搜档网
当前位置:搜档网 › 高温燃料电池项目可行性研究报告

高温燃料电池项目可行性研究报告

高温燃料电池项目可行性研究报告
高温燃料电池项目可行性研究报告

高温燃料电池项目可行性研究报告

核心提示:高温燃料电池项目投资环境分析,高温燃料电池项目背景和发展概况,高温燃料电池项目建设的必要性,高温燃料电池行业竞争格局分析,高温燃料电池行业财务指标分析参考,高温燃料电池行业市场分析与建设规模,高温燃料电池项目建设条件与选址方案,高温燃料电池项目不确定性及风险分析,高温燃料电池行业发展趋势分析

提供国家发改委甲级资质

专业编写:

高温燃料电池项目建议书

高温燃料电池项目申请报告

高温燃料电池项目环评报告

高温燃料电池项目商业计划书

高温燃料电池项目资金申请报告

高温燃料电池项目节能评估报告

高温燃料电池项目规划设计咨询

高温燃料电池项目可行性研究报告

【主要用途】发改委立项,政府批地,融资,贷款,申请国家补助资金等【关键词】高温燃料电池项目可行性研究报告、申请报告

【交付方式】特快专递、E-mail

【交付时间】2-3个工作日

【报告格式】Word格式;PDF格式

【报告价格】此报告为委托项目报告,具体价格根据具体的要求协商,欢迎进入公司网站,了解详情,工程师(高建先生)会给您满意的答复。

【报告说明】

本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、上马、融资提供全程指引服务。

可行性研究报告是在制定某一建设或科研项目之前,对该项目实施的可能性、有效性、技术方案及技术政策进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。可行性研究报告主要内容是要求以全面、系统的分析为主要方法,经济效益为核心,围绕影响项目的各种因素,运用大量的数据资料论证拟建项目是否可行。对整个可行性研究提出综合分析评价,指出优缺点和建议。为了结论的需要,往往还需要加上一些附件,如试验数据、论证材料、计算图表、附图等,以增强可行性报告的说服力。

可行性研究是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。

投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可

行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目在经济上是否可行。具体概括为:政府立项审批,产业扶持,银行贷款,融资投资、投资建设、境外投资、上市融资、中外合作,股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。

报告通过对项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在行业专家研究经验的基础上对项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的项目投资价值评估及项目建设进程等咨询意见。

可行性研究报告大纲(具体可根据客户要求进行调整)

