法线方向可以分开,切线方向不可以发生相对滑动,则用rough.

(4) 法线方向可以分开,切线方向可以发生相对滑动,且没有摩擦力。则是frictionless。

(5) 法线方向可以分开,切线方向可以发生相对滑动,存在摩擦力。则是frictional。基于Ansys Workbench的接触分析例子1

前面一篇基于Ansys经典界面的接触分析例子做完以后,不少朋友希望了解该例子在Workbench中是如何完成的。我做了一下,与大家共享,不一定正确。毕竟这种东西,教科书上也没有,我只是按照自己的理解在做,有错误的地方,恳请指正。

1.问题描述

一个钢销插在一个钢块中的光滑销孔中。已知钢销的半径是0.5 units, 长是2.5 units,而钢块的宽是4 Units, 长4 Units,高为1 Units,方块中的销孔半径为0.49 units,是一个通孔。钢块与钢销的弹性模量均为36e6,泊松比为0.3.

由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。现在要对该问题进行两个载荷步的仿真。

(1)要得到过盈配合的应力。

(2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。

2.问题分析

由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。

进行该分析,需要两个载荷步:

第一个载荷步,过盈配合。求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。

第二个载荷步,拔出分析。往外拉动钢销1.7 units,对于耦合节点上使用位移条件。打开自动时间步长以保证求解收敛。在后处理中每10个载荷子步读一个结果。

本篇只谈第一个载荷步的计算。

3.生成几何体

上述问题是ANSYS自带的一个例子。对于几何体,它已经编制了生成几何体的命令流文件。所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。

(3.1)首先打开ANSYS APDL14.5.

(3.2)然后读入已经做好的几何体。从【工具菜单】-->【File】-->【Read Input From】打开导入文件对话框

找到ANSYS自带的文件

\Program Files\Ansys Inc\V145\ANSYS\data\models\block.inp 【OK】后四分之一几何模型被导入,结果如下图

(3.3)导出几何模型

从【工具菜单】】-->【File】-->【Export】打开导出文件对话框,在该对话框中设置如下

即把数据库中的几何体导出为一个block.igs文件。【OK】以后该文件被导出。

(3.4)退出ANSYS APDL14.5.

选择【OK】退出经典界面。

4.打开Ansys WorkBench,并新建一个静力学分析系统。

结果如下图

导入几何体模型。在Geometry单元格中,选择Import Geometry -->Browse,如下图

找到上一步所生成的block.igs文件。则该静力学系统示意图更新如下。可见,几何单元格后面已经打勾,说明文件已经关联。

5.浏览几何模型

双击Geometry单元格,打开几何体。在弹出的长度单位对话框内,选择米(Meter)的单位。

然后按下工具栏中的Generate按钮如下图

则主窗口中模型如下图

可见,长方形的变长是2m,这与题目中给定的大小是一致的。

然后退出DesignModeler,则又重新回到WorkBench界面中。

6.定义材料属性

双击Engineering Data,则默认材料是钢材。这里直接修改该钢材的属性即可。只有线弹性材料属性:弹性模量36E6和泊松比0.3

然后在工具栏中选择“Return To Project”以返回到WorkBench界面中。

7.创建接触

在主窗口中分别选择目标面,接触面如下

然后对该接触的细节面板设置如下

其中,

(1)说明接触类型是带摩擦的接触,摩擦系数是0.2,是非对称接触

(2)指明法向接触面的刚度因子是0.1.

8.划分网格

双击Model单元格进入到Mechanical中。在mesh下面插入一个method,并设置该方法为Sweep method.在其细节视图中选择Geometry为两个物体。则ANSYS会对这两个物体按照扫描方式划分网格。

在Mesh下面再插入一个尺寸控制,用于控制钢销的两个直角边为3等分。

在Mesh下面再插入另外一个尺寸控制,用于控制钢销的1个圆弧边为4等分。

按下Generate 后,则生成的有限元模型如下图。

9.设置边界条件

设置四个面为对称边界条件

然后还要固定钢块的一个面

此时模型树的结构如下图

10.进行求解设置

进行分析设置

其中,(1)意味着只有一个载荷步,该载荷步也只有一个载荷子步,关闭了自动时间步长,该载荷步结束的时间是100.

