搜档网
当前位置:搜档网 › 自适应波束形成

自适应波束形成

自适应波束形成
自适应波束形成

自适应波束形成仿真

一、理想情况

在理想情况下,假设阵列中各阵元是各向同性的且不存在通道不一致、互耦等因素的影响,则()()()t t t =+X AS N 。

在波束形成时,通过适当的时延可以改变阵列的主瓣方向,数字波束形成时可通过复加权来实现,也就是说加权系数可以改变阵列方向图,如果加权系数使得在干扰方向对阵列方向图形成零点,那么就可以完全抑制该干扰,这种加权方式就可通过自适应波束形成的方式来获得。

考虑一个线性阵列,由M=2M ’+1个感应器构成

图1-1 线性阵列空间采样

空间平面波信号为:

0(,)exp[()]s x t j t k x ω=-?

第m 个感应器的坐标为:

?(')m x m M dx

=-

感应器的输出为:

0()(,)exp[(('))]m m x y t s x t j t k m M d ω==--

如果对每个阵列输出采样则信号复包络可构成向量:

1

1

sin sin 2

2

()[]M M jk

d jk

d T s a k e

e

θθ

---=

设干扰(噪声)协方差阵为n R ,则在最大信噪比准则下加权向量w 的最优解为:

*1()n s w R a k -=

波束响应

()(),H p θθθ=∈Θw a

。d 。 。 。 。 。 。 。

1.改变信号、干扰方向

条件:L=1; %采样数(快拍数)

SNR=20; %信号的信噪比

INR1=30; %干扰噪声比

INR2=30; %干扰噪声比

(1) 信号方向:0°干扰方向:20°,-20°

权值W

波束响应P

(2) 信号方向:-10°干扰方向:-20°,30°

权值W

波束响应P

(3) 信号方向:0°干扰方向:10°,20°

权值W

波束响应P

干扰来自不同方向。仿真可见自适应方法能抑制相应的干扰。随干扰方位变化,零点位置也相应变化。波束响应只与加权向量和响应向量有关,与该方向是否存在信号无关。

2.改变信噪比SNR

条件:angle1=0; %信号入射方向

angle2=-20;%干扰信号入射方向

angle3=20;%干扰信号入射方向

INR1=30; %干扰噪声比

INR2=30; %干扰噪声比

(1) SNR=0

(3) SNR=20dB

从图中可以看到,随信噪比变大零点深度略有增加,但不是很多,旁瓣变得更加整齐。小信噪比时,旁瓣比较高,当信噪比足够大时旁瓣幅度就比较稳定。

3. 改变干噪比INR

条件:angle1=0; %信号入射方向

angle2=-20;%干扰信号入射方向

angle3=20;%干扰信号入射方向

SNR=20; %信号的信噪比

(1) INR=0

通过仿真可以看到,随干噪比增大,得到的方向图在干扰方向的零点越来越深。旁瓣幅度比较高,且一直不是十分规整。可见,信噪比影响方向图整体规整情况和旁瓣基本特性,干噪比影响的是零点深度。此外,干噪比影响波束响应的深度。

4.结论

通过仿真分析,可以发现自适应波束形成与信噪比、干噪比及干扰方向的关系: (1) 信噪比越高,方向图零点深度越深,抑制干扰的能力越强; (2) 干噪比越大,加权对干扰的抑制效果越好;

(3) 自适应方法能抑制相应的干扰,随干扰方位变化,零点位置也相应变化。

二、包含误差的情况

传统的自适应波束形成技术是在理想情况下提出的,如阵列信号的导向矢量和相关矩阵均精确已知。然而在实际应用中,阵列天线不可避免的存在各种误差(如阵元响应误差、通道频率响应误差、阵元位置扰动误差、互耦等),各种误差可以综合用阵列幅相误差来表示。而且阵列信号的相关矩阵在实际中是通过有限次快拍数据估计得到的,不可能精确己知。这些误差均对自适应波束形成的性能造成很大的影响。

1. 当信号的己知方向矢量和实际的方向矢量发生偏差时,自适应波束形成器的性

能会急遽下降。a

表示已知的存在偏差的方向矢量,a 是表示真实的方向矢量,误差=-δa

a 。 1) 假定误差δ服从一个均值为零,方差为M M ?∈C 的复高斯分布(,)M N δ0C 。当

(0,0.5)N δ 时:

2) 考虑莱斯传播环境,失配误差δ具有以下模型

1

()l

L

j

l l e a φδθθ==

+

其中,2δσ表示总的失配功率,L 表示由于散射产生的非视距成份。l φ是相对于正确DOA 第l 个非视距成份的相移参数。在仿真中,取L=15,θ0是感兴趣信号的真实入射角,θl 由一个均值为5°,标准差为5°的均匀随机产生器所独立产生。参数l φ服从(0,2π)的均匀分布。

可见,虽然误差有所不同,但均无法满意的去除干扰。与理想情况相比,方向图旁瓣高且不规整。波束响应深度也较小。

2. 当阵元增益存在幅度误差和相位误差时

在理想阵列天线列的情况下,不失一般性,可假定所有阵元增益均为单位增益,然而在实际情况中,阵元增益存在幅度误差和相位误差,分别用△a i 、和△p i 表示,第i 个阵元的复增益可以表示为

