搜档网
当前位置:搜档网 › O_2_CO_2气氛下煤焦燃烧反应动力学特性试验研究

O_2_CO_2气氛下煤焦燃烧反应动力学特性试验研究

O_2_CO_2气氛下煤焦燃烧反应动力学特性试验研究
O_2_CO_2气氛下煤焦燃烧反应动力学特性试验研究

提升系统动力学与运动学.(DOC)

第一节矿井提升运动学 一、提升速度图 竖井提升速度图因提升容器的不同一般可分为箕斗提升速度图(六阶段速度图)和罐笼提升速度图(五阶段速度图)。 图5一l所示为常采用的交流拖动双箕斗提升系统六阶段速度图,因它具有六个阶段而得名。速度图表达了提升容器在一个提升循环内的运动规律,现简述如下: 图5-1 箕斗提升六阶段速度图 (1)初加速度阶段t0 提升循环开始,处于井底装载处的箕斗被提起,而处于井口卸载位置的箕斗则沿卸载曲轨下行。为了减少容器通过卸载曲轨时对井架的冲击,对初加速度a0及容器在卸载曲轨内的运行速度v0 。要加以限制,一般取Vo≤1.5 m/s 。 (2)主加速阶段t1 当箕斗离开曲轨时,则应以较大的加速度a1运行,直至达到最大提升速度vm ,以减少加速阶段的运行时间,提高提升效率。 (3)等速阶段t2箕斗在此阶段以最大提升速度v m运行,直至重箕斗将接近井口开始减速时为止。 (4)减速阶段t3重箕斗将要接近井口时,开始以减速度a3运行,实现减速。 (5)爬行阶段t4重箕斗将要进入卸载曲轨时,为了减轻重箕斗对井架的冲击以及有利于准确停车,重箕斗应以低速v4爬行。一般v4=0.4~0.5m/s,爬行距离v4 =2.5~5m。 (6)停车休止阶段t5当重箕斗运行至终点时,提升机施闸停车。处于井底的箕斗进行装载,处于井口的箕斗卸载。箕斗休止时间可参考表5—1。 图5—2所示为双罐笼提升系统五阶段速度图。因为罐笼提升无卸载曲轨,故其速度图中无t0阶段。为了准确停车,罐笼提升仍需有爬行阶段,故罐笼提升的速度图为五阶段速度图。罐笼进出车休止时间参考相应手册。

二、最大提升速度 由式(1-1)计算的经济速度v j ,并不是提升机的最大提升速度v m ,但值尽可能是接近值。而最大提升速度值应如何确定呢?提升机的卷筒是由电动机经减速器拖动的。提升机卷筒圆周的最大速度与电动机额定转数n e 及减速器传动比i 有关,其关系如下式所示: )/(60s m i Dn v e m π= 5-1) 式中:D 为提升机卷筒直径,m ;i 为减速器传动比, n e 为电动机额定转数,r /min 由式(5—1)计算的最大提升速度v m ,因每台提升机所选配的电动机转数的不同和减速器速比的不同而具有有限的几个数值,这有限的几个数值均称为提升机的标准速度—最大提升速度。应该注意的是,选取v m 时,即选择转速n e 和传动比i 时,应使v m 值接近v j 值。其办法可从下列有关的表中查找(各表(见课本)的值是据式(5—1)计算得出的)。 在表中找出与v j 值最接近的v m 值,该值即为确定的提升最大速度——标准速度,这样,即可定出与确定的v m 值相对应的电动机转速和减速器的传动比。 根据式(8—1)得到的标准速度值必须符合《煤矿安全规程》对提升最大速度的有关规定: (1) 竖井中升降物料时,提升容器最大速度不得超过下式算出的数 )/(6.0s m H v m ≤ (5-2) (2)竖井中用罐笼升降人员的最大速度不得超过下式算出的数值,且最大不得超过16m /s 。)/(5.0s m H v m ≤ (5-3)三、提升加速度和减速度的确定

张力减径机的动力学和运动学的分析详细版

文件编号:GD/FS-1093 (解决方案范本系列) 张力减径机的动力学和运动学的分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