(2)的意思是打开大变形开关。

11.求解

在右键菜单中选择Solve进行计算。

12.后处理

查看总体的米塞斯应力如下图

可见,最大的应力是0.46Mpa左右,而在经典界面中得到的最大米塞斯应力是0.29Mpa。这主要应该是由于两边的网格划分不一致所导致的。

查看接触处的状态(只考察接触面)

下面是接触处的渗透图

可见,最大渗透量是4.78mm,这与经典界面中的同样有区别。下图是接触压力

大致为0.26Mpa,同样比经典界面要大。

可见,这里给出的各个应力都要比经典界面大,但是都在一个量级上,一般来说,这应该是网格划分不相同的结果。如果进一步细分网格,无论经典界面还是Workbench均应该收敛到同一个值。

装配体有限元分析

1.在对装配体进行有限元分析时,我说的装配体指的是大型机械整机的装配体,比如机床,模锻水压机之类的,其中比如底座等部位有螺纹连接,进行分析时,怎么处理?

2.ansys软件中,用glue粘接和将两部分建模的时候直接就建成一个整体,这两者有什么区别?

保留螺纹孔装配即可(去掉螺钉、螺纹),然后进行模态分析的时候,早螺纹孔处施加约束即可。

确定分析什么,主要影响因数。分析模态,主要是把整机的质量,和固定方式确定好就可以了。注意整机材料设定。

1、螺钉连接的处理方式很多,有时候可以用MPC来处理

2、glue和螺钉连接不一样,而这差别较大!

glue类似于接触中的绑定。。。

图元之间仍然相互独立。。。只是在边界上予以粘结。。。

使模型成为一个多体部件。。。

模态分析中。。。结构的固有频率只与它的质量与刚度有关。。。

对整机模态分析,直接用GLUE处理螺栓联接面是很粗糙的建模方式,与实际相差比较大。见得比较多的处理方法是用弹簧阻尼单元联接两个部件,看几篇相关的论文就清楚了

1、装配体分析一般不考虑螺栓这样的细节吧?螺栓这样的东西通常是可以手算的。我们用ansys通常是因为一些东西太复杂,手算没法算。

2、区别在于,直接建的话,交界的地方可能没有节点。而那个地方比较关键的话,你可能希望那里有节点。

[求助]求助workbench装配体模态分析

本人刚刚接触workbench,就是冲着装配体分析去的,我先用pro/E画了两个齿轮箱外壳,然后用刚性装配成一个组件,导出igs,然后打开workbench,模态分析模块,材料默认的结构钢,我没有改动,然后导入igs,单位设置成mm,默认方式划分网格,然后求了15阶模态,结果出来了,过程中没有错误提示,但是每阶频率数值太小,50HZ到120HZ,和我用ansys计算的相差很大,ansys算的是100HZ到800HZ,请问这是什么原因?请各位大神把可能的问题都给我指出来吧,谢谢了

ansys模态分析基本上是不考虑非线性的

模态分析对网格质量要求也不高

重点关注模型及边界条件的简化

按这些思路去分析吧

约束对分析结果也有很大滴影响,楼主看看约束关系整错没有。

[求助]求助齿轮箱装配体ansys模态分析

初始悬赏金币5 个

本人新手,想对一个完整的齿轮箱装配模型进行模态分析,齿轮箱模型是用pro/E建立的,导入到ansys

中进行分析,各个零件之间装配关系需要如何设定?希望各位踊跃发言啊

1.从振动方程上可以看出,约束不足是求不出来结果的,也就是说会出现平动,即为0的模态,因此,一般都是将其在各个方向上都约束死,保证不会出现欠约束情况。

2.零部件之间的约束关系的确定,从有限元的角度看,一般都是将重合面上的节点对应合并,至于合并到什么程度,一般很难确定,需要不断地做实验来修正约束数目。

3.还有一种约束方式,如果两个部件之间有同轴度等要求,就需要将其中心点合并,这种方法很多书上都有,

有些书上的约束基本不考虑工程问题,还有些干脆回避,只是将方法讲一下,由我们自己去举一反三。

装配体的模态分析并不复杂,原理和单个零件的模态分析是一样的。只要注意以下几点:

