搜档网
当前位置:搜档网 › 考研分子生物学名词解释大全

考研分子生物学名词解释大全

考研分子生物学名词解释大全
考研分子生物学名词解释大全

1移动基因:又叫转位因子(transposable elements),由于它可以在染色体基因组上移动,甚至可在不同染色体间跃迁,故又称跳跃基因(jumping gene)。有三种类型,插入序列,转为子和噬菌体Mu和D108。

2断裂基因(split gene):真核细胞的结构基因,其核苷酸序列中含有与氨基酸编码无关的DNA间隔区段,从而被分割成不连续的若干区域。将这种编码序列不连续,有间隔区段的DNA片断称为断裂基因。非编码间隔区段称间隔子,有转录和编码功能序列称表达子。原核细胞无内含子。

3重叠基因(overlapping genes):不同基因的核苷酸序列有时为相邻两个基因共用,将核苷酸彼此重叠的两个基因称为重叠基因。

4假基因:在珠蛋白基因簇(gene cluster)各片断核苷酸序列分析时发现,除了有正常的功能基因之外,还有功能失活的特殊序列片断,它不能行使表达功能。该类无表达功能的畸变核苷酸基因序列片断,称为假基因。

5同尾酶:有一些限制性核酸内切酶识别的碱基顺序不完全恒定,即识别顺序不同,但酶切后产生同样黏性末端的两种酶称为同尾酶,如BamHⅠ和Bgl Ⅱ。

6质粒:细菌存在于细胞质中的一种独立于染色体以外的遗传成分,是由环状的DNA分子组成的复制子。质粒有我复制和调控系统,可以在胞浆内自主复制,把携带的遗传信息通过自我复制的子代质粒,可随细菌分裂而进入子代菌体中。还有转移,选择性标记及不相容性等特性。

7柯斯(COS)质粒:粘性质粒(Cosmid)带有λ噬菌体的Cos位点和整个pBR322的DNA顺序。经感染进入细菌细胞以后,它就好象质粒那样在细胞中进行复制。分子量小,易环化和扩增,可包装30-45kb外源基因,可由Ampr抗性筛选,常用于构建基因文库。

8 Cos位点(Cohesive-end site):λDNA为线状双链分子,两端各有几个碱基的单链互补粘性末端,通过粘性末端的互补作用形成双链环形DNA。这种由粘末端结合形成的双链区段即Cos位点。

9 COS细胞:用一个复制起始部位缺失的SV40突变种感染猴细胞,由于病毒DNA 不能自主复制,便整合到宿主染色体DNA中,早期基因表达产生功能性的T抗原,这样的细胞就叫COS细胞。

10基因组文库:分离真核生物中某种DNA成分, 通常是分离供体细胞中的染色体DNA,酶切后,将这些染色体DNA片段与某种载体相接,而后转入大肠杆菌,建立包含有真核细胞染色体DNA片断的克隆株, 这种克隆株群体称基因组文库。11cDNA文库:以mRNA为模板在反转录酶的作用下将形成的互补DNA(cDNA )与某种载体相接,而后转入大肠杆菌,建立克隆株,即cDNA文库(gene library)12转染:病毒(含噬菌体)DNA及其重组子DNA导入宿主细胞(或细菌)的过程。由于噬菌体是细菌的病毒,因此噬菌体DNA 导入大肠杆菌的感受态细胞也称转染。

13转导:以噬菌体为媒介,将外源DNA导入细菌的过程称转导。

14 转化:以质粒作为克隆载体将目的基因导入宿主细胞。转化作用就是一种基因型细胞从周围介质中吸收来自另一种基因型细胞的DNA,进而使原来细胞的遗传基因和遗传性发生变化的现象。常见:原生质粒转化法,化学转化法和电穿孔法。

15启动子:是位于结构基因上游,转录起始调控所必需的一段DNA序列,是RNA 聚合酶与模板DNA结合的部位。内含-35区(与σ因子结合)和-10区(和核心酶结合)的保守序列。当启动子与全酶结合后可在+1转录起始点开始转录。