张力减径机的动力学和运动学的分 析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 文章主要对三辊式张力减径机进行分析,主要分析张力减径机的动力学和运动学原理,通过对张力减径机的速度分析、转速分析和速度控制来分析张力减径机运动学特征,通过对张力减径机受力分析、轧制压力和轧制力矩进行分析张力减径机的动力学特征分析。 张力减径机是现代化的生产机组,其作用和优越性使其在大规模无缝钢管生产中不可缺少。随着我国钢管工业的发展张力减径机组正被广泛运用。对三辊式张力减径机进行分析,该机组是90年代研制的,具有许多独特的优点。以下分析张力减径机的运动学

和动力学原理。 1.张力减径机的运动学特征 1.1.运动学特征 在张力减径的过程中,要求各个机架的延伸系数和轧辊圆周协调一致,同时决定连轧机工作的基本条件要求通过每个机架的金属的秒流量相等。 在所有的机架都充满金属而C不等于0的情况下,对于每对轧辊在任意瞬间都遵守秒流量、相等的原则,这种相等可通过轧辊和金属之间的滑移达到。因此当C不等于0时,减径机任何一个机架中的变形条件发生变化,都会影响其余机架中的变形条件,但由于连轧过程本身存在着相适应,自相调整的过程,因此即使在这种相互作用的复杂关系中减径过程仍然能够在任一瞬间保持秒流量相等。但是当差别较大时,必然会造成严重的拉钢和推钢,轻者不能获得

第四章 甲烷着火与燃烧特性的反应动力学分析

第四章 甲烷着火与燃烧特性的反应动力学分析 4.1化学反应动力学模型选择 4.2着火特性的反应动力学分析 4.3燃烧特性的反应动力学分析 本节将采用不同的甲烷燃料燃烧化学反应详细机理(Gri_mech 3.0、NUI Galway_Mech 、USC_Mech 2.0)对第三章中相同的实验工况下甲烷/空气混合气的层流燃烧速率进行数值计算,并将计算结果与实验数据进行对比分析。 4.3.1初始压力对l U -Φ的影响 在初始温度u T 为K 290,初始压力u P 分别为Mpa 1.0、Mpa 2.0和Mpa 3.0时,采用不同的甲烷燃料燃烧化学反应机理对其层流燃烧速率进行数值计算,将得到

图3.24 T u =290K 时不同初始压力下层流燃烧速率随当量比变化趋势的计算结果与实验数据 对比图 当Mpa P u 1.0=时,采用Gri_2.1动力学模型计算得到的甲烷/空气混合气的层流燃烧速率与实验数据吻合良好,另外两种动力学模型计算得到的结果则与实验数据存在一定偏差;当Mpa P u 2.0=时,在Φ值小于1的一侧,采用Gri_2.1动力学模型计算得到的甲烷/空气混合气的层流燃烧速率与实验数据较为接近,另外两种动力学模型计算得到的结果则与实验数据有偏差,但在Φ值大于1的一侧,采用Gri_2.1动力学模型和USC_Mech 2.0动力学模型计算得到的甲烷/空气混合气的层流燃烧速率最接近实验值;当Mpa P u 3.0=时,三种动力学模型的计算结果均与实验数据有偏离。经过综合分析,在三种压力工况下,Gri_2.1动力学模型能够较为准确的预测甲烷/空气混合气的层流燃烧速率。 4.3.2初始温度对l U -Φ的影响 在初始压力u P 为Mpa 1.0,初始温度u T 分别为K 290、K 320和K 350时,采用不同的甲烷燃料燃烧化学反应机理对其层流燃烧速率进行数值计算,将得到的计算结果与实验数据进行对比分析,如图3.25所示。