为客户提供国家发委甲级资质

第一章高温燃料电池项目总论

第一节高温燃料电池项目背景

一、高温燃料电池项目名称

二、高温燃料电池项目承办单位

三、高温燃料电池项目主管部门

四、高温燃料电池项目拟建地区、地点

五、承担可行性研究工作的单位和法人代表

六、高温燃料电池项目可行性研究报告编制依据

七、高温燃料电池项目提出的理由与过程

第二节可行性研究结论

一、市场预测和项目规模

二、原材料、燃料和动力供应

三、选址

四、高温燃料电池项目工程技术方案

五、环境保护

六、工厂组织及劳动定员

七、高温燃料电池项目建设进度

八、投资估算和资金筹措

九、高温燃料电池项目财务和经济评论

十、高温燃料电池项目综合评价结论

第三节主要技术经济指标表

第四节存在问题及建议

第二章高温燃料电池项目投资环境分析

第一节社会宏观环境分析

第二节高温燃料电池项目相关政策分析

一、国家政策

二、高温燃料电池行业准入政策

三、高温燃料电池行业技术政策

第三节地方政策

第三章高温燃料电池项目背景和发展概况

第一节高温燃料电池项目提出的背景

一、国家及高温燃料电池行业发展规划

二、高温燃料电池项目发起人和发起缘由

第二节高温燃料电池项目发展概况

一、已进行的调查研究高温燃料电池项目及其成果

二、试验试制工作情况

三、厂址初勘和初步测量工作情况

四、高温燃料电池项目建议书的编制、提出及审批过程

第三节高温燃料电池项目建设的必要性

一、现状与差距

二、发展趋势

三、高温燃料电池项目建设的必要性

四、高温燃料电池项目建设的可行性

第四节投资的必要性

第四章市场预测

第一节高温燃料电池产品市场供应预测

一、国内外高温燃料电池市场供应现状

二、国内外高温燃料电池市场供应预测

第二节产品市场需求预测

一、国内外高温燃料电池市场需求现状

二、国内外高温燃料电池市场需求预测

第三节产品目标市场分析

一、高温燃料电池产品目标市场界定

二、市场占有份额分析

第四节价格现状与预测

一、高温燃料电池产品国内市场销售价格

二、高温燃料电池产品国际市场销售价格

第五节市场竞争力分析

一、主要竞争对手情况

二、产品市场竞争力优势、劣势

三、营销策略

第六节市场风险

第五章高温燃料电池行业竞争格局分析第一节国内生产企业现状

一、重点企业信息

二、企业地理分布

三、企业规模经济效应

四、企业从业人数

第二节重点区域企业特点分析

一、华北区域

二、东北区域

三、西北区域

四、华东区域

五、华南区域

六、西南区域

七、华中区域

第三节企业竞争策略分析

一、产品竞争策略

二、价格竞争策略

三、渠道竞争策略

四、销售竞争策略

五、服务竞争策略

六、品牌竞争策略

第六章高温燃料电池行业财务指标分析参考第一节高温燃料电池行业产销状况分析

第二节高温燃料电池行业资产负债状况分析

第三节高温燃料电池行业资产运营状况分析

第四节高温燃料电池行业获利能力分析

第五节高温燃料电池行业成本费用分析

第七章高温燃料电池行业市场分析与建设规模第一节市场调查

一、拟建高温燃料电池项目产出物用途调查

二、产品现有生产能力调查

三、产品产量及销售量调查

四、替代产品调查

五、产品价格调查

六、国外市场调查

第二节高温燃料电池行业市场预测

一、国内市场需求预测

二、产品出口或进口替代分析

三、价格预测

第三节高温燃料电池行业市场推销战略

一、推销方式

二、推销措施

三、促销价格制度

四、产品销售费用预测

第四节高温燃料电池项目产品方案和建设规模

一、产品方案

二、建设规模

第五节高温燃料电池项目产品销售收入预测第八章高温燃料电池项目建设条件与选址方案

第一节资源和原材料

一、资源评述

二、原材料及主要辅助材料供应

三、需要作生产试验的原料

第二节建设地区的选择

一、自然条件

二、基础设施

三、社会经济条件

四、其它应考虑的因素

第三节厂址选择

一、厂址多方案比较

二、厂址推荐方案

第九章高温燃料电池项目应用技术方案

第一节高温燃料电池项目组成

第二节生产技术方案

一、产品标准

二、生产方法

三、技术参数和工艺流程

四、主要工艺设备选择

五、主要原材料、燃料、动力消耗指标

六、主要生产车间布置方案

第三节总平面布置和运输

一、总平面布置原则

二、厂内外运输方案

三、仓储方案

四、占地面积及分析

第四节土建工程

一、主要建、构筑物的建筑特征与结构设计

二、特殊基础工程的设计

三、建筑材料

四、土建工程造价估算

第五节其他工程

一、给排水工程

二、动力及公用工程

三、地震设防

四、生活福利设施

第十章高温燃料电池项目环境保护与劳动安全

第一节建设地区的环境现状

一、高温燃料电池项目的地理位置

二、地形、地貌、土壤、地质、水文、气象

三、矿藏、森林、草原、水产和野生动物、植物、农作物

四、自然保护区、风景游览区、名胜古迹、以及重要政治文化设施

五、现有工矿企业分布情况

六、生活居住区分布情况和人口密度、健康状况、地方病等情况

七、大气、地下水、地面水的环境质量状况

八、交通运输情况

九、其他社会经济活动污染、破坏现状资料

十、环保、消防、职业安全卫生和节能

第二节高温燃料电池项目主要污染源和污染物

一、主要污染源

二、主要污染物

第三节高温燃料电池项目拟采用的环境保护标准

第四节治理环境的方案

一、高温燃料电池项目对周围地区的地质、水文、气象可能产生的影响

二、高温燃料电池项目对周围地区自然资源可能产生的影响

三、高温燃料电池项目对周围自然保护区、风景游览区等可能产生的影

四、各种污染物最终排放的治理措施和综合利用方案

五、绿化措施,包括防护地带的防护林和建设区域的绿化

第五节环境监测制度的建议

第六节环境保护投资估算

第七节环境影响评论结论

第八节劳动保护与安全卫生

一、生产过程中职业危害因素的分析

二、职业安全卫生主要设施

三、劳动安全与职业卫生机构

四、消防措施和设施方案建议

第十一章企业组织和劳动定员

第一节企业组织

一、企业组织形式

二、企业工作制度

第二节劳动定员和人员培训

一、劳动定员

二、年总工资和职工年平均工资估算

三、人员培训及费用估算

第十二章高温燃料电池项目实施进度安排第一节高温燃料电池项目实施的各阶段

一、建立高温燃料电池项目实施管理机构

二、资金筹集安排

三、技术获得与转让

四、勘察设计和设备订货

五、施工准备

六、施工和生产准备

七、竣工验收

第二节高温燃料电池项目实施进度表

一、横道图

二、网络图

第三节高温燃料电池项目实施费用

一、建设单位管理费

二、生产筹备费

三、生产职工培训费

四、办公和生活家具购置费

五、勘察设计费

六、其它应支付的费用

第十三章投资估算与资金筹措

第一节高温燃料电池项目总投资估算

一、固定资产投资总额

二、流动资金估算

第二节资金筹措

一、资金来源

二、高温燃料电池项目筹资方案

第三节投资使用计划

一、投资使用计划

二、借款偿还计划

第十四章财务与敏感性分析

第一节生产成本和销售收入估算

一、生产总成本估算

二、单位成本

三、销售收入估算

第二节财务评价

第三节国民经济评价

第四节不确定性分析

第五节社会效益和社会影响分析

一、高温燃料电池项目对国家政治和社会稳定的影响

二、高温燃料电池项目与当地科技、文化发展水平的相互适应性

三、高温燃料电池项目与当地基础设施发展水平的相互适应性

四、高温燃料电池项目与当地居民的宗教、民族习惯的相互适应性

五、高温燃料电池项目对合理利用自然资源的影响

六、高温燃料电池项目的国防效益或影响

七、对保护环境和生态平衡的影响

第十五章高温燃料电池项目不确定性及风险分析

第一节建设和开发风险

第二节市场和运营风险

第三节金融风险

第四节政治风险

第五节法律风险

第六节环境风险

第七节技术风险

第十六章高温燃料电池行业发展趋势分析

第一节我国高温燃料电池行业发展的主要问题及对策研究

一、我国高温燃料电池行业发展的主要问题

二、促进高温燃料电池行业发展的对策

第二节我国高温燃料电池行业发展趋势分析

第三节高温燃料电池行业投资机会及发展战略分析

一、高温燃料电池行业投资机会分析

二、高温燃料电池行业总体发展战略分析

第四节我国高温燃料电池行业投资风险

一、政策风险

二、环境因素

三、市场风险

四、高温燃料电池行业投资风险的规避及对策

第十七章高温燃料电池项目可行性研究结论与建议

第一节结论与建议

一、对推荐的拟建方案的结论性意见

二、对主要的对比方案进行说明

三、对可行性研究中尚未解决的主要问题提出解决办法和建议

四、对应修改的主要问题进行说明,提出修改意见

五、对不可行的项目,提出不可行的主要问题及处理意见

六、可行性研究中主要争议问题的结论

第二节我国高温燃料电池行业未来发展及投资可行性结论及建议

第十八章财务报表

第一节资产负债表

第二节投资受益分析表

第三节损益表

第十九章高温燃料电池项目投资可行性报告附件

1、高温燃料电池项目位置图

2、主要工艺技术流程图

3、主办单位近5年的财务报表

4、高温燃料电池项目所需成果转让协议及成果鉴定

5、高温燃料电池项目总平面布置图

6、主要土建工程的平面图

7、主要技术经济指标摘要表

8、高温燃料电池项目投资概算表

9、经济评价类基本报表与辅助报表

10、现金流量表

11、现金流量表

12、损益表

13、资金来源与运用表

14、资产负债表

15、财务外汇平衡表

16、固定资产投资估算表

17、流动资金估算表

18、投资计划与资金筹措表

19、单位产品生产成本估算表

20、固定资产折旧费估算表

21、总成本费用估算表

22、产品销售(营业)收入和销售税金及附加估算表

服务流程:

1.客户问询,双方初步沟通;

2.双方协商报告编制费、并签署商务合同;

3.我方保密承诺(或签保密协议),对方提交资料。

燃料电池及其发展前景

燃料电池及其发展前景 燃料电池及其发展前景 作者: Raymond George Klaus Hassmann燃料电池具有非同寻常的性能:电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market.燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。最适于用来驱动汽车的是低温型燃料电池。根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,