1 整体的约束条件设置必须符合实际情况。与静力分析不同,即使没有约束,也是可以进行模态分析的,只是会出现最多6 个刚体运动。

2 由于装配体是由多个零件组成的,各个零件的约束就成了问题。一般情况,不应该对每个零件单独施加约束,而是要通过零件之间的连接关系(装配关系) 来为它们提供合适的约束。如果约束不当,则会出现某些零件单独的刚体运动,从而破坏了装配的整体性。

3 一般情况,零件之间的装配关系可以采用:节点耦合、约束方程、RBE3、接触等,多种方式来模拟,具体使用哪一种方式,要根据装配的具体情况来确定。

谢谢您的解答那么能否给我推荐一些关于装配体模态分析的资料?最好有实例分析的那种... youku上有

先计算接触应力状态,在此基础上计算模态

简化

接触很复杂用些弹簧阻尼模拟,需要看一些资料

其实整个轴承的模态计算似乎没有多大必要吧,个人觉得很难说做的结果对错,对于振动有何指导。

ansys对装配体做模态分析时,怎样处理接触部分?

是先网格划分呢还是先进行布尔运算?是利用add还是glue?

采纳率:56%11级2013.07.09

在划分网格之间进行布尔操作,因为对于装配体而言网格的划分跟模型连接有很大关系,在划分网格的时候会产生过度网格。同时对于两种布尔操作的方法我认为都不是太合适,无论是add还是glue默认的都是刚性接触,所以对于振动传递的时候不能完全模拟实际的工作状态,所以你最好创建一下接触对或者你使用workbench进行操作试一试,有可能会好一下。

精讲solidworks有限元分析步骤

2013-08-29 17:31 by:有限元来源:广州有道有限元 1. 软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2. 使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。

ANSYS经典界面与workbench结合进行仿真分析

联合ANSYS WORKBENCH和经典界面进行后处理 (2012-12-18 18:58:55) 转载 标签: ansys 分类:CAE 前面几篇文章已经提到过,ANSYS WORKCENCH主要是为不大懂ANSYS命令和编程的工程师服务的,而经典界面则适用于初学者和研究人员。初学者和研究人员是完全不同的两个层次,为什么ANSYS经典界面却同时适合二者呢 实际上,学好ANSYS,关键并非是操作界面,而是要学好有限元。如果初学者直接从WORKBENCH来学习ANSYS,那么对于有限元就毫无收获,可以说一头雾水。而如果从经典界面进去,因为涉及到很多与有限元概念密切相关的操作,对于理解有限元很有好处。只是学到一定程度以后,需要转移到WORKBENCH中进行三维零件的分析和装配体的分析。 而当我们用到一定程度以后,发现WOKRBENCH虽然操作方便,但是的确不容易操作底层。前面的文章已经说明了如何联合二者进行仿真,以充分使用WOKRNBEHCN对于建模的方便性以及经典界面对于底层的操控性。这里再举一个例子,说明如何用WOKRBENCH进行建模,而后在经典界面中进行后处理,目的是为研究人员提供参考。 一个两边固定的梁,上面受到分布载荷作用如下图。 该分布载荷随时间而改变,其载荷的时间历程如下曲线,从0-1秒,载荷增加到1Mpa,而后保持1秒钟,接着减小到0Mpa,终止时间是3秒。 为了便于控制,这里对每个载荷步均采用自定义载荷子步的方式,划分为10个载荷子步,见下面的细节视图。

然后进行瞬态隐式动力学分析,得到该梁的位移和von mises应力。 我们现在要知道该梁上某一个应力最大的点,其应力是如何随时间而改变的。这个任务使用WOKRBENCH很难达到,但是用经典界面则轻而易举,因此我们决定使用经典界面进行后处理。 要使用经典界面后处理,只需要把WORKBENCH中生成的结果文件导入到经典界面中即可。 首先找到WORKBENCH中生成的结果文件如下图所示的路径。该文件叫, 为了方便,把拷贝到D盘的根目录下,然后启动ANSYS APDL,即经典界面。 进入经典界面后,直接进入通用后处理,并点击data file opts,以便读入结果文件。

Ansys有限元分析实例[教学]