(1),1,2,,i j p i i g a e i M ?=+?=

其中,M 为阵元数目。当阵列的幅相误差较小时,第i 个阵元的复增益可以表示为

11,1,2,,i i i i g a j p g i M ≈+?+?=+?=

其中,i i i g a j p ?=?+?表示第i 个阵元的复增益误差。假定各个阵元的复增益误差相互独立,具有相同的方差。复增益误差的方差

22{||},1,2,,g i E g i M σ=?=

复增益矩阵G=diag{g 1,g 2,…,g M },diag{·}表示将矢量转换为对角元素。用a(θ)表示

理想情况下的导向矢量,则存在幅相误差情况下的导向矢量为G a(θ)。因此阵列接收到的数据矢量可表示为

()()()t t t =+x GAs n

另一种结果:

图中的两种结果是在相同条件下得到的。可以发现,得到的结果已无法消除干扰,且结果不稳定。

结论:阵列误差会导致自适应波束形成的输出信干噪比下降,因此需要采用对误差具有稳健性的自适应算法,保证系统性能不受损失。近几十年来一些具有代表意义的稳健波束形成算法陆续被提出,比较有代表性的方法有基于特征空间的自适应波束形成、特征门限法和对角加载技术等,但这些经典的稳健波束形成算法都存在一定的缺陷。在稳健波束形成领域,基于凸优化理论的最差性能优化方法和随机优化算法陆续被提出,即先进的稳健波束形成算法,有待于进一步深入研究。

多波束形成技术研究

多波束形成技术研究 陈晓萍 (中国西南电子技术研究所,四川成都610036) 摘要:讨论了跟踪与数据中继卫星系统(TDRSS)中关于多波束形成的算法,优选的有LMS自适应方式和相位调整自适应方式;并简单介绍了波束控制和波束形成的实现。 关键词:TDRSS;多波束形成;LMS自适应算法;相位调整自适应算法 一、前言 随着航天技术的发展,要求测控通信站能高覆盖地对飞船等多个目标进行测控通信。要解决这个问题靠现有地面测控网和业务接收站已不能满足要求,需要建立天基测控通信系统,即跟踪与数据中继卫星系统(TDRSS)。 TDRSS把测控通信站搬移到天上同步定点轨道的中继星上,从上向下观测中低轨卫星、飞船、航天飞机等空间飞行器,从而提高了覆盖率。为了减轻中继星的复杂性和负担,将中继卫星观测到的数据和信息传到地面,由地面中心站进行处理。TDRSS中继星相控阵天线同时与多个用户航天器保持跟踪,地面站到航天器的正向通讯为时分多波束,反向通讯为码分和同时多波束。为了减轻中继星的负担,中继星上只装有形成正向天线波束扫描所需的电调移相器,由地面终端计算并发出指令,调节星上移相器相位,让天线波束以时分方式扫描对准各用户航天器,在对准期间完成正向数传。多个用户航天器送到中继星的反向数传信号在星上进行多波束形成会大大增加中继星的复杂性,反向信号经星上阵列天线接收和变换,各阵元收到的信号用频分多路方式相互隔离送往地面,由地面接收前端将频分多路还原成同频多路阵元输出,交由终端进行相控阵多波束形成处理。所谓波束形成, 就是利用开环控制或闭环自适应跟踪方法,对不同反向到达的信号用不同的权系数矢量对各阵元输出进行幅度和相位加权, 使各阵元收到的同一用户信号在合成器中得以同相相加, 输出信号最大, 干扰和噪声最小。当存在多个目标时, 地面终端利用码分多址方法和利用多个波束形成器并行地完成各目标的波束合成处理完成各用户的数传与测控。 二、多波束形成算法 数据中继卫星系统在多址方式下,服务对象一般分布在较低的地球轨道上,当用户星离地面的轨道高度在3 000 km以下时,中继星各阵元波束宽度只要26°就可覆盖地球周围的所有用户星。 当用户星以最大速度10 km/s运动,用户星穿过3.5°宽的合成波束所需的时间最短为205 s,所以中继星跟踪用户星所需的波束移动角速度是很小的。假定波束移动步进量为阵合成波束宽度3.5°的5%即0.175°,波束步进间隔时间长达10.5 s。只要计算机能在10.5 s 内依据用户星位置更新相控阵的相位加权系数,就会使合成波束移动并时刻对准目标。 按照目标的捕获与跟踪过程,多波束形成应有3种工作方式:主波束控制方式(开环)、扫描方式(开环)及自跟踪方式(闭环)。 当有先验信息如根据目标的轨道方程计算出目标在空中的当前位置时,可采用开环的主波束控制方式, 由用户星的实时俯仰角和方位角,计算机算出加权系数矢量,送到多波束处理器完成波束加权合成。用户星相对中继星来说角度移动缓慢,随着用户星的移动,计算机实时逐点计算出权系数矢量,可维持主波束的开环跟踪。主波束控制方式一般用于目标的初始捕获,完成后进入自动跟踪状态。 如果没有先验信息不知道目标的起始位置,可以采用波束扫描方式,根据事先制定的空

自适应波束形成与Matlab程序代码注解

1.均匀线阵方向图 (1)matlab 程序 clc; clear all; close all; imag=sqrt(-1); element_num=32;%阵元数为8 d_lamda=1/2;%阵元间距d与波长lamda的关系 theta=linspace(-pi/2,pi/2,200); theta0=0;%来波方向 w=exp(imag*2*pi*d_lamda*sin(theta0)*[0:element_num-1]'); for j=1:length(theta) a=exp(imag*2*pi*d_lamda*sin(theta(j))*[0:element_num-1]'); p(j)=w'*a; end patternmag=abs(p); patternmagnorm=patternmag/max(max(patternmag)); patterndB=20*log10(patternmag); patterndBnorm=20*log10(patternmagnorm); figure(1) plot(theta*180/pi,patternmag); grid on; xlabel('theta/radian') ylabel('amplitude/dB') title([num2str(element_num) '阵元均匀线阵方向图','来波方向为' num2str(theta0*180/pi) '度']); hold on; figure(2) plot(theta,patterndBnorm,'r'); grid on; xlabel('theta/radian') ylabel('amplitude/dB') title([num2str(element_num) '阵元均匀线阵方向图','来波方向为' num2str(theta0*180/pi) '度']); axis([-1.5 1.5 -50 0]);