燃料电池原理及习题解答

燃料电池原理及习题解答 在中学阶段,掌握燃料电池的工作原理和电极反应式的书写是十分重要的。所有的燃料电池的工作原理都是一样的,其电极反应式的书写也同样是有规律可循的。书写燃料电池电极反应式一般分为三步:第一步,先写出燃料电池的总反应方程式;第二步,再写出燃料电池的正极反应式;第三步,在电子守恒的基础上用燃料电池的总反应式减去正极反应式即得到负极反应式。下面对书写燃料电池电极反应式“三步法”具体作一下解释。 1、燃料电池总反应方程式的书写 因为燃料电池发生电化学反应的最终产物与燃料燃烧的产物相同,可根据燃料燃烧反应写出燃料电池的总反应方程式,但要注意燃料的种类。若是氢氧燃料电池,其电池总反应方程式不随电解质的状态和电解质溶液的酸碱性变化而变化,即2H+O=2HO。若燃料是含碳元222素的可燃物,其电池总反应方程式就与电解质的状态和电解质溶液的酸碱性有关,如甲烷燃2-离子和 COO=CO+2H;在碱性电解质中生成和HO,即CH+2O料电池在酸性电解质中生成CO32242222-- O。,即CH+2OH+2O=CO+3HHO222432、燃料电池正极反应式的书写 因为燃料电池正极反应物一律是氧气,正极都是氧化剂氧气得到电子的还原反应,所以 O可先写出正极反应式,正极反应的本质都是O得电子生成22-2-2-离子,故正极反应式的基础都是 离子的存在形式与燃料电池的电解质的状态和电解质溶液的酸碱性。正极产生OO+4e-=2O2有着密切的关系。这是非常重要的一步。现将与电解质有关的五种情况归纳如下。⑴电解质为酸性电解质溶液(如稀硫酸)2-2-2-+离子优先,O离子结合的微粒有H离子和HOO在酸性环境中,离子不能单独存在,可供O2-++。=2HO结合H离子生成H。这样,在酸性电解质溶液中,正极反应式为O+4H+4eO222⑵电解质为中性或碱性电解质溶液(如氯化钠溶液或氢氧化钠溶液) 故在中性O生成OH离子只能结合在中性或碱性环境中,O离子也不能单独存在,OH2--或-2-2-离子, 碱性电解质溶液中,正极反应式为O+2H=4OH。O +4e22 NaCO熔融盐混和物)和⑶电解质为熔融的碳酸盐(如LiCO3322-2-2-离子,则其正CO离子可结合离子也不能单独存在,在熔融的碳酸盐环境中,O OCO生成322-- +4eO极反应式为+2CO。=2CO322⑷电解质为固体电解质(如固体氧化锆—氧化钇) 该固体电解质在高温下可允许离子在其间通过,故其正极反应式应为=2O+O4e。22--,在不2-2-- O 同电解质环境中,其正极反应式4eO综上所述,燃料电池正极反应式本质都是=2O+2的书写形式有所不同。因此在书写正极反应式时,要特别注意所给电解质的状态和电解质溶液的酸碱性。 3、燃料电池负极反应式的书写燃料电池负极反应物种类比较繁多,可为氢气、水煤气、甲烷、丁烷、甲醇、乙醇等可 燃性物质。不同的可燃物有不同的书写方式,要想先写出负极反应式相当困难。一般燃料电 池的负极反应式都是采用间接方法书写,即按上述要求先正确写出燃料电池的总反应式和正极反应式,然后在电子守恒的基础上用总反应式减去正极反应式即得负极反应式。 下面主要介绍几种常见的燃料电池。 一、氢氧燃料电池 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H,正极通入 O,22总反应为:2H + O === 2HO222电极反应特别要注意电解质,有下列三种情况:

固体氧化物燃料电池

目录 1引言 (2) 1.1燃料电池的概念及特点 (2) 1.2固休氧化物燃料电池 (4) 1.2.1固休氧化物燃料电池的结构类型及其特点 (4) 1.2.2 SOFC工作原理 (5) 2固体燃料电池多物理场模拟 (6) 2.1控制方程 (6) 2.1.1动量守恒方程 (6) 2.1.2能量守恒方程 (6) 2.1.3质量守恒方程 (6) 2.1.4导电方程 (7) 2.2物理模型 (7) 2.3数学模型 (8) 2.3.1气体输运控制方程 (8) 2.3.2导电控制方程 (8) 2.4边界条件 (9) 3结果与讨论 (11) 3.1电势分布 (12) 3.2不同阳极厚度燃料电池的浓度分布 (12) 3.2.1不同阳极厚度燃料电池的电势分布 (14) 3.3阴极厚度对燃料电池性能影响 (15) 3.4连接体宽度变化对浓度、电势分布的影响 (18) 4 结论 (19)

固体氧化物燃料电池仿真 摘要 燃料电池是将化学反应的化学能直接转变为电能的装置。和传统的热机相比,燃料电池具有更高的电效率,并且燃料电池是一种环境友好的发电方式。固体氧化物燃料电池(SOFC)属于高温燃料电池,除具有燃料电池的一般特点外,其高温排气也可以进一步加以利用。本文建立了描述平板式SOFC的物理数学模型,使用多物理场耦合模拟软件Comsol对其进行模拟计算。通过改变阳极和阴极厚度、连接体rib宽度等,研究其对固体氧化物燃料电池内燃料浓度、电势分布等的影响。模拟结果显示:当燃料沿燃料通道方向流动未出现低燃料浓度区或产物浓度区时,电池电势在燃料流动方向上变化不大;阳极厚度的增加对反应物在垂直于燃料流动方向的分布几乎没有影响,随着阳极和阴极厚度及连接体宽度的增加,燃料电池的性能更好。本模拟可以为燃料电池的设计提供参考。 关键词:固体氧化物燃料电池Comsol 1引言 随着全球工业化的加速及人们生活水平的不断提高,人类对能源的需求持续增长。目前全球能源的大部分来自化石燃料的燃烧过程,全世界对化石燃料利用的持续增长导致了温室气体排放的增加,美国能源部预计,2015年全球的排放量要比1990年增加60%;燃料燃烧过程产生的氮氧化物,硫氧化物,未燃尽的碳氢化合物等是主要的大气污染物。因此,解决能源需求的增长和由此造成的环境问题的关键就是改善能源结构问题,研究开发清洁能源技术。而燃料电池技术正是符合这一需求的高效洁净能源。 1.1燃料电池的概念及特点 燃料电池是把化学反应的化学能直接转化为电能的装置。与传统的发电方式相比较,关键的区别是燃料电池的能量转化过程是直接的。燃料电池需要清洁的