Ansys有限元分析实例[教学] 有限元分析案例:打点喷枪模组(用于手机平板电脑等电子元件粘接),该产品主要是使用压缩空气推动模组内的顶针作高频上下往复运动,从而将高粘度的胶水从喷嘴中打出(喷嘴尺寸,0.007”)。顶针是这个产品中的核心零件,设计使用材料是:AISI 4140 最高工作频率是160HZ(一个周期中3ms开3ms关),压缩空气压力3-8bar, 直接作用在顶针活塞面上,用Ansys仿真模拟分析零件的强度是否符合要求。 1. 零件外形设计图:

2. 简化模型特征后在Ansys14.0 中完成有限元几何模型创建:

3. 选择有限元实体单元并设定,单元类型是SOILD185,由于几何建模时使用的长度单位是mm, Ansys采用单位是长度:mm 压强: 3Mpa 密度:Ton/M。根据题目中的材料特性设置该计算模型使用的材料属性:杨氏模量 2.1E5; 泊松比:0.29; 4. 几何模型进行切割分成可以进行六面体网格划分的规则几何形状后对各个实体进行六面体网格划分,网格结果: 5. 依据使用工况条件要求对有限元单元元素施加约束和作用载荷:

说明: 约束在顶针底端球面位移全约束; 分别模拟当滑块顶断面分别以8Bar,5Bar,4Bar和3Bar时分析顶针的内应力分布,根据计算结果确定该产品允许最大工作压力范围。 6. 分析结果及讨论: 当压缩空气压力是8Bar时: 当压缩空气压力是5Bar时:

当压缩空气压力是4Bar时: 结论: 通过比较在不同压力载荷下最大内应力的变化发现,顶针工作在8Bar时最大应力达到250Mpa,考虑到零件是在160HZ高频率在做往返运动,疲劳寿命要求50百万次以上,因此采用允许其最大工作压力在5Mpa,此时内应力为156Mpa,按线性累积损伤理论[3 ]进行疲劳寿命L-N疲劳计算,进一部验证产品的设计寿命和可靠性。

基于ANSYS WORKBENCH的装配体分析

基于ANSYS WORKBENCH的装配体分析 近半年以来,我一直忙于ADAMS书籍的撰写工作,其中也做了一些ADAMS相关的研究。而与此同时,博客上很多朋友的提问却集中在ANSYS 上面,有些问题我一看就可以解决的,会当时回复。而有些问题觉得还需要考虑一下的,就让研究生来帮助我解决。 在解决这些问题的过程中,我越来越感觉到,大量的问题,集中在基于ANSYS WORKBENCH的装配体分析上。实际上,我也一直在持续关注这方面的研究进展,而且也准备着在这个方向能尽自己的微薄之力。尽管现在还没有时间去做这件事情,但是我仍旧愿意就这个方向谈谈我的一些初步想法。 我们知道,在我国,真正使用有限元软件做仿真,其历史并不长久,也就是近二十多年的事情。最初我们使用ALGOR,接着使用NASTRAN,而ANSYS则是近些年在高校用得相对较多。记得十几年前我读博士时,搜索ANSYS相关的书籍,那个时候种类很少,而且都是经典界面下的。到2008年左右,当我再看ANSYS相关的书籍时,就已经出现了类似现在WORKBENCH的书籍,但是这些书籍很少真正去写WORKBENCH,而只是虚晃一枪,其主要精力仍旧集中在ANSYS经典界面的操作上。 到今天,在机械工程领域,越来越多的场合需要使用有限元软件来计算强度,刚度问题,而且我们发现,所出现的问题,绝大部分属于装配体的分析。但是如果我们在市面上寻找WOKRBNCH做装配体分析的书籍,我们恐怕会大失所望。专门谈装配体分析的书籍相当少。这两年,关于WOKRBNCH的书倒是有了一些,但是大多倾向于把传统经典界面的