数字波束形成

摘要 随着高速、超高速信号采集、传输及处理技术的发展,数字阵列雷达已成为当代雷达技术发展的一个重要趋势。数字波束形成(DBF)技术采用先进的数字信号处理技术对阵列天线接收到的信号进行处理,能够极大地提高雷达系统的抗干扰能力,是新一代军用雷达提高目标检测性能的关键技术之一。并且是无线通信智能天线中的核心技术。 本文介绍了数字波束形成技术的原理,对波束形成的信号模型进行了详细的推导,并且用matlab仿真了三种计算准则下的数字波束形成算法,理论分析和仿真结果表明以上三种算法都可以实现波束形成,并对三种算法进行了比较。同时研究了窄带信号的自适应波束形成的经典算法。研究并仿真了基于最小均方误差准则的LMS算法、RLS算法和MVDR自适应算法,并且做了一些比较。 关键词:数字波束形成、自适应波束形成、智能天线、最小均方误差、最大信噪比、最小方差

ABSTRACT With the development of high-speed, ultra high-speed signal acquisition, transmission and processing technology, digital array radar has became an important trend in the development of modern radar technology. Digital beamforming (DBF) technology uses advanced digital signal processing technology to process the signal received by antenna array. It can improve the anti-jamming ability of radar system greatly and it is one of the key technology。It is the core of the smart antenna technology in wireless communication too。 This paper introduces the principle of digital beam forming technology, the signal model of beam forming was presented, And the digital beam forming algorithm under the three calculation criterion was simulated by MATLAB, theoretical analysis and simulation results show that the three algorithms can achieve beamforming, and made some comparison between the three algorithms. At the same time, made some study about the adaptive narrow-band signal beam forming algorithm. Learned and Simulateded the LMS algorithm base on minimum mean square error criterion and RLS algorithm and MVDR algorithm, and do some comparison Key Words:DBF, ADBF, Smart antenna, The minimum mean square error, The maximum signal to noise ratio

波束形成基础原理总结

波束赋形算法研究包括以下几个方面: 1.常规的波束赋形算法研究。即研究如何加强感兴趣信号,提高信道处理增益,研究的是一 般的波束赋形问题。 2.鲁棒性波束赋形算法研究。研究在智能天线阵列非理想情况下,即当阵元存在位置偏差、 角度估计误差、各阵元到达基带通路的不一致性、天线校准误差等情况下,如何保证智能天线波束赋形算法的有效性问题。 3.零陷算法研究。研究在恶劣的通信环境下,即当存在强干扰情况下,如何保证对感兴趣信 号增益不变,而在强干扰源方向形成零陷,从而消除干扰,达到有效地估计出感兴趣信号的目的。 阵列天线基本概念(见《基站天线波束赋形及其应用研究_ 白晓平》) 阵列天线(又称天线阵)是由若干离散的具有不同的振幅和相位的辐射单元按一定规律排列并相互连接在一起构成的天线系统。利用电磁波的干扰与叠加,阵列天线可以加强在所需方向的辐射信号,并减少在非期望方向的电磁波干扰,因此它具有较强的辐射方向性。组成天线阵的辐射单元称为天线元或阵元。相邻天线元间的距离称为阵间距。按照天线元的排列方式,天线阵可分为直线阵,平面阵和立体阵。 阵列天线的方向性理论主要包括阵列方向性分析和阵列方向性综合。前者是指在已知阵元排列方式、阵元数目、阵间距、阵元电流的幅度、相位分布的情况下分析得出天线阵方向性的过程;后者是指定预期的阵列方向图,通过算法寻求对应于该方向图的阵元个数、阵间距、阵元电流分布规律等。对于无源阵,一般来说分析和综合是可逆的。 阵列天线分析方法 天线的远区场特性是通常所说的天线辐射特性。天线的近、远区场的划分比较复杂,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。因此,在分析天线辐射特性时观察点距离应远大于天线总尺寸及三倍的工作波长。阵列天线的辐射特性取决于阵元因素和阵列因素。阵元因素包括阵元的激励电流幅度相位、电压驻波比、增益、方

波束形成Matlab程序

1?均匀线阵方向图%8阵元均匀线阵方向图,来波方向为clc; clear all; close all; 0度 imag=sqrt(_1); element_num=8;% 阵元数为8 d_lamda=1/2;%阵元间距d与波长lamda的关系theta=li nspace(-pi/2,pi/2,200); theta0=0;% 来波方向w=exp(imag*2*pi*dl_lamda*si n(theta0)*[0:eleme nt_nu m-1]'); for j=1:le ngth(theta) a=exp(imag*2*pi*dd_l amda*si n(theta(j))*[0:eleme nt_nu m-1]'); p(j)=w'*a; end figure; plot(theta,abs(p)),grid on xlabel('theta/radia n') ylabel('amplitude') title('8 阵元均匀线阵方向图')