燃料电池种类工作原理及结构

燃料电池(FuelCell)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。 燃料电池含有阳阴两个电极,分别充满电解液,而两个电极间则为具有渗透性的薄膜所构成。氢气由阳极进入供给燃料,氧气(或空气)由阴极进入电池。 电池经由催化剂的作用,使得阳极的氢原子分解成氢质子(proton)与电子(electron),其中质子进入电解液中,被氧“吸引”到薄膜的另一边,电子经由外电路形成电流后,到达阴极。在阴极催化剂之作用下,氢质子、氧及电子,发生反应形成水分子。这正是水的电解反应的逆过程,因此水是燃料电池唯一的排放物。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,为一种 "发电机"。 阳极反应 - 阴极反应 总反应 伴随着电池反应,电池向外输出电能。只要保持氢气和氧气的供给,该燃料电池就会连续不断地产生电能。 燃料电池的分类 1 按燃料电池的运行机理分 根据燃料电池的运行机理的不同,可分为酸性燃料电池和碱性燃料电池。例如磷酸燃料电池(PAFC)和液态氢氧化钾燃料电池(LPHFC)。 2按电解质种类分 根据燃料电池中使用电解质种类的不同,可分为酸性、碱性、熔融盐类或固体电解质的燃料电池。即碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PEMFC)等。在燃料电池中,磷酸燃料电池(PAFC)、质子交换膜燃料电池(PEMFC)可以冷起动和快起动,可以用作为移动电源,适应燃料电池电动汽车(FCEV)使用的要求,更加具有竞争力。 3按燃料类型分 燃料电池的燃料有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料和汽油、柴油以及天然气等气体燃料,有机燃料和气体燃料必须经过重整器“重整”为氢气后,才能成为燃料电池的燃料。根据燃料电池使用燃料类型的不同,可分为直接型燃料电池、间接型燃料电池和再生型燃料电池。 4按工作温度分 根据燃料电池工作温度的不同,可分为低温型,温度低于200℃;中温型,温度为200-750℃;高温型,温度高于750℃。质子交换膜燃料电池(PEMFC)在常温下可以正常工作,这类燃料电池需要采用贵金属作为催化剂,燃料的化学能绝大部分都能转化为电能,只产生少量的废热和水,不产生污染大气环境的氮氧化物。熔融碳酸盐燃料电池(M C F C)和固体氧化物燃料电池(SOFC)在高温下作,这类燃料电池不需要采用贵金属作为催化剂。但由于工作温度高,需要采用复合废热回收装置来利用废热,体积大。

开关电源测试报告模板

开关电源测试报告模板 篇一:电源测试报告模板 电源技术认证报告 关键词: AC/DC、电源模块、认证测试 摘要:该报告对电源进行了详细的测试,并对其中测试的问题进行总结和 记录,以供产品选型参考。 一、测试项目 二、测试仪器列表 三、测试结论 四、原始数据记录 1、负载动态响应(必须提供测试波形) (/us, 1ms) (1)常温工作 (2)高温工作 (3)低温工作 2、纹波及噪声记录表(必须提供测试波形) (1)常温

特性 (2)高温特性 (3)低温特性 注1:纹波VPP电容,示波器20MHz频率。 3、开关机性能(必须提供测试波形) (输入电压:220VAC,负载:满载) (1)常温特性 (2)高温特性 (3)低温特性 注1注2:开关机的方式有开关和插拔2种,均需进行试验。 4、启动性能(常温下) 注110%额定值上升到90%额定值的时间。 5、 7、整机效率 (1)常温特性 (2)高温特性

(3)低温特性 9 10、 注1注2:过压保护各路相对独立,一路保护不影响其他路。 注2:可用电子负载“Short”短路或导线直接短路。 篇二:开关电源适配器测试报告模板 适配器12V/1A测试报告 方案基本参数一览 修订更新版本 注: 在原板上进行了以下修改: 1、变压器参数更新(进行成本优化) 2、输入电容修改为15uF/400V 3、输出二极管修改为SR3100 4、可去除次级吸收回路(R21、C7)(纹波指标仍然优秀) 一. 说明

此文档是针对FD9020D 12V/1A适配器的测试报告,可用于90~264Vac全电压输入 范围下工作。适合12W以内的适配器电源及小家电产品的应用。 二 . 测试主要项目 1)电气参数测试 2)电性能参数测试 3)转换效率及空载功耗测试 4)常温老化测试 5)关键元件温度测试 三. 测试使用的仪器 1.输入交流调压器:AC POWER SOURCE APS-9501 2.输出电子负载:FT6301A 3.示波器:DSO-X-2022A (Agilent Technologies)4.交流输入功率计:WT210 DIGITAL POWER METER 5.数字万用表34970A 6.红外热成像仪 Fluke Ti200 四. 方案的实物图

燃料电池种类工作原理及结构

燃料电池 燃料电池(FuelC el l)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置.燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。 燃料电池含有阳阴两个电极,分别充满电解液,而两个电极间则为具有渗透性的薄膜所构成.氢气由阳极进入供给燃料,氧气(或空气)由阴极进入电池. 电池经由催化剂的作用,使得阳极的氢原子分解成氢质子(pro to n)与电子(electro n),其中质子进入电解液中,被氧“吸引"到薄膜的另一边,电子经由外电路形成电流后,到达阴极。在阴极催化剂之作用下,氢质子、氧及电子,发生反应形成水分子。这正是水的电解反应的逆过程,因此水是燃料电池唯一的排放物. 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,为一种 "发电机"。 阳极反应 - 阴极反应 总反应 伴随着电池反应, 电池向外输出电能。只要保持氢气和氧气的供给,该燃料电池就会连续不断地产生电能。 燃料电池的分类 1 按燃料电池的运行机理分 根据燃料电池的运行机理的不同,可分为酸性燃料电池和碱性燃料电池.例如磷酸燃料电池(PA FC)和液态氢氧化钾燃料电池(LPH FC)。 2按电解质种类分 根据燃料电池中使用电解质种类的不同,可分为酸性、碱性、熔融盐类或固体电解质的燃料电池。即碱性燃料电池(AFC )、磷酸燃料电池(PAFC )、熔融碳酸盐燃料电池(MCF C)、固体氧化物燃料电池(SOF C)和质子交换膜燃料电池(PEMFC )等。在燃料电池中,磷酸燃料电池(PAFC )、质子交换膜燃料电池(PEMFC )可以冷起动和快起动,可以用作为移动电源,适应燃料电池电动汽车(FCEV)使用的要求,更加具有竞争力。 3按燃料类型分 燃料电池的燃料有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料和汽油、柴油以及天然气等气体燃料,有机燃料和气体燃料必须经过重整器“重整”为氢气后,才能成为燃料电池的燃料。根据燃料电池使用燃料类型的不同,可分为直接型燃料电池、间接型燃料电池和再生型燃料电池。 4按工作温度分 e H H 222+→+O H O e H 222122→+++O H O H 22222=+