弹性联轴器运动与动力特性

弹性联轴器运动与动力特性 1.1 弹性联轴器的刚度和阻尼 弹性联轴器由于具有能产生较大弹性变形和阻尼作用的弹性元件,因此除能补偿两轴相对位移外,还能起缓冲和吸振的作用。弹性联轴器能适应载荷的波动,所以其应用较广,类型也较多。这种联轴器的缓冲和吸振性能主要与其刚度和阻尼有关。 联轴器的刚度可分为径向刚度、周向刚度和扭转刚度。由于载荷变化多数以扭矩波动形式出现,由此引起的振动也是以扭转振动为主,所以联轴器最主要的刚度是扭转刚度。扭转刚度易产生单位扭转变形所需的扭矩表示。通常,由于传动轴系中其它零件的刚度都比弹性联轴器的刚度大得多。所以为了简化起见,其它零件的弹性可以略去不计。仅考虑联轴器弹性,并根据这一情况以联轴器的刚度作为传动轴系的刚度。 刚度可用下式表示: C=T/(3-1) 式中 T——联轴器传递的扭矩; ——在扭矩作用下两半联轴器的相对扭转角。 当轴系接近发生共振时,刚度随扭矩增大而增大,改变传动轴系的固有频率与振动频率之间的关系,就能避开共振。 弹性联轴器在传递不稳定扭矩的过程中,弹性元件的弹性变形随扭矩的改变而增减。由于变形的不稳定,在弹性元件相对运动的接触表面上产生外摩擦,同时在弹性元件内部还存在内摩擦。这些摩擦将吸收一部分动能转化为热能,使温度升高。这就是联轴器的阻尼作用。阻尼作用能实现缓冲和衰减振动。联轴器的阻尼性能可以用阻尼系数表示。它是每一次载荷循环中产生的阻尼能和储存在扭转弹性元件中的变形能之比,即ф=W d/W e。在振动运动微分方程中,粘滞阻力系数用γ来表示,它与阻尼系 数之间的关系为γ=,ω为振动频率或绕动力矩变化频率。阻尼系数大,由于摩擦而消耗的能量就多,反之,阻尼系数小,由于摩擦而消耗的能量就少。 弹性联轴器一般都有缓冲和吸振功能,但是具有某一定值弹性的联轴器,并不是在任意的变扭矩作用下都能产生减振的效果,有时反而会引起更强烈的振动。其原因不在于此联轴器的刚度大小。可见,只有刚度和整个传动轴系的其他参数和载荷协调时,才能产生减振效果。因此,必须根据课题条件,通过计算来定出联轴器的刚度。 1.2 周期性载荷作用下的动力特性计算 对于某一已定的传动轴系,转动惯量和固有频率可由计算求得,如果已知所传扭矩的变化规律,如振幅和频率等,就能建立起轴系在扭转振动式的运动微分方程,对该方程求解,即可得到所需的联轴器的刚度。 为了便于求解运动微分方程,需要对传动轴系中联轴器的主动和从动两侧的转动惯量和刚度作力学模型的简化。根据具体结构情况,可以将轴系简化为若干个等效转动惯量圆盘,以具有某一刚度的周联系起来。通常比较典型的是简化为两个等效的圆

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。 伽利略发现了等加速直线运动中,距离与时间二次方成正比的规律,建立了加速度的概念。在对弹射体运动的研究中,他得出抛物线轨迹,并建立了运动(或速度)合成的平行四边形法则,伽利略为点的运动学奠定了基础。在此基础上,惠更斯在对摆的运动和牛顿在对天体运动的研究中,各自独立地提出了离心力的概念,从而发现了向心加速度与速度的二次方成正比、同半径成反比的规律。

运动学、动力学知识要点

《直线运动》知识要点 一、基本概念:时间、位移、速度、加速度 位移x ?——路程l 速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t v a ??=??,物理意义 二、基本模型 质点 匀速直线运动 匀变速直线运动(自由落体运动、竖直抛体运动) 三、基本规律(模型草图) 1.匀速直线运动:vt x = 2.匀变速直线运动: at v v ±=0,202 1at t v x ±=,ax v v 2202±=-,220 t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距) 四、基本方法(过程草图) 比例法——相等时间、相等位移 逆向运动法——末速度为零的匀减速运动,其它 对称法——往返运动(竖直上抛运动) 平均速度法 逐差法 图象法 五、基本实验 打点计时器 纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法) 六、难点题型 1.刹车问题——刹车时间 2.追击、相遇问题(草图、图象) (1)相遇问题——同一时刻、同一地点 (2)追击问题——关键:速度相等; 分析:速度相等前后; 结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+= 七、易错点汇集 1.纸带处理:2naT x x m n m =-+,21234569)()(T x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向) 3.图象问题:用图象解决追击相遇问题 4.答题技巧:抓关键词,统一单位,字母区别 画过程草图,灵活选取公式——平均速度法