一套直接移植过来,就是用WOKRBNCH来分析经典界面中做了一些例题,而对于我们实践中急需的装配体分析的专门技术,却很少涉及。实际上,别说书籍,就连学术文献,如果我们到数据库中去搜索装配体分析方面的学术文献的话,我们也会无功而返。 于是出现了这样的现实,一方面,在工程实践中大量的装配体需要仿真,从而大量的CAE工程师急需理论指导;而另一方面,在学术界对于装配体分析方面的研究,文章和书籍却很少,这不能不让人感到困惑。 在这里,笔者打算抛砖引玉,先抛出一些装配体研究的基本问题,以后,请感兴趣的朋友加以研究。在ADAMS的书写完以后,笔者也会把精力转移到此方向上来。 装配体的仿真所面临的问题包括: (1)模型的简化。这一步包含的问题最多。实际的装配体少的有十几个零件,多的有上百个零件。这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么

ANSYS 有限元分析 平面薄板

《有限元基础教程》作业二:平面薄板的有限元分析 班级:机自101202班 姓名:韩晓峰 学号:201012030210 一.问题描述: P P h 1mm R1mm 10m m 10mm 条件:上图所示为一个承受拉伸的正方形板,长度和宽度均为10mm ,厚度为h 为1mm ,中心圆的半径R 为1mm 。已知材料属性为弹性模量E=1MPa ,泊松比为0.3,拉伸的均布载荷q = 1N/mm 2。根据平板结构的对称性,只需分析其中的二分之一即可,简化模型如上右图所示。 二.求解过程: 1 进入ANSYS 程序 →ANSYS 10.0→ANSYS Product Launcher →File management →input job name: ZY2→Run 2设置计算类型 ANSYS Main Menu: Preferences →select Structural → OK 3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK → Options… →select K3: Plane Strs w/thk →OK →Close 4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX: 1e6, PRXY:0.3 → OK 5定义实常数以及确定平面问题的厚度 ANSYS Main Menu: Preprocessor →Real Constants …→Add/Edit/Delete →Add →Type 1→OK →Real Constant Set No.1,THK:1→OK →Close 6生成几何模型 a 生成平面方板 ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Rectangle →By 2 Corners →WP X:0,WP Y:0,Width:5,Height:5→OK b 生成圆孔平面 ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Circle →Solid Circle →WPX=0,WPY=0,RADIUS=1→OK b 生成带孔板 ANSYS Main Menu: Preprocessor →Modeling →Operate →Booleans → Subtract →Areas →点击area1→OK →点击area2→OK 7 网格划分 ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool →(Size Controls) Global: Set →SIZE: 0.5 →OK →iMesh →Pick All → Close 8 模型施加约束

★★★装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析 模拟装配体的本质就是设置零件与零件之间的接触问题。 装配体的仿真所面临的问题包括: (1)模型的简化。这一步包含的问题最多。实际的装配体少的有十几个零件,多的有上百个零件。这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。 (2)零件之间的联接。装配体的一个主要特征,就是零件多,而在零件之间发生了关系。我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢? (3)材料属性的考虑。在一个复杂的装配体中所有的零件,其材料属性多种多样。我们在初次分析的时候,可以只考虑其线弹性属性。但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。(4)有限元网格的划分。我们知道,通过WORKBENCH,我们只需要按一个按钮,就可以得到一个粗糙的网格模型。但是如果从HYPERMESH的角度来看,ANSYS自动划分的网格,很多都是不合理的,质量较差而不能使用。那么对于装配体中的每个零件,我们该如何划分网格?对于每一个零件,我们是否要对之进行切割形成规则的几何体后,然后尽量使用六面体网格?如果

ansys有限元分析作业经典案例教程文件

有 限 元 分 析 作 业 作业名称 输气管道有限元建模分析 姓 名 陈腾飞 学 号 3070611062 班 级 07机制(2)班 宁波理工学院

题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5 管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK

2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。 图2 3.设置材料属性。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框。 图3 3.创建几何模型 1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

ansys有限元分析工程实例大作业

ansys有限元分析工程实例大作业

————————————————————————————————作者:————————————————————————————————日期:

辽宁工程技术大学 有限元软件工程实例分析 题目基于ANSYS钢桁架桥的静力分析专业班级建工研16-1班(结构工程)学号 471620445 姓名 日期 2017年4月15日