固体氧化物燃料电池_彭苏萍

固体氧化物燃料电池* 彭苏萍1 韩敏芳 2,- 杨翠柏2 王玉倩 2 (1 中国矿业大学北京校区资源学院 北京 100083)(2 中国矿业大学北京校区化学与环境工程学院 北京 100083) 摘 要 高效、洁净、全固态结构、高温运行的固体氧化物燃料电池(SOFC)是把反应物的化学能直接转化为电能的电化学装置,这种新型发电技术是目前发展最快的能源技术之一,有望在近年内走向商业化应用.SOFC 单体电池由致密的电解质和多孔的阳极、阴极组成,现在主要发展了管状结构和平板式结构两种形式.单体电池通过致密的连接体材料以各种方式组装成电池组,广泛应用于大型发电厂、热电耦合设备、小型供能系统和交通工具等,市场前景广阔. 关键词 固体氧化物燃料电池(SOFC),新型能源 Solid oxide fuel cells PENG Su -Ping 1 HAN Min -Fang 2,- YANG Cu-i Bai 2 WANG Yu -Qian 2 (1 De pa rtme nt o f Resou rce s Deve lo pmen t En gin ee rin g ,Ch ina Un iversity o f Min ing &Tech nolog y ,Bei j in g 100083,Ch ina)(2 De pa rtme nt o f Che mical&En viron menta l Eng inee rin g ,China Un ive rsity o f Min in g &Tec hnolog y ,Bei jing 100083,Ch ina) Abstract Solid oxide fuel cells (SOFCs)conve rt che mical energy in the reaction materials to elec trical energy d-i rectly,and are cha racterized by their high effeciency,cleanline ss,al-l solid struc ture,and high te mpe ra ture opera -tion.This ne w technology is one of the faste st developing forms of energy source,and may well be applied commercia-l ly in the near future.A single cell consists of a dense electrolyte between a porous anode and cathode,in a seamless tube or fla -t plate struc ture.The cells a re then stacked together in various ways with dense interconnecting compo -nents.SOFCs may be used in la rge power stations,thermal electric co -generators,small po wer supply syste ms,trans -portation ve hicles,and so on,and have great marke t potential.Key words solid oxide fuel cell,new energy source * 国家杰出青年科学基金(批准号:50025413)资助项目 2003-03-19收到初稿,2003-04-21修回 - 通讯联系人.E -mail:h mf121@hotmai https://www.sodocs.net/doc/573781499.html,,h mf@cu mtb.ed https://www.sodocs.net/doc/573781499.html, 1 固体氧化物燃料电池发展背景和 技术现状 燃料电池的历史可以追溯到1839年,固体氧化物燃料电池(简称SOFC)的开发始于20世纪40年代,但是在80年代以后其研究才得到蓬勃发展.以美国西屋电气公司(Westinghouse Electric Company)为代表,研制了管状结构的SOFC,用挤出成型方法制备多孔氧化铝或复合氧化锆支撑管,然后采用电化学气相沉积方法制备厚度在几十到100L m 的电解 质薄膜和电极薄膜.1987年,该公司在日本安装的 25kW 级发电和余热供暖SOFC 系统,到1997年3月成功运行了约1.3万小时;1997年12月,西门子西 屋公司(Siemens Westinghouse Electric Company )在荷兰安装了第一组100kW 管状SOFC 系统,截止到2000年底关闭,累计工作了16,612小时,能量效率为46%;2002年5月,西门子西屋公司又与加州大学合作,在加州安装了第一套220kW SOFC 与气体 # 90#物理

固体氧化物燃料电池电解质

电化学社会期刊,153(6)A956-A960(2006) 0013-4651/2006/153(6)/ A956/5 / $ 20.00?电化学的社会 比较阳极支撑固体氧化物燃料电池在氢气和甲烷层中使用一层薄薄Ce0.9Gd0.1O1.95和BaCe0.8Y0.2O3?a的电解质的性能Atsuko Tomita,a Shinya Teranishi,b,* Masahiro Nagao,b,* Takashi Hibino,b,**,z and Mitsuru Sano b,** a国立先进工业科学和技术(综合研究所),名古屋463-8560,日本 b环境学研究生院,名古屋大学,名古屋464-8601,日本 在阳极支撑的Ni-Ce0.8Sm0.2O1.9上用溶胶凝胶法制备的多层Ce0.9Gd0.1O1.95/BaCe0.8Y0.2O3-a/Ce0.9Gd0.1O1.95(GDC / BCY / GDC)电解质。整体电解质厚度包括3微米厚的BCY层为30至35微米。当阴极在氢气与阳极在空气中的多层电解质电池在500-700 °C的温度范围内进行测试,它产生846-1024mV的开路电压,均超过了在相同条件下单层GDC的电解质电池获得的753-933mV的开路电压。且在500,600和700℃时相应功率密度的峰值分别为273,731,和1025mW/cm2。多层电解质电池也适用于甲烷固体氧化物燃料电池(SOFC)和含有甲烷和空气混合物的单室固体氧化物燃料电池。这些固体氧化物燃料电池产生880-950 mV的开路电压和无焦化合理的功率密度。 ? 2006电化学学会。分类号:10.1149/1.2186184 保留所有权利。 手稿于2005年11月25日提交;修改稿于2006年1月26日收到。于2006年4月6日通过。 最近人们对在中温700 ° C或以下的固体氧化物燃料电池(SOFC)产生了相当大的兴趣。与聚合物电解质燃料电池(PEFCs)相比,中温固体氧化物燃料电池(固体氧化物燃料电池技术)不仅可以承受高浓度CO,而且可以在更高的电极反应速率中工作。不同于传统的高温固体氧化物燃料电池,中温固体氧化物燃料电池技术允许的碳氢燃料直接使用,大大降低了燃料电池系统的复杂性。一个在固体氧化物燃料电池技术发展的关键问题是高度导电离子电解质的使用,因为在这种条件下会引起固体氧化物燃料电池内过度电阻的运作。铈基氧化物离子导体是前景广阔的电解质表现在其远高于氧化锆(YSZ)的离子电导率。与先进的阳极支持的电池结构结合,氧化铈基固体氧化物燃料电池可以在中温时维持合适的性能。 在使用铈基电解质固体氧化物燃料电池遇到的主要技术问题是部分氧化铈在燃料气氛中会减少。在n -型导电电子中这样的结果造成电池内部局部电子短路。这也导致晶体的晶格膨胀,导致内部电解质或电极界面的电解质被机械降解。因此,氧化铈基固体氧化物燃料电池必须在低于500 ° C加以处理,因为其中的热力学性能会抑制氧化铈减少。 最近,我们提出了一个避免局部氧化铈的减少的有效途径。在掺杂Sm3+或Gd3+的氧化铈基片表面涂上一层0.5毫米厚度的BaO薄膜然后加热至1500 ° C。此时,在薄膜与基片之间的固态反应在基片表面形成一层10微米厚的 BaCe 1?x Sm x (or Gd x )O 3?a 薄层。使用这种有涂层的电解质,氢氧固体氧化物燃 料电池在600-950℃温度范围的开路电压在1伏以上。且中间层在允许无分层和