°2 8阵元均匀线阵方向图 7 6 5 4 3 2 1 -15 -1 -0 5 0 06 thetaradian 1 15

8 当来波方向为45度时,仿真图如下 8阵元均匀线阵方向图如下,来波方向为0 度,20log (dB) 8阵元均苛銭阵方向图来波方向为0度

随着阵元数的增加,波束宽度变窄,分辨力提高:仿真图如下 Q d p E = ro 二

2. 波束宽度与波达方向及阵元数的关系 clc clear all close all ima=sqrt(-1); element_num1=16; %阵元数 element_num2=128; element_num3=1024; lamda=0.03; %波长为0.03 米 d=1/2*lamda; % 阵元间距与波长的关系theta=0:0.5:90; for j=1:length(theta); fai(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_n um1*d)); psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_n um2*d)); beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_ num3*d)); end

波束形成技术

LOW C OST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS Introduction WPAN (Wireless Personal Area Network) transceivers are being designed to operate in the 60 GHz frequency band and will mainly be used for home environment radio links. So far, three basic technologies have been developed for implementing these WPAN devices: 1. Transceivers with a fixed antenna beam and wide aperture: have limited RF performance and no user-tracking ability. 2. MIMO (Multi Input Multi Output): have potential user-tracking ability, but also have marginal RF performance due to high losses that affect waves at 60 GHz reflected by the walls which cancels the potential advantage. 3. Digital Active Phased Array Antenna systems (APAA): have user-tracking ability and good RF power density. In principle digital APAA can handle both compressed as well as uncompressed signals. Digital beam forming is performed by dividing the baseband signal power in as many parts as there are antenna array elements. Then, the bit stream corresponding to each antenna element is digitally phased accordingly with the requested phase value. Now the phased bit streams are used for modulating the RF carrier in one or more steps. At last the modulated carriers are radiated by the antenna array. The baseband processor is complex and expensive; the related conventional RF subsystem is complex and expensive as well. The digital APAA system becomes even more complex when the bit stream is not directly available: this happens when the signal is still compressed. In this case, the baseband processor must first perform a decompression function in order to make available the bit stream. This additional function can significantly increase the cost of the digital APAA. Moreover, if multiple radiated channels are required, the above process and its complications will be multiplied by the number of contemporary channels that are to be handled. We could conclude that ANALOG APAA should be the best technical solution. In fact, analog APAA can handle compressed and uncompressed signals because the signal

自适应数字波束形成在大型面阵中的应用

第37卷第4期(总第146期)2008年9月 火控雷达技术 Fire Control Radar Technology Vol.37No.4(Series 146) Dec.2008  收稿日期:2008-08-06  作者简介:王建强,男,1984年生,硕士研究生,研究方向为雷达信号设计与处理。 文章编号:1008-8652(2008)04-014-05 自适应数字波束形成在大型面阵中的应用 王建强 黄金杰 (西安电子工程研究所 西安 710010) 【摘要】 ADBF 技术使得雷达能根据干扰特性,自适应地在干扰方向形成零点,以对付强有源 干扰。另外,大部分雷达还需要天线具有低或超低副瓣,以提高雷达在强杂波背景下检测目标的能力。随着相控阵雷达阵元数的增多,需要处理的数据量变大,在很短的时间内实现DB F 面临很多问题。本文针对大型面阵,讨论了如何利用修正的采样矩阵求逆算法,在有限快拍数内根据干扰环境自适应地形成零点,同时实现天线超低副瓣性能的问题。仿真结果表明了方法的有效性。 关键词:大型面阵;数字波束形成;对角加载;超低副瓣 中图分类号:TN821+ 18;TN958192 文献标志码:A Application of Adaptive Digital Beam forming in Large Planar Phased Array System Wang Jianqiang Huang Jinjie (X i ’an Elect ronic Engi neeri ng Research I nstit ute ,X i ’an 710100) Abstract :The radar can be enabled to form null beam in t he jamming direction adaptively according to t he jamming p roperties by using ADBF technology so as to co unter t he intensive active jamming.In addi 2tion ,most radars also require t hat t he antenna has low or ult ralow sidelobe so as to improve t he detect 2ability for t he target against t he st rong clutter background.As increment of p hased array radar element s ,t he data quantity needs to be p rocessed becomes large.So ,t here are lot s of problems to implement DB F in very short period.Aiming at large planar arrays ,t his paper discusses how to form null beam adaptively in t he limited snap shot s according to t he jamming environment by using t he modified sampling mat rix inver 2sing (SM I )algorit hm and realize t he ultra -low sidelobe performance of t he array antenna simultaneously.The simulation result s p rove t he effectiveness of t his met hod. K eyw ords :large planar array ;DBF ;diago nal loading ;ult ra -low sidelobe 1 引言 在实际的信号环境中,不可避免地存在着不需 要的干扰和噪声信号,它通过方向图的副瓣或者主波束进入接收系统,随着雷达的发展,抗干扰问题变得越来越重要。自适应数字波束形成技术具有快速 自适应干扰置零、超低副瓣、密集多波束、灵活的雷 达功率和时间控制等重要优点,显著改善相控阵雷达多方面的性能。目前,关于自适应数字波束形成的理论仍然在发展之中,针对线阵系统自适应数字波束形成的应用已经不少,但是如何在阵元数目增多的面阵,尤其是大型面阵实现ADB F ,依然在探讨和摸索之中。随着雷达对更高分辩率、更远作用距