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

燃烧反应动力学

燃烧反应动力学: 这一章主要从化学动力学的角度阐述燃烧反应的一些基本概念、原理和理论模型。 首先定义了反应速度:化学反应速度是在单位时间内由于化学反应而使反应物质(或燃烧产物)的浓度改变率。 dC w d τ =- 然后介绍了最基本的反应——基元反应,即反应物分子(或离子、官能团)在碰撞种一步转化为产物分子(或离子、官能团)的反应。 同时引入了反应级数的概念。并在此基础之上逐步讨论了一级反应和二级反应的一些结论和特点。其中又引入了半衰期的概念,其定义如下:经过一定时间r 后,反应物的浓度降为初始浓度的一半时所需要的时间即是该反应的半衰期。 在简单的基元反应基础之上,课程进一步研究了一些复杂反应,包括:可逆反应、平行反应、连续反应等。至此基本的反应类型介绍完毕。紧接着课程讨论了各种参数对化学反应速度的影响,包括温度、压力、浓度等。其后继续介绍了反应速度的碰撞理论模型。并提出了有效碰撞理论: ● 在相互反应的分子碰撞过程中,只有一部分的分子碰撞处于合适的方位上; ● 处于合适方位上的分子间的相互碰撞,只有一部分有能力足以使得化学键破裂; ● 反应速率常数可以表示成: /E RT AB k Z e ?-= 有了碰撞理论模型的基础之后,课程开始介绍另外一种比较特殊的重要反应类型——链锁反应。主要介绍了不分支链锁反应(也叫直链反应)和分支链锁反应两个类型。本章的最后介绍了燃烧学中常用的一些概念和术语。现总结如下: ● 生成焓:当化合物是由不同元素组成时,化学能被转换成热能,这种转换的能量称 为化合物的生成焓。 ● 过量空气系数:燃烧反应过程当中实际空气量和理论空气量的比值。 ● 当量比:111φ=千克燃料 实际燃空比实际燃烧过程种供给的空气量=千克燃料理论燃空比 千克燃料完全燃烧所需要的理论空气量 ● 绝热燃烧温度:一个绝热、无外力做功、没有动能或势能变化的燃烧过程,燃烧产 生的热量全部用于加热燃烧产物,这样一个过程中燃烧产物的温度。 多组分反应流体力学基本方程组: 这章主要从流体力学的角度分析多组分燃烧反应过程的一些特点以及结论,并导出多组分燃烧反应的基本方程组。 首先,本章介绍了几类火焰: ● 扩散火焰:燃气和空气进入炉膛(或烧嘴)前不预先混合,燃烧过程当中空气、燃 气边混合边燃烧。特点:火焰明亮,有明显轮廓。 ● 预混火焰、燃气和空气在烧嘴内已经混合均匀,在燃烧室内直接燃烧。特点:火焰 透明,也称为“无焰燃烧”。 ● 部分预混火焰:燃料先和部分氧化剂混合,其余氧化剂通过扩散进入燃烧室。 随后,引入三个特征时间:

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μ μ?'=-=-?,24y y u p a y μμ ?'=-=?, 4x x p p p p a μ '=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而 引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。 (请将d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2 d (1)2d h y p y y u v h x h h μ=-- (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切 流动。它只是由于平板运动,由于流体的粘滞性

带动流体发生的流动。 当d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式 中 2d () 2d h p p v x μ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为 2sin (2) 2x g u zh z r q m =-,单宽流量 3 sin 3gh q r q m =。