最新固体氧化物燃料电池

固体氧化物燃料电池

固体氧化物燃料电池 燃料电池又叫连续电池,它在等温条件下直接将储存在燃料和氧化剂中的化学能转变为电能 燃料电池的发电原理:阳极进行燃料的氧化过程,阴极进行氧化剂的还原过程,导电离子在电解质内迁移,电子通过外电路做功并构成电的回路。 燃料电池的工作方式:燃料电池的燃料和氧化剂不是储存在电池内,而是储存在电池外的储罐中。当电池发电时需要连续不断地向电池内输送燃料和氧化剂,排除产物和废热。 燃料电池的组成: (1) 电极。为多孔结构,可由具有电化学催化活性的材料制成,也可以只作为电化学反应的载体和反应电流的传导体。 (2) 电解质。通常为固态或液态,但也有关于NH3 气氛中NH4Cl 电解质的研究。电解质的状态取决于电池的使用条件。 (3) 燃料。可以是气态(氢气等)或液态(甲醇等),在极少数情况下也可以是固态(碳)。 (4) 氧化剂。选择比较方便,纯氧、空气或卤素都可以胜任,而空气是最便宜的。 燃料电池的特点:可长时间不间断地工作——这使燃料电池兼具普通化学电源能量转换效率高和常规发电机组连续工作时间长的两种优势。 高效——它不通过热机过程,不受卡诺循环的限制,其能量转化效率在40-60%;如果实现热电联供,燃料的总利用率可高达80%以上。

环境友好——以纯氢为燃料时,燃料电池的化学反应物仅为水;以富氢气体为燃料时,其二氧化碳的排放量比热机过程减少40%以上,这对缓解地球的温室效应是十分重要的。 安静——燃料电池运动部件很少,工作时安静,噪声很低。 可靠性高——碱性燃料电池和磷酸燃料电池的运行均证明燃料电池的运行高度可靠,可作为各种应急电源和不间断电源使用。 燃料电池的类型:按电解质的性质分:1、碱性燃料电池,简称AFC。2、质子交换膜燃料电池,简称PEMFC。3、磷酸燃料电池,PAFC。4、熔融碳酸盐燃料电池,简称MCFC。5、固体氧化物燃料电池,简称SOFC。 固体氧化物燃料电池 SOFC是以固体氧化物为电解质,如ZrO2、BiO3等,阳极材料是Ni-YSZ陶瓷,阴极材料主要采用锰酸镧材料,SOFC的固体氧化物电解质在高温下800~1000℃具有传递O2-的能力,在电池中起传递O2和分隔氧化剂与燃料的作用。 SOFC为全固体结构,其主要结构有:平板式、管式、瓦楞式、套管式和热交换一体化结构式, ①平板式SOFC电池是目前最主流的SOFC类型电池,它是将阳极/YSZ固体电解质 /阴极烧结成一体,形成三合一结构,简称PEN平板,PEN平板之间由双极连

固体氧化物燃料电池发展及展望

万方数据

万方数据

万方数据

万方数据

固体氧化物燃料电池发展及展望 作者:韩敏芳, 尹会燕, 唐秀玲, 彭苏萍, HAN Min-fang, YIN Hui-yan, TANG Xiu-ling , PENG Su-ping 作者单位:中国矿业大学,煤气化燃料电池联合研究中心,北京,100083 刊名: 真空电子技术 英文刊名:VACUUM ELECTRONICS 年,卷(期):2005(4) 被引用次数:2次 参考文献(47条) 1.查看详情 2.查看详情 3.查看详情 4.查看详情 5.查看详情 6.查看详情 7.查看详情 8.查看详情 9.查看详情 10.查看详情 11.韩敏芳;彭苏萍固体氧化物燃料电池-材料及制备 2004 12.Kathy Haq Dir. Of Outreach and Communications, National Fuel Cell Research Center 2004 13.查看详情 14.查看详情 15.查看详情 16.查看详情 17.查看详情 18.查看详情 19.查看详情 20.查看详情 21.查看详情 22.查看详情 23.查看详情 24.查看详情 25.查看详情 26.查看详情 27.查看详情 28.查看详情 29.查看详情 30.查看详情

31.查看详情 32.查看详情 33.查看详情 34.Kathy Haq Dir. Of Outreach and Communications, National Fuel Cell Research Center 2004 35.查看详情 36.查看详情 37.查看详情 38.查看详情 39.查看详情 40.Han Minfang;TIAN Y e;LIANG Jie Application Prospect of Underground Coal Gas Used in SOFC 41.查看详情 42.查看详情 43.查看详情 44.查看详情 45.查看详情 46.查看详情 47.查看详情 引证文献(2条) 1.由宏新.高国栋.周亮.阿布理提·阿布都拉乙醇在Ni-ZnO-ZrO_2-YSZ阳极SOFC上的发电性能[期刊论文]-燃料化学学报 2010(1) 2.刘洁.王菊香.邢志娜.李伟燃料电池研究进展及发展探析[期刊论文]-节能技术 2010(4) 本文链接:https://www.sodocs.net/doc/573781499.html,/Periodical_zkdzjs200504007.aspx

燃料电池技术概念简述

2.1.1.技术简介 2.1.1.1.燃料电池原理 燃料电池是一种能量转换装置。它按电化学原理,即原电池(如日常所用的锌锰干电池)的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能。 对于一个氧化还原反应,如: [O]+ [R]→P [O]代表氧化剂,[R]代表还原剂,P代表反应产物。原则上可以把上述反应分为两个半反应,一个为氧化剂[O]的还原反应,一个为还原剂[R]的氧化反应,若e-代表电子,即有: [R]→[R]+ + e- [R]+ +[O] + e-→P [R] +[O]→P 以最简单的氢氧反应为例,即为: H2→2H+ + 2e- 1/2 O2 + 2H+ +2e-→H2O H2 + 1/2 O2→H2O 如图1-1所示,氢离子在将两个半反应分开的电解质内迁移,电子通过外电路定向流动、 贮罐中。当它工作时(输出电流并做功时),需要不间断地向电池内输入燃料和氧化剂并同时排出反应产物。因此,从工作方式上看,它类似于常规的汽油或柴油发电机。 由于燃料电池工作时要连续不断地向电池内送入燃料和氧化剂,所以燃料电池使用的燃料和氧化剂均为流体,即气体和液体。最常用的燃料为纯氢、各种富含氢的气体(如重整气)和某些液体(如甲醇水溶液)。常用的氧化剂为纯氧、净化空气等气体和某些液体(如过氧化氢和硝酸的水溶液等)。 2.1.1.2.特点 (1) 高效燃料电池按电化学原理等温地直接将化学能转化为电能。在理论上它的热电转化效率可达85~90%。但实际上,电池在工作时由于各种极化的限制,目前各类电池实际的能量转化效率均在40~60%的范围内。若实现热电联供,燃料的总利用率可高达80%以上。

氢氧燃料电池

一、氢氧燃料电池 令狐采学 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入 O2, 总反应为:2H2 + O2 === 2H2O 电极反应特别要注意电解质,有下列三种情况: 1.电解质是KOH溶液(碱性电解质) 负极发生的反应为:H2 + 2e- === 2H+ ,2H+ + 2OH- === 2H2 O,所以: 负极的电极反应式为:H2 – 2e- + 2OH- === 2H2O; 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在碱性条件下不能单独存在,只能结合H2O生成OH-即:2O2- + 2H2 O === 4OH- ,因此, 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 。 2.电解质是H2SO4溶液(酸性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在酸性条件下不能单独存在,只能结合H+生成H2O即:O2- + 2 H+ = == H2O,因此 正极的电极反应式为:O2 + 4H+ + 4e- === 2H2O(O2 + 4e- == = 2O2- ,2O2- + 4H+ === 2H2O) 3. 电解质是NaCl溶液(中性电解质)