自适应波束形成及算法

第3章 自适应波束形成及算法 (3.2 自适应波束形成的几种典型算法) 3.2 自适应波束形成的几种典型算法 自适应波束形成技术的核心内容就是自适应算法。目前已提出很多著名算法,非盲的算法中主要是基于期望信号和基于DOA 的算法。常见的基于期望信号的算法有最小均方误差(MMSE )算法、小均方(LMS )算法、递归最小二乘(RLS )算法,基于DOA 算法中的最小方差无畸变响应(MVDR )算法、特征子空间(ESB )算法等[9]。 3.2.1 基于期望信号的波束形成算法 自适应算法中要有期望信号的信息,对于通信系统来讲,这个信息通常是通过发送训练序列来实现的。根据获得的期望信号的信息,再利用MMSE 算法、LMS 算法等进行最优波束形成。 1.最小均方误差算法(MMSE ) 最小均方误差准则就是滤波器的输出信号与需要信号之差的均方值最小,求得最佳线性滤波器的参数,是一种应用最为广泛的最佳准则。阵输入矢量为: 1()[(),, ()]T M x n x n x n = (3-24) 对需要信号()d n 进行估计,并取线性组合器的输出信号()y n 为需要信号 ()d n 的估计值?()d n ,即 *?()()()()H T d n y n w x n x n w === (3-25) 估计误差为: ?()()()()()H e n d n d n d n w x n =-=- (3-26) 最小均方误差准则的性能函数为: 2 {|()|}E e t ξ= (3-27) 式中{}E 表示取统计平均值。最佳处理器问题归结为,使阵列输出 ()()T y n w X n =与参考信号()d t 的均方误差最小,即: 2{ |()|}M i n E e t

多波束形成方法

多波束形成技术研究 摘要:讨论了跟踪与数据中继卫星系统(TDRSS)中关于多波束形成的算法,优选的有LMS自适应方式和相位调整自适应方式;并简单介绍了波束控制和波束形成的实现。 关键词:TDRSS;多波束形成;LMS自适应算法;相位调整自适应算法 一、前言 随着航天技术的发展,要求测控通信站能高覆盖地对飞船等多个目标进行测控通信。要解决这个问题靠现有地面测控网和业务接收站已不能满足要求,需要建立天基测控通信系统,即跟踪与数据中继卫星系统(TDRSS)。 TDRSS把测控通信站搬移到天上同步定点轨道的中继星上,从上向下观测中低轨卫星、飞船、航天飞机等空间飞行器,从而提高了覆盖率。为了减轻中继星的复杂性和负担,将中继卫星观测到的数据和信息传到地面,由地面中心站进行处理。TDRSS中继星相控阵天线同时与多个用户航天器保持跟踪,地面站到航天器的正向通讯为时分多波束,反向通讯为码分和同时多波束。为了减轻中继星的负担,中继星上只装有形成正向天线波束扫描所需的电调移相器,由地面终端计算并发出指令,调节星上移相器相位,让天线波束以时分方式扫描对准各用户航天器,在对准期间完成正向数传。多个用户航天器送到中继星的反向数传信号在星上进行多波束形成会大大增加中继星的复杂性,反向信号经星上阵列天线接收和变换,各阵元收到的信号用频分多路方式相互隔离送往地面,由地面接收前端将频分多路还原成同频多路阵元输出,交由终端进行相控阵多波束形成处理。所谓波束形成, 就是利用开环控制或闭环自适应跟踪方法,对不同反向到达的信号用不同的权系数矢量对各阵元输出进行幅度和相位加权, 使各阵元收到的同一用户信号在合成器中得以同相相加, 输出信号最大, 干扰和噪声最小。当存在多个目标时, 地面终端利用码分多址方法和利用多个波束形成器并行地完成各目标的波束合成处理完成各用户的数传与测控。 二、多波束形成算法 数据中继卫星系统在多址方式下,服务对象一般分布在较低的地球轨道上,当用户星离地面的轨道高度在3 000 km以下时,中继星各阵元波束宽度只要26°就可覆盖地球周围的所有用户星。 当用户星以最大速度10 km/s运动,用户星穿过3.5°宽的合成波束所需的时间最短为205 s,所以中继星跟踪用户星所需的波束移动角速度是很小的。假定波束移动步进量为阵合成波束宽度3.5°的5%即0.175°,波束步进间隔时间长达10.5 s。只要计算机能在10.5 s 内依据用户星位置更新相控阵的相位加权系数,就会使合成波束移动并时刻对准目标。 按照目标的捕获与跟踪过程,多波束形成应有3种工作方式:主波束控制方式(开环)、扫描方式(开环)及自跟踪方式(闭环)。 当有先验信息如根据目标的轨道方程计算出目标在空中的当前位置时,可采用开环的主波束控制方式, 由用户星的实时俯仰角和方位角,计算机算出加权系数矢量,送到多波束处理器完成波束加权合成。用户星相对中继星来说角度移动缓慢,随着用户星的移动,计算机实时逐点计算出权系数矢量,可维持主波束的开环跟踪。主波束控制方式一般用于目标的初始捕获,完成后进入自动跟踪状态。 如果没有先验信息不知道目标的起始位置,可以采用波束扫描方式,根据事先制定的空间角度扫描轨迹图形,顺序调出各角度位置的加权矢量,形成波束的空中扫描,当波束扫到目标时,波束合成器输出最大信号并给出目标捕获指示,完成目标初始捕获,随即进入波束