16 终止子:位于一个基因编码区3’下游提供终止信号的DNA序列,可以被RNA 聚合酶识别并发出停止mRNA合成的信号。一般为一段发卡结构的反向重复序列。17起始密码子:编码多肽链的第一位氨基酸的密码子AUG(或ATG),编码甲硫氨酸(蛋氨酸)。在细菌中也有罕见的起始密码子GUG,编码缬氨酸。其起始表达作用AUG>GUG。

18终止密码子:有三个密码子(UAA, UAG,UGA),是使蛋白质合成终止的码子,通过一个或两个组合在一起发挥作用。只表示链的终止,不表达氨基酸。

19 锌指结构:由两个半胱氨酸残基和两个组氨酸残基通过位于中心的锌离子结合成一个稳定的指状结构,并以锌辅基螯合成的环状结构作为活性单位,在指状突出区表面暴露的碱基及其极性氨基酸与DNA结合有关。

20粘性末端:是指DNA分子在限制酶切割后产生一条链多出几个碱基的互补对称的突出末端,若5’突出称5’粘性末端,他们能够通过碱基间的配对而重新环化起来,若平末端的DNA片段则不易重新环化。

21 PCR:聚合酶链反应,是依据细胞内DNA半保留复制的机理,以及体外DNA 分子于不同温度下双链和单链可以互相转变的性质,在试管中给DNA的体外合成提供一种合适条件:模板DNA,寡链核苷酸引物,DNA聚合酶,合适的缓冲液系统和DNA变性、复性及延伸的温度与时间等,使加入的4种dNTP由引物沿模板从5’→3’按碱基配对原则, 形成与模板DNA互补的半保留复制链。

22 Genomic DNA:基因组DNA,组成生物基因组的所有DNA,包含一个生物体的全部遗传信息,即DNA的全部核苷酸序列。对于二倍体高等生物,其配子的DNA 总和即为一组基因组。不同区域具有不同的功能,有些编码蛋白质,有些调控基因的复制,转录和蛋白质表达等。

23 Intron:即间隔子(内含子),与原核的蛋白质编码基因相比,真核蛋白质编码基因最主要的特点是其转录区的编码序列是间断的不连续的,其中非编码序列叫间隔子。它可随DNA的转录,参与形成前体mRNA,而后在转录后的加工过程中被剪切,最终不存在于成熟mRNA中。因其对翻译产物的结构无意义,因而累计有更多的突变。

24 Exon:即表达子(编码序列),与原核的蛋白质编码基因相比,真核蛋白质编码基因最主要的特点是其转录区的编码序列是间断的不连续的,其中编码氨基酸的序列叫表达子。它是转录物经加工后被保留的相应的成熟RNA分子,并可在蛋白质合成过程中表达为蛋白质。所有外显子一同组成了遗传信息。

25转录(transcription):生物体以DNA为模板在mRNA聚合酶的作用下,合成RNA的过程称为转录。包括转录起始、延伸、终止等过程。转录是不对称的,体现为在DNA双链上一股链可以转录而另一股不可以。二是模板链并不都是在同一单链上。

26翻译(translation): 在多种因子辅助下,细胞内以mRNA模板,在核糖体上通过tRNA识别该mRNA的三联体密码子和转移相应氨基酸,组装合成蛋白质肽链的过程。在多数情况下,新生多肽还需要经过转译后加工和修饰才能成为有活性的蛋白质。

27顺式作用元件:顺式作用元件为一些能与DBP结合的特定序列DNA片段,主要位于真核基因上游,含有特有的相似或一致序列,决定转录起始位点和RNA聚合酶的转录效应。按功能可分为启动子、增强子、沉默子、衰减子、终止子等DNA 序列片段。

28反式作用因子:反式作用因子是一组能直接或间接地与DNA的顺式作用元件

特定序列结合,发挥调节作用的核内非组蛋白,激活或阻遏基因表达。是DNA 结合蛋白(DBP),DBP又称转录因子(transcription factor,TF)分通用转录因子及转录调节因子两大类。基因表达的组织特异性及细胞周期特异性受上述元件和因子的相互作用所决定。