负极的电极反应式为:H2 +2e- === 2H+ 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 说明: 1.碱性溶液反应物、生成物中均无H+ 2.酸性溶液反应物、生成物中均无OH- 3.中性溶液反应物中无H+ 和OH- 4.水溶液中不能出现O2- 二、甲醇燃料电池 甲醇燃料电池以铂为两极,用碱或酸作为电解质: 1.碱性电解质(KOH溶液为例) 总反应式:2CH4O + 3O2 +4KOH=== 2K2CO3 + 6H2O 正极的电极反应式为:3O2+12e- + 6H20===12OH- 负极的电极反应式为:CH4O -6e-+8OH- === CO32-+ 6H2O 2. 酸性电解质(H2SO4溶液为例) 总反应: 2CH4O + 3O2 === 2CO2 + 4H2O 正极的电极反应式为:3O2+12e-+12H+ === 6H2O 负极的电极反应式为:2CH4O-12e-+2H2O === 12H++ 2CO2说明:乙醇燃料电池与甲醇燃料电池原理基本相同 三、甲烷燃料电池 甲烷燃料电池以多孔镍板为两极,电解质溶液为KOH,生成的CO2还要与KOH反应生成K2CO3,所以总反应为:CH4 + 2 KOH+ 2O2 === K2CO3 + 3H2O。 负极发生的反应:CH4 – 8e- + 8OH- ==CO2 + 6H2O CO2 + 2OH- == CO32- + H2O,

固体氧化物燃料电池(SOFC)研究现状

固体氧化物燃料电池(SOFC)研究现状 伍永福,赵玉萍,彭军 内蒙古科技大学(014010) 摘要:燃料电池在运行过程中具有良好的安全可靠性、环境友好性、可操作性和灵活性,这些优点赋予了燃料电池极强的生命力和长远的发展潜力。本文就固体氧化物燃料电池的研究现状阐述了固体氧化物燃料电池的原理、特点及电池材料的研究进展,就Ni基阳极燃料电池存在的问题,提出在寻找Ni基阳极的替代阳极方面,(一是氧化物阳极,如(Ba/Sr/Ca/La)MxNb1-x O3-δ阳极;二是其他金属基阳极,如Cu基阳极。)作进一步研究的必要。 0.6 关键词:固体氧化物燃料电池,电导率,扩散,极化 1、固体氧化物燃料电池(SOFC)的发展概况 热电厂首先经燃料的燃烧把化学能转变为热能,再由热能转变为机械能,最后把机械能转变为电能,受卡诺循环的制约,在最好的条件下能量转化率也只有35%,实际情况不到20%。燃料电池是继水力、火力、核能发电技术后的第四类新型发电技术,它是一种不经燃料燃烧直接将化学能转变为电能的高效发电装置。由于不受卡诺循环的限制,燃料电池的理论效率达80%以上,实际效率可达50%—60%。其反应产物主要是水和二氧化碳,而且向大气中排放的有害物质很少,故造成的环境污染很低。另外,占地面小,建设周期短,可实行模块式组装,运行质量高、噪音小;使用方便灵活,既可用于中央集中型的大型电厂,也可作为电动汽车,轻型摩托的小型驱动电源。燃料电池在运行过程中具有良好的安全可靠性、环境友好性、可操作性和灵活性,这些优点赋予了燃料电池极强的生命力和长远的发展潜力[1]。 现在正运行的燃料电池都是用H2作燃料,或者碳氢化合物重整出H2,操作费用高,而且电池寿命不长,特别是使用碳氢化合物的电池更是如此。由于H2的制作费用较高,而且其运输、储存都很不方便,并隐含着危险,所以用H2作燃料的燃料电池难于实用化。而炭氢燃料在大自然储量比较丰富,有的(如CH4)不仅较容易制取,而且有利于环境的保护,因此现在固体氧化物燃料电池向着燃料多元,低温度操作方向发展。 早在1839年英国人William Grove就报道了燃料电池的工作原理,但固体氧化物燃料电池的起步却比较晚,1899年Nerest发现了固体氧化物电解质,1937年Baur和Preis首次操作固体氧化物燃料电池,其工作温度为1000℃。自此,固体氧化物燃料电池取得了很大的进展。特别是本世纪70年代末,材料科学的迅速发展使其研究开发工作更加令世人瞩目。目前已经开发成功的固体氧化物燃料电池主要有两种类型,它们分别以氧离子和质子作电池的电荷载体。其中,基于氧离子传导的固体氧化物燃料电池是研究较多且相对成熟的一种。 2、固体氧化物燃料电池(SOFC)的工作原理与特点 2.1、SOFC工作原理 固体氧化物燃料电池(SOFC)是继磷酸盐燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)之后,第三代燃料电池,其工作温度一般在600-1000℃左右,工作原理如图(1)所示,电动势来源于电池两侧不同的氧分压。其单体电池是由正负两个电极(负极为燃料电极,正极为氧化剂电极)以及电解质组成。阳极、阴极的主要作用是导通电子和提供反应气体、产物气体的扩散通道。固体电解质将两侧的气体分隔开来,由于两侧氧分压的不同,产生了氧的化

燃料电池简介

燃料电池简介 摘要:燃料电池是一种清洁、高效的能源利用方式,本文主要介绍了燃料电池的 工作原理、燃料电池的分类和燃料电池的优点,另外,本文还简单的介绍了燃料 电池的发展前景。 关键词:燃料电池 工作原理 固体氧化物 燃料电池作为一种新型的发电方式,发展燃料电池对于改善环境, 实施能源 可持续发展具有重要意义。对比于传统的火力发电方式可以大大降低空气污染及 解决电力供应、电网调峰问题。传统的火力发电站的燃烧能量大约有近70%要消 耗在锅炉和汽轮发电机这些庞大的设备上,燃烧时还会排放大量的有害物质。而 使用燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没有 多余的能量转换过程,理论上能量转换率为100%,实际应用上装置无论大小发 电效率可达40%~60%,可以实现直接进入企业、饭店、宾馆、家庭实现热电联 产联用,没有输电输热损失,综合能源效率可达80%,装置为积木式结构,容量 可小到只为手机供电、大到和火力发电厂相比,应用范围极为广泛。基于以上这 些优点,我们可以看出研究燃料电池是很有必要的。 1、燃料电池的原理 燃料电池是一种能量转化装置,它是按电化学原理等温的把贮存在燃料和氧 化剂中的化学能直接转化为电能, 因而实际过程是氧化还原反应, 其工作原理 如图1所示。燃料电池主要由四部分组成, 即阳极、阴极、电解质和外部电路。 燃料气和氧化气分别由燃料电池的阳极和阴极通入。燃料气在阳极上放出电子, 电子经外电路传导到阴极并与氧化气结合生成离子。离子在电场作用下, 通过电 解质迁移到阳极上, 与燃料气反应,构成回路,产生电流。同时, 由于本身的电化 学反应以及电池的内阻, 燃料电池还会产生一定的热量。电池的阴、阳两极除传 导电子外, 也作为氧化还原反应的催化剂。当燃料为碳氢化合物时, 阳极要求有 更高的催化活性。阴、阳两极通常为多孔结构, 以便于反应气体的通入和产物排 出。电解质起传递离子和分离燃料气、氧化气的作用。为阻挡两种气体混合导致 电池内短路, 电解质通常为致密结构。 图一:燃料电池工作原理图 例如我们常说的氢氧燃料电池,如图二。氢-氧燃料电池反应原理实际上是电解 水的逆过程。电极反应 负极:H 2-2e-→2H + 正极:1/2O 2+2H ++2e -→H 2O 电池总反应:H 2+1/2O 2=H 2O 在该燃料电池中,阳极供给的燃料气H 2分解成H +和e -,H +移动到电解质中与