常规波束形成matlab程序

close all clear all clc c=1500; fs=10000; T=0.1; t=0:1/fs:T; L=length(t); f=500; w=2*pi*f; k=w/c; M=11;%阵元个数 Nmid=1;%参考点 d=3;%阵元间距 m=[0:1:M-1]; yi=zeros(M,1);%返回一个M*1维的零矩阵 zi=zeros(M,1); xi=m*d; xi=xi.'; %各阵元坐标 y1=20; x1=10;z1=10;%声源位置,y轴指向声源平面 Ric1=sqrt((x1-xi).^2+(y1-yi).^2+(z1-zi).^2);%声源至各阵元的距离M*1维 Rn1=Ric1-Ric1(Nmid);%声源至各阵元与参考阵元的声程差矢量M*1维 s1=cos(w*t);%参考阵元接收到的信号1*L维 snr=20; Am=10^(-snr/20); n1=Am*(randn(M,L)+j*randn(M,L));%各阵元噪声矢量 p1=zeros(M,L);%M*L维 for k1=1:M p1(k1,:)=Ric1(Nmid)/Ric1(k1)*s1.*exp(-j*w*Rn1(k1)/c);%各阵元经过幅度衰减和相位延迟后接收到的信号,M*L维 end p=p1+n1;%各阵元接收的声压信号矩阵M*L R=p*p'/L;%接收数据的自协方差矩阵M*M %---------------------------------------------------------- %扫描范围 step_x=0.1; step_z=0.1; y=y1;

自适应波束形成

自适应波束形成仿真 一、理想情况 在理想情况下,假设阵列中各阵元是各向同性的且不存在通道不一致、互耦等因素的影响,则()()()t t t =+X AS N 。 在波束形成时,通过适当的时延可以改变阵列的主瓣方向,数字波束形成时可通过复加权来实现,也就是说加权系数可以改变阵列方向图,如果加权系数使得在干扰方向对阵列方向图形成零点,那么就可以完全抑制该干扰,这种加权方式就可通过自适应波束形成的方式来获得。 考虑一个线性阵列,由M=2M ’+1个感应器构成 图1-1 线性阵列空间采样 空间平面波信号为: 0(,)exp[()]s x t j t k x ω=-? 第m 个感应器的坐标为: ?(')m x m M dx =- 感应器的输出为: 0()(,)exp[(('))]m m x y t s x t j t k m M d ω==-- 如果对每个阵列输出采样则信号复包络可构成向量: 1 1 sin sin 2 2 ()[]M M jk d jk d T s a k e e θθ ---= 设干扰(噪声)协方差阵为n R ,则在最大信噪比准则下加权向量w 的最优解为: *1()n s w R a k -= 波束响应 ()(),H p θθθ=∈Θw a 。d 。 。 。 。 。 。 。

1.改变信号、干扰方向 条件:L=1; %采样数(快拍数) SNR=20; %信号的信噪比 INR1=30; %干扰噪声比 INR2=30; %干扰噪声比 (1) 信号方向:0°干扰方向:20°,-20°

权值W 波束响应P

(2) 信号方向:-10°干扰方向:-20°,30° 权值W

自适应波束形成仿真

课程设计(论文)任务书 专业电子信息工程班级0802503 学生080250303 指导教师刘帅、王军、周洪娟题目自适应波束形成算法仿真 子题 设计时间2011年11 月28 日至 2011年12 月9 日共 2 周 设计要求 设计(论文)的任务和基本要求,包括设计任务、查阅文献、方案设计、说明书(计算、图纸、撰写内容及规范等)、工作量等内容。 1.设计任务:实现自适应波束形成算法,并考察算法性能。 2.参考文献:《现代信号处理》,《雷达原理》, Matlab相关书籍等 3.方案设计: 1)由均匀线阵形式,确定阵列的导向矢量; 2)由阵列导向矢量,对接收信号进行建模仿真; 3)根据约束条件,实现自适应波束形成算法; 4)考察算法性能与信噪比,采样率,观测时间等参数的关系。 4.说明书:设计报告内容要求包括:信号模型的建立、分析过程;建模 源程序;仿真结果分析。 本专业综合设计要求在两周内完成。 指导教师签字:系(教研室)主任签字: 年月日

前言 近十年,自适应波束形成算法在通信雷达、声纳、生物医学工程等科技领域中到了极为广泛的应用。在实际应用中,如果信号源、天线阵列出现误差,传统的自适应波束形成算法性能将会下降。但是对于稳健的自适应波束形成算法。环境及天线阵列的误差和不确定性是必须要考虑的关键问题。这里对稳健的自适应波束形成算法的研究现状与发展动态进行了较为详细的评述。 传统的算法在设计波束形成器时,都是假定在其训练数据中不含有期望信号。这时的波束形成器对于阵列响应误差和有限次快拍数据的稳健性非常好。但是在许多情况下,干扰和噪声信号的观测数据不可避免地要被期望信号所污染。而即使在理想情况下,这时精确的知道期望信号的方向向量,在有限次快拍训练数据中含有的响应之间的不匹配。自适应阵列信号处理对于这类误差的反应非常敏感。因为这时期望信号分量会被当作干扰抑制掉。阵列校正误差及观测方向的偏差等现象在实际中经常出现。 引起自适应波束形成算法性能降低的原因除了阵列响应误差外,由于信道的不稳定、干扰和天线的移动、天线的转动等所造成的波束形成器训练数据的不稳定性也是一个主要原因。首先,即使在训练数据中不包含期望信号,这种不稳定性也会限制自适应波束形成算法的性能;进而,当在训练数据中含有期望信号时,波束形成器性能会进一步严重降低;最后,如果出现快速移动的干扰。波束形成器的性能将会崩亏。因为这时自适应权向量的收敛速度跟不上干扰的变化,不能有效的对干扰形成零陷。