基于ANSYS钢桁架桥的静力分析 摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了有限元建模;对桁架桥进行了静力分析,作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面。 关键词:ANSYS;钢桁架桥;静力分析;结构分析。 引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其应用计算机和求解软件快速进行力学分析了解其受力特性具有重要的意义。 1、工程简介 某一下承式简支钢桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1,材料属性见表2。桥长32米,桥高5.5米,桥身由8段桁架组成,每个节段4米。该桥梁可以通行卡车,若只考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1,P2,和P3,其中P1=P3=5000N,P2=10000N,见图2,钢桥的形式见图1,其结构简图见图3。

ansys有限元分析大作业

ansys有限元分析大作业

有限元大作业 设计题目: 单车的设计及ansys有限元分析 专业班级: 姓名: 学号: 指导老师: 完成日期: 2016.11.23

单车的设计及ansys模拟分析 一、单车实体设计与建模 1、总体设计 单车的总体设计三维图如下,采用pro-e进行实体建模。 在建模时修改proe默认单位为国际主单位(米千克秒 mks) Proe》文件》属性》修改

2、车架 车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。

二、单车有限元模型 1、材料的选择 单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。 其属性如下: 弹性模量:) .6+ 90E (2 N/m 10 泊松比:0.33 质量密度:) 3 2.70E+ N/m (2 抗剪模量:) 60E .2+ N/m (2 10 屈服强度:) .2+ (2 75E 8 N/m 2、单车模型的简化 为了方便单车的模拟分析,提高电脑的运算

效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。简化后的车架如下图所示。 3、单元体的选择 单车车架为实体故定义车架的单元类型为实体单元(solid)。查资料可以知道3D实体常用结构实体单元有下表。 单元名称说明 Solid45 三维结构实体单元,单元由8个节点定义,具有塑性、蠕变、应力刚化、 大变形、大应变功能,其高阶单元是 solid95

ANSYS有限元分析实例

有限元分析 一个厚度为20mm的带孔矩形板受平面内张力,如下图所示。左边固定,右边受载荷p=20N/mm作用,求其变形情况 P 一个典型的ANSYS分析过程可分为以下6个步骤: ①定义参数 ②创建几何模型 ③划分网格 ④加载数据 ⑤求解 ⑥结果分析 1定义参数 1.1指定工程名和分析标题 (1)启动ANSYS软件,选择File→Change Jobname命令,弹出如图所示的[Change Jobname]对话框。 (2)在[Enter new jobname]文本框中输入“plane”,同时把[New log and error files]中的复选框选为Yes,单击确定 (3)选择File→Change Title菜单命令,弹出如图所示的[Change Title]对话框。 (4)在[Enter new title]文本框中输入“2D Plane Stress Bracket”,单击确定。 1.2定义单位

在ANSYS软件操作主界面的输入窗口中输入“/UNIT,SI” 1.3定义单元类型 (1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。 (2)单击[Element Types]对话框中的[Add]按钮,在弹出的如下所示[Library of Element Types]对话框。 (3)选择左边文本框中的[Solid]选项,右边文本框中的[8node 82]选项,单击确定,。 (4)返回[Element Types]对话框,如下所示 (5)单击[Options]按钮,弹出如下所示[PLANE82 element type options]对话框。

workbench大型机械装配体有限元计算(工作经验总结)

大型机械装配体的有限元分析步骤 1.模型简化: 由于模型较大,建议将模型分成几个模块去简化,简化后的模型试画网格,能完成则初步证明模型合格。 (1)其中对于不重要的小孔,小倒角能去就去,螺纹孔必须去掉,否则严重影响网格划分; (2)复杂的标准件,螺栓可简化为去螺纹的螺柱,或直接去掉; (3)焊缝处理,除非专门校核焊缝强度,一般将焊缝等同于母体材料; (4)焊缝坡口,间隙必须填满,这才符合实际。 2.模型的检查: 简化模型后需要检查干涉,检查模型有无间隙,有无干涉,有无多余的线、面。 (1)干涉处理:重新修改模型,如果通过布尔求和,干涉部位消失可不处理;(2)间隙处理:通过三维软件进行剖视图检查,或者通过布尔求和,有间隙部件则不能求和。 3.模型的快速网格划分: 在此推荐先采用默认网格进行划分。采用默认网格划分的优点是速度特别快,这样非常有利于发现问题,便于进一步修改模型。 但是也有特例:如果模型比较大,且有很多小特征,比如倒角、倒圆,则不容易划分成功,需要设置小的sizing进行处理。 4.网格划分失败针对策略: 网格划分失败的千差万别,必须仔细分析,这也是有限元分析的乐趣之一。原因主要如下; (1)模型不准确。模型存在干涉、间隙、多余的线、面等。 (2)划分网格方法不当,重新设置sizing,设置新的网格划分方法等。 5.网格数量与内存匹配 网格比较耗内存,一般100万网格,需要10G内存。普通的笔记本4G-8G,能计算的网格也就在40万-80万左右,超过此数值则计算非常耗时,有时甚至不能计算。