开关电源适配器测试报告模板

适配器12V/1A测试报告 方案基本参数一览 输入电压90~264Vac (恒压<±1%)输出规格12V/1A 输出纹波29mV@220Vac满载转换效率85.11% @220Vac,满载 待机功耗<110mW 拓扑结构反激式 VDD电压15.48V~26.48V(正常范围)CS波形正常 VDS峰值519V@264Vac<600V FB纹波237mV(正常范围) 其他说明:本测试报告针对XXX12V1A适配器成本优化方案(变压器资料如下图),福大海矽竭诚为客户提供完善到位的服务。 变压器版本:V2(20150831) 1、各绕组绕制参数见下表所示EE19立式骨架 绕序绕 组 线径*根数 脚位圈数套管(L) 绝缘胶带 9.0mm/Ts 绕线方式 进 脚 出 脚 Ts 进出 1 N1 ¢0.19mm*1(2UEW) 2 3 68 加套管 2 N2 ¢0.35mm*2(TEX-E) 三层绝缘线 10 8 21 加套 管 加套 管 3 N3 ¢0.19mm*1(2UEW) 3 1 68 5 N4 ¢0.19mm*1(2UEW) 5 4 28 制作说明: 1. 骨架EE19立式脚距4mm 排距10.3mm PC40磁芯Ae为23mm2 2. 电感量Lp(1→2)=2mH,漏感为Lp的5%以下 3. 初级对次级打3000V AC漏电流<2mA/60s 4. 初级对磁芯打15000V AC漏电流<2mA/60s 5. 次级对磁性打15000V AC漏电流<2mA/60s 6. DC500V绕组与磁芯之间1min大于100mΩ 7. DC500V绕组与绕组之间1min大于100mΩ 注:PIN3、PIN6、PIN7、PIN9需剪脚 版本更新说明: 1、初始版本V1(20150721) 2、版本V2(20150831)调整初次级匝数,次级由飞线改为插脚,去掉铜带屏蔽,去掉磁芯接地(进行成本优化)

燃料电池习题1

燃料电池 所有的燃料电池的工作原理都是一样的,其电极反应式的书写也同样是有规律可循的。书写燃料电池电极反应式一般分为四步: ①写出燃烧反应正确的化学反应方程式; ②根据电解质溶液的酸碱性改写燃料电池总反应; ③写出正极的电极反应式; ④由燃料电池的总反应方程式减去正极的电极反应式得负极的电极反应式 1、燃料电池总反应方程式的书写 因为燃料电池发生电化学反应的最终产物与燃料燃烧的产物相同,可根据燃料燃烧反应写出燃料电池的总反应方程式,但要注意燃料的种类。若是氢氧燃料电池,其电池总反应方程式不随电解质的状态和电解质溶液的酸碱性变化而变化,即2H 2+O 2=2H 2O 。若燃料是含碳元素的可燃物,其电池总反应方程式就与电解质的状态和电解质溶液的酸碱性有关,如甲烷燃料电池在酸性电解质中生成CO 2和H 2O ,即CH 4+2O 2=CO 2+2H 2O ;在碱性电解质中生成CO 32-离子和H 2O ,即CH 4+2OH -+2O 2=CO 32-+3H 2O 。 2、燃料电池正极反应式的书写 因为燃料电池正极反应物一律是氧气,正极都是氧化剂氧气得到电子的还原反应,所以可先写出正极反应式,正极反应的本质都是O 2得电子生成O 2-离子,故正极反应式的基础都是O 2+4e-=2O 2-。正极产生O 2-离子的存在形式与燃料电池的电解质的状态和电解质溶液的酸碱性有着密切的关系。这是非常重要的一步。现将与电解质有关的五种情况归纳如下。 ⑴电解质为酸性电解质溶液(如稀硫酸) 在酸性环境中,O 2-离子不能单独存在,可供O 2-离子结合的微粒有H +离子和H 2O ,O 2-离子优先结合H +离子生成H 2O 。这样,在酸性电解质溶液中,正极反应式为O 2+4H ++4e -=2H 2O 。 ⑵电解质为中性或碱性电解质溶液(如氯化钠溶液或氢氧化钠溶液) 在中性或碱性环境中,O 2-离子也不能单独存在,O 2-离子只能结合H 2O 生成OH -离子,故在中性或碱性电解质溶液中,正极反应式为O 2+2H 2O +4e -=4OH -。 ⑶电解质为熔融的碳酸盐(如LiCO 3和Na 2CO 3熔融盐混和物) 在熔融的碳酸盐环境中,O 2-离子也不能单独存在, O 2-离子可结合CO 2生成CO 32-离子,则其正极反应式为O 2+2CO 2 +4e -=2CO 32-。 ⑷电解质为固体电解质(如固体氧化锆—氧化钇) 该固体电解质在高温下可允许O 2-离子在其间通过,故其正极反应式应为O 2+4e -=2O 2-。 综上所述,燃料电池正极反应式本质都是O 2+4e -=2O 2-,在不同电解质环境中,其正极反应式的书写形式有所不同。因此在书写正极反应式时,要特别注意所给电解质的状态和电解质溶液的酸碱性。 3、燃料电池负极反应式的书写 燃料电池负极反应物种类比较繁多,可为氢气、水煤气、甲烷、丁烷、甲醇、乙醇等可燃性物质。不同的可燃物有不同的书写方式,要想先写出负极反应式相当困难。一般燃料电池的负极反应式都是采用间接方法书写,即按上述要求先正确写出燃料电池的总反应式和正极反应式,然后在电子守恒的基础上用总反应式减去正极反应式即得负极反应式。 总反应化学方程式 总反应离子方程式 负极反应 正极反应 O 2 CH 4 H 2SO 4

相关主题