波束形成_Matlab程序

1.均匀线阵方向图 %8阵元均匀线阵方向图,来波方向为0度 clc; clear all; close all; imag=sqrt(-1); element_num=8;%阵元数为8 d_lamda=1/2;%阵元间距d与波长lamda的关系 theta=linspace(-pi/2,pi/2,200); theta0=45/180*pi;%来波方向 (我觉得应该是天线阵的指向) %theta0=0;%来波方向 w=exp(imag*2*pi*d_lamda*sin(theta0)*[0:element_num-1]'); for j=1:length(theta) %(我认为是入射角度,即来波方向,计算阵列流形矩阵A) a=exp(imag*2*pi*d_lamda*sin(theta(j))*[0:element_num-1]'); p(j)=w'*a; %(matlab中的'默认为共轭转置,如果要计算转置为w.'*a) end figure; plot(theta,abs(p)),grid on xlabel('theta/radian') ylabel('amplitude') title('8阵元均匀线阵方向图') 见张小飞的书《阵列信号处理的理论和应用2.3.4节阵列的方向图》

当来波方向为45度时,仿真图如下: 8阵元均匀线阵方向图如下,来波方向为0度,20log(dB)

随着阵元数的增加,波束宽度变窄,分辨力提高:仿真图如下:

2.波束宽度与波达方向及阵元数的关系 clc clear all close all ima=sqrt(-1); element_num1=16; %阵元数 element_num2=128; element_num3=1024; lamda=0.03; %波长为0.03米 d=1/2*lamda; %阵元间距与波长的关系 theta=0:0.5:90; for j=1:length(theta); fai(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num1*d)); psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num2*d)); beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num3*d)); end figure; plot(theta,fai,'r',theta,psi,'b',theta,beta,'g'),grid on xlabel('theta'); ylabel('Width in radians') title('波束宽度与波达方向及阵元数的关系') 仿真图如下:

波束形成

3.5 两种特殊的波束形成技术 3.5.1协方差矩阵对角加载波束形成技术 常规波束形成算法中,在计算自适应权值时用XX R ∧ 代替其中的X X R 。由于采样快拍数是有限的,则通过估计过程得到的协方差矩阵会产生一定误差,这样会引起特征值扩散。从特征值分解方向来看,自适应波束畸变的原因是协方差矩阵的噪声特征值扩散。自适应波束可以认为是从静态波束图中减去特征向量对应的 特征波束图,即:m in 1 ()()( )()(()())N i V V iv iv V i i G Q E E Q λλθθθθθλ* =-=-∑,其中()V G θ是 是自适应波束图,()V Q θ是静态波束图,即没有来波干扰信号而只有内部白噪声时的波束状态。i λ是矩阵X X R 的特征值。()iv E θ是对应i λ的特征波束图。 由于X X R 是 Hermite 矩阵,则所有的特征值均为实数,并且其特征向量正交,特征向量对应的特征波束正交。而最优权值的求解表达其中的X X R 是通过采样数据估计得到的,当采样快拍数很少时,对协方差矩阵的估计存在误差,小特征值及对应的特征向量扰动都参与了自适应权值的计算,结果导致自适应波束整体性能的下降。鉴于项目中的阵列形式,相对的阵元数较少,采样数据比较少,很容易在估计协方差矩阵的时候产生大的扰动,导致波束的性能下降,所以采用对角加载技术来保持波束性能的稳定及降低波束的旁瓣有比较好的效果。 (1)对角加载常数λ 当采样数据很少时,自适应波束副瓣很高,SINR 性能降低。对因采样快拍数较少引起自相关矩阵估计误差而导致的波束方向图畸变,可以采用对角加载技术对采样协方差矩阵进行修正。修正后的协方差矩阵为:XX XX R R I λ∧ =+ 。 自适应旁瓣抬高的主要原因是对阵列天线噪声估计不足,造成协方差矩阵特征值分散。通过对角加载,选择合适对角加载λ ,则对于强干扰的大特征值不会受到很大影响,而与噪声相对应的小特征值加大并压缩在λ附近,于是可以得到很好的旁瓣抑制效果。对于以上介绍的通过 LCMV 准则求得的权值o p t w 经过对角加载后的最优权值为:111()(())H opt XX XX w R I A A R I A f λλ---=++ (2)广义线性组合加载技术 对角加载常数λ 来修正采样协方差矩阵,能够有效实现波束旁瓣降低的同时提高波束的稳健性。但是对加载值λ 的确定有一定难度,目前还是使用经验值较多。于是,来考虑另外一种能够有效实现协方差矩阵的修正,而且组合参数

自适应波束形成Matlab仿真

信息与通信工程学院 阵列信号处理实验报告(自适应波束形成Matlab仿真) 学号:XXXXXX 专业:XXXXXX 学生姓名:XXX 任课教师:XXX 2015年X月

题目:自适应波束形成Matlab 仿真 1. 算法简述: 自适应波束形成,源于自适应天线的一个概念。接收端的信号处理,可以通过将各阵元输出进行加权求和,将天线阵列波束“导向”到一个方向上,对期望信号得到最大输出功率的导向位置即给出波达方向估计。 波束形成算法是在一定准则下综合个输入信息来计算最优权值的数学方法,线性约束最小方差准则(LCMV )是最重要、最常用的方法之一。LCMV 是对有用信号形式和来向完全已知,在某种约束条件下使阵列输出的方差最小。该准则属于广义约束,缺点是需要知道期望分量的波达方向。准则的代价函数为 Rw w w J H )(=,约束条件为H ()θ=w a f ;最佳解为f c R c c R w 11H 1H ][---。 2. 波束形成原理 以一维M 元等距离线阵为例,如图1所示,设空间信号为窄带信号,每个通道用一个附加权值系数来调整该通道的幅度和相位。 图1 波束形成算法结构图 这时阵列的输出可以表示为: *1 ()()()M i i i y t w x t θ== ∑ 如果采用矢量来表示各阵元输出及加权系数,即 T 12()[()()()]M x t x t x t x t = T 12()[()()()]M w w w w θθθθ= 1()w θ 1()x n 1()w θ 1()x n 1()w θ 1()x n …….. ()y n