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

车辆动力学相关的软件及特点

SIMPACK车辆动力学习仿真系统 SIMPACK软件是德国INTEC Gmbh公司(于2009年正式更名为SIMPACK AG)开发的针对机械/机电系统运动学/动力学仿真分析的多体动力学分析软件包。它以多体系统计算动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件。SIMPACK软件的主要应用领域包括:汽车工业、铁路、航空/航天、国防工业、船舶、通用机械、发动机、生物运动与仿生等。 SIMPACK是机械系统运动学/动力学仿真分析软件。SIMPACK软件可以分析如:系统振动特性、受力、加速度,描述并预测复杂多体系统的运动学/动力学性能等。 SIMPACK的基本原理就是通过搭建CAD风格的模型(包括铰、力元素等)来建立机械系统的动力学方程,并通过先进的解算器来获取系统的动力学响应。 SIMPACK软件可以用来仿真任何虚拟的机械/机电系统,从仅仅只有几个自由度的简单系统到诸如一个庞大的火车。SIMPACK软件可以应用在我们产品设计、研发或优化的任何阶段。 SIMPACK软件独具有的全代码输出功能可以将我们的模型输出成Fortran或C代码,从而可以实现与任意仿真软件的联合。 车辆动力学仿真carsim CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。 CarSim软件的主要功能如下: 适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; 可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; 可以通过软件如MATLAB,Excel等进行绘图和分析; 可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠; CarSim软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL仿真;

ADAMS软件在汽车前悬架-转向系统运动学及动力学分析中的应用上课讲义

ADAMS软件在汽车前悬架-转向系统 运动学及动力学分析中的应用 尤瑞金 北京吉普汽车有限公司 摘要:本文介绍利用国际上著名的ADAMS软件对工程上多刚体系统进行运动学和动力学分析的 方法,并用这一方法模拟了某货车悬架-转向系统的运动学及动力学特性,研究开发了前、后处理专 用程序,使该软件适用于车辆系 统,并得出了许多具有工程意义的结果。 主题词:汽车总布置-计算机辅助设计县架转向系 一、前言 汽车悬架和转向的动学及动力学分析是汽车总布置设计、运动校核的重要内容之一, 也是研究平顺性、操纵稳定性等汽车性能的基础。由于汽车前悬架一转向系统是比较复杂的空间机构,特别是前独立悬架,一般多设计成主销内倾和后倾,并且控制臂轴也大多倾斜布置。这些就给运动学、动力学分析带来较大困难。过去多用简化条件下的图解法一般的分析计算法进行分析计算。所得的结果误差较大,并且费时费力。近年来,随着计算机技术和计算方法的不断提高,国外研制了IMP、ADAMS及DAMN等很多专用程序,用于车辆运动学及 动力学分析。 本文是在消化吸收引进的ADAMS软件过程中,结合汽车设计,解决运动学及动力学问题,从而提高设计质量。 二、ADAMS软件概述 ADAMS(Automatic Dynamic Analysis of Mechanical Systems,即机械系统动力学自动化分析软件包)是由美国机械动力公司开发的。由于该软件采用的比较先进的计算方法,大大地缩短了计算时间,其精确度也相当高,因上,被广泛应用于机械设计的各个领域。 1.ADAMS软件功能如下: 一般ADAMS分析功能如下: (1)可有效地分析三维机构的运动与力。例如可以利用ADAMS来模拟作用在轮胎上的垂直、转向、陀螺效应、牵引与制动、力与力矩;还可应用ADAMS进行整个车辆或悬架系统道路操纵性的研究。 (2)利用ADAMS可模拟大位移的系统。ADAMS很容易处理这种模型的非线性方程, 而且可进行线性近似。 (3)可分析运动学静定(对于非完整的束或速度约束一般情况的零自由度)系统。 (4)对于一个或多外自由度机构,ADAMS可完成某一时间上的静力学分析或某一时 间间隔内的静力学分析。

第二章挖掘装置动力学及运动学分析.

第二章挖掘装置运动学及动力学分析 2.1 挖掘装置的结构及工作特点 挖掘装载机反铲工作装置的结构,其基本型式见图 2-1 所示。 图2-1反铲结构简图 工作特点:反铲工作装置主要用于挖掘停机面以下的土壤,其挖掘轨迹决定于各液压缸的运动及其相互配合的情况。当采用动臂液压缸工作进行挖掘时(斗杆、铲斗液压缸不工作可以得到最大的挖掘半径和最大的挖掘行程,此时铲斗的挖掘轨迹系以动臂下铰点 C 为中心,斗齿尖 V 至 C 的距离|CV|为半径而作的圆弧线,其极限挖掘高度和挖掘深度(不是最大挖掘深度,分别决定于动臂的最大上倾角和下倾角(动臂对水平线的夹角,也即决定于动臂液压缸的行程由于这种挖掘方式时间