对此可采用如下策略: (1)对称模型:进行二分之一,或者四分之一的计算; (2)不对称模型:建议粗化网格,或者采用局部模型分析; 6.网格质量分析: (1)skewness越小越好,一般<0.7可以接受; (2)element quality 越大越好,最好为1; (3)雅克比比率:Jacobian Ratio,越小越好,最好为1; (4) aspect ratio。最好的值为1。值越大单元越差。 (5)warping factor。0说明单元位于一个平面上,值越大说明单元翘曲越厉害。网格模型一般都为0; (6)parallel deviation。0最好。网格模型一般都为0。 参数中前4项比较重量,多次修改网格后尽量达到标准。 7.载荷和约束的施加 这是很关键的一步,必须对模型的受力有准确的分析,否则结果不正确。过约束,计算结果小;欠约束,计算结果大。 (1)学会理论力学、材料力学; (2)对于特别小的面施加力,网格比较很小,否则力传递不下去; 8.结果分析 最好有试验进行对比,没有试验有之前的经验值也可。如果都没有,那么需要仔细分析结果。 (1)应力集中点:对于单独的应力特别大的点,可以忽略,或者用子模型法进行重新计算; (2)对于大型模型,在workbench中有2中计算方法:1)整体布尔求和后求解,2)单个部件通过Form new part 进行求和。通常情况下,用布尔求和的方法,计算的应力要小些; (3)最好设置不同的sizing,多计算几次,如果结果比较接近,则证明计算结果比较准确;

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

ansys有限元分析作业经典案例

有 限 元 分 析 作 业 作业名称 输气管道有限元建模分析 姓 名 陈腾飞 学 号 3070611062 班 级 07机制(2)班 宁波理工学院

题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5 管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK

2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。 图2 3.设置材料属性。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框。 图3 3.创建几何模型 1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK

solidworks有限元分析范例

注意:本文件内容只是一个简短的分析报告样板,其内相关的分析条件、设置和结果不一定是正确的,您还是要按本书正文所教的自行来做。 一、范例名: (Gas Valve气压阀) 1 设计要求: (1)输入转速1500rpm。 (2)额定输出压力5Mpa,最大压力10Mpa。 2 分析零件 该气压泵装置中,推杆活塞、凸轮轴和箱体三个零件是主要的受力零件,因此对这三个零件进行结构分析。 3 分析目的 (1)验证零件在给定的载荷下静强度是否满足要求。 (2)分析凸轮轴零件和推杆活塞零件的模态,在工作过程中避开共振频率。 (3)计算凸轮轴零件的工作寿命。 4 分析结果 1.。推杆活塞零件 材料:普通碳钢。 在模型上直接测量得活塞推杆的受力面积S为:162mm2,由F=PS计算得该零件端面的力F为:1620N。所得结果包括: 1 静力计算: (1)应力。如图1-1所示,由应力云图可知,最大应力为21Mpa,静强度设计符合要求。 (2)位移。如图1-2所示,零件变形导致的最大静位移为2.2e-6m。 (3)应变。如图1-3所示,应变云图与应力云图的对应的,二者之间存在一转换关系。

图1-1 应力云图图1-2 位移云图 图1-3 应变云图图1-4 模态分析 2 模态分析: 图1-4的“列举模式”对话框中列出了“推杆活塞”零件在工作载荷下,其前三阶的模态的频率远远大于输入转速的频率,因此在启动及工作过程中,该零件不会发生共振情况。模态验证符合设计要求。 2。凸轮轴零件 材料:45钢,屈服强度355MPa。 根据活塞推杆的受力情况,换算至该零件上的扭矩约为10.5N·m。 1 静力分析: 如图1-5所示为“凸轮轴”零件的应力云图,零件上的最大应力为212Mpa,平均应力约为120MPa,零件的安全系数约为1.7,符合设计要求。 图1-5 应力云图图1-6 模态分析 2 模态分析