那么,阵列的输出也可以用矢量表示为 H ()()()y t t θ=w x 为了在某一方向θ上补偿各阵元之间的时延以形成一个主瓣,常规波束形成器在期望方向上的加权矢量可以构成为 (1)T ()[1e e ]j j M w ωτ ωτθ---= 观察此加权矢量,发现若空间只有一个来自方向θ的信号,其方向矢量()αθ的表示形式与此权值矢量相同。则有 H H ()()()()()y t t t θαθ==w x x 这时常规波束形成器的输出功率可以表示为 2H H ()[()]()()()()CBF P E y t θθθαθαθ===w Rw R 式中矩阵R 为阵列输出()t x 的协方差矩阵。 3. 实验内容与结果: 实验使用均匀线阵,阵元间距为信号波长的一半,输入信号为1个BPSK 信号,2个非相干的单频干扰,设置载波频率10MHz 、采样频率50MHz 、快拍数300、信噪比-25dB 、信干比-90dB 、信号方位角0、干扰方位角40-和50,分析阵元数分别在3、6、9和12时波束图的变化。实验结果见图1。 图1 不同阵元数情况下的波束图

基于压缩感知的自适应数字波束形成算法

第35卷第2期电子与信息学报Vol.35 No.2 2013年2月 Journal of Electronics & Information Technology Feb. 2013 基于压缩感知的自适应数字波束形成算法 王 建 盛卫星* 韩玉兵 马晓峰 (南京理工大学电子工程与光电技术学院南京 210094) 摘要:该文根据目标在空间的稀疏性,提出了接收端的基于压缩感知理论的自适应数字波束形成算法。在阵元稀布的情况下,用压缩感知的压缩采样理论,恢复出缺失通道的回波信息,然后用恢复的信号做数字波束形成。该算法所形成的波束具有波束旁瓣低,指向误差小,干扰方向零陷深,而且没有栅瓣等优点,波束性能接近满阵时候的波束性能,而且使用该方法减少的阵元数远远大于其他稀布阵方法减少的阵元数。采用蒙特卡罗方法对该方法进行了性能评估,给出了不同信噪比、不同干噪比、不同快拍情况下的计算结果,仿真结果也验证了该算法的正确性。 关键词:压缩感知;数字波束形成;稀布阵;多测量欠定系统正则化聚焦求解算法 中图分类号:TN911.72 文献标识码:A 文章编号:1009-5896(2013)02-0438-07 DOI: 10.3724/SP.J.1146.2012.00517 Adaptive Digital Beamforming Algorithm Based on Compressed Sensing Wang Jian Sheng Wei-xing Han Yu-bing Ma Xiao-feng (School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China) Abstract: A new adaptive digital beamforming in receiving end based on compressed sensing is proposed. In the case of sparse array antenna, receiving signal from absence elements can be reconstructed by using the theory of compressed sensing. Adaptive digital beamforming techniques are then adopted to form antenna beams, whose main lobe is steered to desired direction and nulls are steered to the directions of interferences. Simulation results with Monte Carlo method show that the beam performances of the proposed method are approaching to that of full array antenna, and actual antenna elements can be reduced greatly. Key words:Compressed sensing; Digital beamforming; Sparse arrays; Regularized M-FOCUSS 1 引言 阵列天线的口径越大,则波束越窄,增益越高,但所需的阵元数也越多,设备量越大。大型阵列,特别是数字波束形成天线或固态有源相控阵天线,每个天线单元都有一个对应的T/R组件,因而阵列的阵面造价十分昂贵,是雷达耗资的主要部分。在阵列口径尺寸一定的前提下,减少T/R组件数目主要有两种方法:一种是子阵技术,但子阵技术的应用不可避免地会引起栅瓣,从而会减小阵列波束电扫描的范围;另一种方法是稀疏布阵技术。传统的稀布阵方式通常可以节省一半左右的T/R组件,它采用遗传算法等各种优化算法对阵元的位置进行优化,以尽可能降低阵列天线波束的副瓣。但是,这样的优化通常只是针对阵列的静态方向图进行的,当波束扫描或进行自适应干扰抑制时,很难保证波束的性能。 2012-05-02收到,2012-11-12改回 *通信作者:盛卫星 shengwx@https://www.sodocs.net/doc/533776049.html, 压缩感知(Compressed Sensing, CS)理论[14]?是一个充分利用信号的稀疏性(或可压缩性)的全新信号采集、编解码理论。该理论指出,只要信号是稀疏的或可压缩的(即在某个变换域上是稀疏的),那么就可以用一个与变换基不相关的采样矩阵将变换所得的高维信号投影到一个低维空间上,然后通过求解一个优化问题,从这些少量的投影中以高概率重构出原信号。压缩感知理论突破了传统的奈奎斯特采样定理的束缚,实现了对未知信号的边感知边压缩。在一定条件下,只需采样少量数据,就可以通过重构算法精确地恢复出原信号。由于采样数据少,恢复数据精确,该技术已被广泛应用于数据采集[5]、医学成像、雷达[68]?、通信等领域。 本文通过对压缩感知理论以及数字波束形成(DBF)技术的研究,提出了一种双基地系统的DBF 接收阵下的基于压缩感知的自适应数字波束形成算法。该方法适用于DBF接收阵的应用场合。由于发射能量的空间合成和发射方向图等原因,该方法尚不能适用于发射波束形成。该方法利用目标在空域

相关主题