长,并且稳定条件限制了挖掘力的发挥,实际工作中基本上不采用。 当仅以斗杆液压缸工作进行挖掘时,铲斗的挖掘轨迹系以动臂与斗杆的铰点 F 为中心,斗齿尖 V 至 F 的距离|FV|为半径所作的圆弧线,同样,弧线的长度与包角决定于斗杆液压缸的行程 。当动臂位于最大下倾角时,可以得到最大挖掘深度,并且有较大的挖掘行程,在较硬的土质条件下工作时,能够保证装满铲斗,故中小型挖掘机构在实际工作中常以斗杆挖掘进行工作。 反铲装置如果仅以铲斗液压缸工作进行挖掘时,挖掘轨迹则为以铲斗与斗杆的铰点 Q 为中心,该铰点 Q 至斗齿尖 V 的距离 |QV|为半径所作的圆弧线。同理,圆弧线的包角( 铲斗的转角及弧长决定于铲斗液压缸的行程(|GH|–|GH|)。显然,以铲斗液压缸进行挖掘时的挖掘行程较短,如使铲斗在挖掘行程结束时能够装满土壤,需要有较大的挖掘力以保证能够挖掘较大厚度的土壤。所以,一般挖掘机构的斗齿最大挖掘力都在采用铲斗液压缸工作时实现。用铲斗液压缸进行挖掘常用于清除障碍,挖掘较松软的土壤以提高生产率,因此在一般土方工程机械中(土壤多为Ⅲ级土以下,转斗挖掘最常采用。在实际挖掘中,往往需要采

流体力学第三章流体运动学与动力学基础

第三章流体运动学与动力学基础 主要内容 ●基本概念 ●欧拉运动微分方程 ●连续性方程——质量守恒* ●伯努利方程——能量守恒** 重点 ●动量方程——动量守恒** 难点 ●方程的应用 第一节研究流体运动的两种方法 ●流体质点:物理点。是构成连续介质的流体的基本单位,宏观上无穷小(体积非常 微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许 多流体分子的统计学特性)。 ●空间点:几何点,表示空间位置。 流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。 一、拉格朗日法(跟踪法、质点法)Lagrangian method 1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。 2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。 3、方程:设任意时刻t,质点坐标为(x,y,z) ,则: x = x(a,b,c,t) y = y(a,b,c,t) z = z(a,b,c,t) 4、适用情况:流体的振动和波动问题。 5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。 缺点:不便于研究整个流场的特性。 二、欧拉法(站岗法、流场法)Eulerian method

1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。 2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。 3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。 位置: x = x(x,y,z,t) y = y(x,y,z,t) z = z(x,y,z,t) 速度: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t ) 同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。 加速度: z u u y u u x u u t u a x z x y x x x x ??+??+??+??= z u u y u u x u u t u a y z y y y x y y ??+??+??+??= z u u y u u x u u t u a z z z y z x z z ??+??+??+??= 全加速度=当地加速度+迁移加速度 当地加速度:在一定位置上,流体质点速度随时间的变化率。 迁移加速度:流体质点所在的空间位置的变化而引起的速度变化率。 说明:两种方法具有互换性。但由于欧拉法较简单,且本书着重讨论流场的整体运动特性。所以,采用欧拉法研究问题。 四、流场分类 1、 三元流场:凡具有三个坐标自变量的流场称为三元流场(或三维流场)。 一般来说,速度是三个坐标自变量的函数:V =V (x,y,z,t) 2、二元流场:凡具有两个坐标自变量的流场。 3、一元流场:具有一个坐标自变量的流场。 管截面A=A(l ),若人们研究的是各截面上流动的平均物理参数,则它可以简化为一元流场B=B(l , t)。 k y x j xy i xy u 542 1221+-=——二维流场