装配体有限元分析

基于ANSYS WORKBENCH得装配体有限元分析 模拟装配体得本质就就是设置零件与零件之间得接触问题。 装配体得仿真所面临得问题包括: (1)模型得简化。这一步包含得问题最多。实际得装配体少得有十几个零件,多得有上百个零件。这些零件有得很大,如车门板;有得体积很小,如圆柱销;有得很细长,如密封条;有得很薄且形状极不规则,如车身;有得上面钻满了孔,如连接板;有得上面有很多小突起,如玩具得外壳。在对一个装配体进行分析时,所有得零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,就是否会出现应力集中?就是否可以删除小孔,如果删除,就是否会刚好使得应力最大得地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合得装配体中,我们可以对杆件进行抽象吗?或者只就是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大得影响,我们可以得到一个大致得误差范围吗?所有这些问题,都需要我们仔细考虑。 (2)零件之间得联接。装配体得一个主要特征,就就是零件多,而在零件之间发生了关系。我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定得方式来设置接触。如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。如果使用了运动副,那么这种建模方式对于零件得强度分析会造成多大得影响?在运动副得附近,我们所计算得应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢? (3)材料属性得考虑。在一个复杂得装配体中所有得零件,其材料属性多种多样。我们在初次分析得时候,可以只考虑其线弹性属性。但就是对于高温,重载,高速情况下,材料得属性不再局限于线弹性属性。此时我们恐怕需要了解其中得每一种材料,它就是超弹性得吗?就是哪一种超弹性得?它发生了塑性变形吗?该使用哪一种塑性模型?它就是粘性得吗?它就是脆性得吗?它得属性随着温度而改变吗?它发生了蠕变吗?就是否存在应力钢化问题?如此众多得零件,对于每一个零件,我们都需要考察其各种各样得力学属性,这真就是一个丰富多彩得问题。 (4)有限元网格得划分。我们知道,通过WORKBENCH,我们只需要按一个按钮,就可以得到一个粗糙得网格模型。但就是如果从HYPERMESH得角度来瞧,ANSYS自动划分得网格,很多都就是不合理得,质量较差而不能使用。那么对于装配体中得每个零件,我们该如何划分网格?对于每一个

第13章 有限元分析的装配技术

第13章有限元分析的装配技术 第1节基本知识 一、模型的归档与模型的合并装配 在实际问题中,创建的有限元模型最后必须装配起来形成部件或装配体。将每个有限元模型按一定规则写出,供装配时调用的过程叫模型的归档;将归档的不同有限元模型装配起来,就是模型的合并过程,在模型的合并过程中必须注意合并模型的各种实体对象和属性参数编号的冲突,避免发生重用编号等问题。 ANSYS提供了进行模型合并装配的功能,执行菜单Main Menu>Preprocessor>Archive> Model,有两个选项:一个是Write,用于写出各零件模型;另一个是Read,用于读入各个零件模型。 1.模型的归档—写出 执行菜单路径Main Menu>Preprocessor>Archive> Model>Write,弹出如图13-1所示的模型归档—写出模型文件对话框,各项设置如下。 ●Data to Archive:选择All Associated FE and IGES(2 file),写出IGES文件和所有有限元模型及其相关文件信息,包括几何信息、材料属性、组件数据。 ●Archive file:输入归档模型文件名,文件后缀为cdb。 ●IGES file:输入IGES格式文件。 图13-1 模型归档—写出设置 2.模型的归档读入 执行菜单路径Main Menu>Preprocessor>Archive> Model>Read,弹出如图13-2所示的模型归档—读入模型文件对话框,各项设置如下。 ●Data to Archive:选择All Associated FE and IGES(2 file),读入IGES文件和所有有限元模型及其相关文件信息,包括几何信息、材料属性、组件数据。 ●Archive file:输入归档模型文件名,文件后缀为cdb。

ansys有限元分析作业

有限元分析作业 作业名称输气管道有限元建模分析 姓名邓伟 学号 p1202100706 班级:浦机械1007 题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5

管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。

相关主题