运动学、动力学知识要点

《直线运动》知识要点 一、基本概念:时间、位移、速度、加速度 位移x ?——路程l 速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t v a ??=??,物理意义 二、基本模型 质点 匀速直线运动 匀变速直线运动(自由落体运动、竖直抛体运动) 三、基本规律(模型草图) 1.匀速直线运动:vt x = 2.匀变速直线运动: at v v ±=0,202 1at t v x ±=,ax v v 2202±=-,220 t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距) 四、基本方法(过程草图) 比例法——相等时间、相等位移 逆向运动法——末速度为零的匀减速运动,其它 对称法——往返运动(竖直上抛运动) 平均速度法 逐差法 图象法 五、基本实验 打点计时器 纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法) 六、难点题型 1.刹车问题——刹车时间 2.追击、相遇问题(草图、图象) (1)相遇问题——同一时刻、同一地点 (2)追击问题——关键:速度相等; 分析:速度相等前后; 结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+= 七、易错点汇集 1.纸带处理:2naT x x m n m =-+,21234569)()(T x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向) 3.图象问题:用图象解决追击相遇问题 4.答题技巧:抓关键词,统一单位,字母区别 画过程草图,灵活选取公式——平均速度法

质点运动学和动力学习题答案

质点运动学和动力学习题参考答案 一、选择题 1、D 解析:题目只说明质点作直线运动,没有确定是匀加速还是变加速直线运动,故任意时刻的速度都不确定。 2、D 3、C 解析:2t 时间内,质点恰好运动2圈回到初始位置,其位移为0,路程为4πr ,所以其平均速度大小为0,平均速率为2πr/t 。 4、C 解析:有题目可知人与风运动速度可用下图表示,由速度合成得到可知人感受到的风高手刀锋来自西北方向。 5、B 解析:a B =2a A ,对于B 物体有:mg-T=ma B 对于A 物体有2T=ma A 上3式联解得:a B =4g/5 6、A 解析:物体收尾时作匀速运动,则其加速度为零,即mg =kv 2,即得收尾速度为v =(mg /k )1/2。 7、D 解析: 22 tan sin mg mR m l θωωθ== 1 2 2c o s 2l T g π θπω??== ??? 8、A 解析:设绳中张力为T ,则弹簧秤的读数为2T ,因为A 、B 两物体的加速度大小相等,方向相反,可设加速度大小为a ,对A 、B 两物体应用牛顿运动定律m 1g -T =m 1a ,T -m 2g =m 2a ,可得。 二、填空题 1、j 50cos50t i 50sin5t - v +=,a τ=0,a n =250m/s 2,圆; 解析:有运动方程可知:x =10cos5t y =10sin5t ;则其运动轨迹方程为:x 2+y 2=102,所以其轨迹为圆; j 50cos50t i 50sin5t - /dt r d v +==,50v =m/s,所以圆周运动的a τ=0; a n =v 2/r 。 mg T T

运动学与动力学题目

1. 图中机构在竖直平面内运动,各部件的尺寸如图所示。某时刻在图示位置上,杆OA 处于水平位置,绕O 点的角速度为2rad/s Ω=,求 (1)此时部件C 的角速度ω及杆AB 的B 端的速度的大小; (2)若此时杆绕O 点的角加速度0Ω=&,求此时部件C 的角加速度ω&及B 点的加速度B a 。 2. 5个质量相等的匀质球,其中4个半径均为a 的球,静止放在半径为R 的半球形碗内,它们的球心在同一水平面内.另1个半径为b 的球放在4球之上.设接触面都是光滑的,试求碗的半径R 的值满足什么条件时下面的球将相互分离. 3. 足球比赛,一攻方队员在图中所示的 A 处沿 Ax 方向传球,球在草地上以速度 v 匀速滚动,守方有一队员在图中 B 处,以 d 表示 A ,B 间的距离,以 θ 表示 AB 与Ax 之间的夹角,已知 θ <90° .设在球离开 A 处的同时,位于 B 处的守方队员开始沿一直线在匀速运动中去抢球,以 v p 表示他的速率.在不考虑场地边 界限制的条件下,求解以下问题(要求用题中给出的有关参 量间的关系式表示所求得的结果): (1)求出守方队员可以抢到球的必要条件. (2)如果攻方有一接球队员处在 Ax 线上等球,以 l r 表示他到 A 点的距离,求出球不被原在 B 处的守方队员抢断的条件. (3)如果攻方有一接球队员处在 Ax 线上,以L 表示他离开 A 点的距离.在球离开 A 处的同时,他开始匀速跑动去接球,以 v r 表示其速率,求在这种情况下球不被原在 B 处的守方队员抢断的条件. 4. 天体或微观系统的运动可借助计算机动态模拟软件直观显示。 这涉及几何尺寸的按比例A

量子论的运动学与动力学

量子论的运动学与动力学 200890513216号李香文计081-2班 正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式:。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。 海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。” 1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验, 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这

机器人学第六章(机器人运动学及动力学)

第六章 机器人运动学及动力学 6.1 引论 到现在为止我们对操作机的研究集中在仅考虑动力学上。我们研究了静力位置、静力和速度,但我们从未考虑过产生运动所需的力。本章中我们考虑操作机的运动方程式——由于促动器所施加的扭矩或作用在机械手上的外力所产生的操作机的运动之情况。 机构动力学是一个已经写出很多专著的领域。的确,人们可以花费以年计的时间来研究这个领域。显然,我们不可能包括它所应有的完整的内容。但是,某种动力学问题的方程式似乎特别适合于操作机的应用。特别是,那种能利用操作机的串联链性质的方法是我们研究的天然候选者。 有两个与操作机动力学有关的问题我们打算去解决。向前的动力学问题是计算在施加一 组关节扭矩时机构将怎样运动。也就是,已知扭矩矢量τ,计算产生的操作机的运动Θ、Θ 和Θ 。这个对操作机仿真有用,在逆运动学问题中,我们已知轨迹点Θ、Θ 和Θ ,我们欲求出所需要的关节扭矩矢量τ。这种形式的动力学对操作机的控制问题有用。 6.2 刚体的加速度 现在我们把对刚体运动的分析推广到加速度的情况。在任一瞬时,线速度矢量和角速度矢量的导数分别称为线加速度和角加速度。即 B B Q Q B B Q Q 0V ()V ()d V V lim dt t t t t t ?→+?-==? (6-1) 和 A A Q Q A A Q Q 0()()d lim dt t t t t t ?→Ω+?-ΩΩ=Ω=? (6-2) 正如速度的情况一样,当求导的参坐标架被理解为某个宇宙标架{}U 时我们将用下面的记号 U A AORG V V = (6-3) 和 U A A ω=Ω (6-4)

6.2.1 线加速度 我们从描述当原点重合时从坐标架{}A 看到的矢量B Q 的速度 A A B A A Q B Q B B V V B R R Q =+Ω? (6-5) 这个方程的左手边描述A Q 如何随时间而变化。所以,因为原点是重合的,我们可以重写(6-5)为 A A B A A B B Q B B d ()V dt B B R Q R R Q =+Ω? (6-6) 这种形式的方程式当推导对应的加速度方程时特别有用。 通过对(6-5)求导,我们可以推出当{}A 与{}B 的原点重合时从{}A 中看到的B Q 的 加速度表达式 A A B A A A A Q B Q B B B B d d V (V )()dt dt B B R R Q R Q =+Ω?+Ω? (6-7) 现在用(6-6)两次── 一次对第一项,一次对最后一项。(6-7)式的右侧成为: A B A A A A B Q B B Q B B A A A A B B Q B B V () +Ω?+Ω?+Ω?+Ω? B B B B R R V R Q R V R Q (6-8) 把相同两项合起来 A B A A A A B Q B B Q B B A A A B B B V 2 () +Ω?+Ω?+Ω?Ω? B B B R R V R Q R Q (6-9) 最后,为了推广到原点不重合的情况,我们加上一项给出{}B 的原点的线加速度的项,得到下面的最后的一般公式 A B A A A A BORG B Q B B Q B B A A A B B B V 2 () ++Ω?+Ω?+Ω?Ω? A B B B V R R V R Q R Q (6-10) 对于我们将在本章上考虑的情况,我们总是有B Q 为不变,或 B Q Q V 0== B V (6-11) 所以,(6-10)简化为 A A A A A A Q BORG B B B B B V ()=+Ω?Ω?+Ω? A B B V R Q R Q (6-12) 我们将用这一结果来计算操作机杆件的线加速度。 6.2.2 角加速度 考虑{}B 以A B Ω相对于{}A 转动的情况,而{}C 以B C Ω相对于{}B 转动。为了计算 A C Ω我们把矢量在坐标架{}A 中相加

相关主题