29转录因子:能够结合在某基因上游特异核苷酸序列上的蛋白质,活化后从胞质转位至胞核,通过识别和结合基因启动子区的顺式作用元件,启动和调控基因表达。

30瞬时表达:外源基因进入宿主细胞后,不整合到受体细胞染色体而独立于其外,随复制而出现基因产物,但复制量不宜太多,否则会引起细胞死亡,也不能随细胞传代,因而其表达的量越来越少最后消失。这种现象称为瞬时表达。

31稳定表达:具有选择性标记,有完整的哺乳动物细胞转录系统,但无真核复制子的表达载体,在转染哺乳动物细胞后,外源基因进入真核细胞后,可将基因整合到细胞染色体上,可随细胞转录表达和传代。通过对转染DNA的阳性细胞克隆筛选,则可获得外源基因整合到细胞染色体中稳定表达的细胞。

32tk基因:可以合成胸腺嘧啶核苷激酶(thymidine Kinase,TK),在所有真核细胞中都有表达, 是嘧啶生物合成补救代谢途径中的一个关键酶, 它可催化胸苷磷酸化转变成为dTMP, 继续磷酸化生成dTTP, 参与DNA的生物合成。通过HAT 培养基筛选TK+细胞。同时也对GCV敏感,是一种常见的自杀基因。

33亮氨酸拉链:存在于蛋白C末端,为两组走向平行,带亮氨酸的α—螺旋形成的对称二聚体,约为30个氨基酸,每两个亮氨酸之间隔有六个氨基酸,于是每两圈螺旋就有一个亮氨酸,排成一排,从而在2个α-螺旋的蛋白分子之间形成一条拉链。形成二聚体后可使肽链上富含的碱性氨基酸区与亮氨酸拉链形成的整体结构与DNA亲和力较强而发生结合。

34基因突变:指基因组DNA分子在结构上发生碱基对组成或排列顺序的改变(通常只涉及部分序列的变化),并引起个体表型的改变, 而使生物体发生遗传变异。35同义突变:是指碱基被替代后, 没有改变产物氨基酸序列, 这是与密码子的简并性相关, 如CTT、CTC、CTA、CTG的第3位碱基互相替代后其编码表达的产物均为亮氨酸,因此这种突变不产生突变效应。

36错义突变:是指碱基序列的改变引起了产物氨基酸的序列改变。有些错义突变严重影响到蛋白质活性甚至完全失去活性,从而影响了表型。如果该基因是必需基因,则该突变为致死突变。

37.无义突变:某个碱基的改变可使某种氨基酸的密码子突变为终止密码子。如赖氨酸的密码子AAG突变为终止密码子TAG,若肽链合成过早终止, 则蛋白质产物一般没有活性。若是发生在基因DNA的3’末端处, 它所表达产生的多肽常有一定活性或有部分活性, 这种突变又称为渗漏变型(leaky mutation)。

38限制性核酸内切酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶。主要从原核生物中分离纯化出来。

39基因拼接:将有共同限制性内切酶切点的基因连接起来形成多种基因杂合体,如将IFN-α1与IFN-α2亚型间进行拼接,可形成IFN-α1/α2或IFN-α2/α1等,称IFNs杂合体。此外,也可根据需要将具有协同效应的不同基因进行接拼。

40基因缺失:将原基因中的非功能区域的编码子人为地使之缺失的过程称为基因缺失,所表达的产物相对分子质量虽然小了,但有时可提高表达效率,如IL-6缺失N端17~25个核苷酸可使IL-6的表达效率提高。有时还可降低一些毒性作用。如TNF基因缺失某一区域可使毒性下降。

41重组病毒载体:将外源性的DNA直接插入缺陷型的病毒基因组上,插入的外源片段的大小同被取代的病毒基因组区段是等同的。这样形成的重组体DNA能够在哺乳动物的受纳细胞中增殖,并包被成病毒颗粒。但为了补充被取代病毒基因组DNA功能,必须用一种与之互补的辅助病毒。

42重组质粒型载体:即重组病毒-质粒载体,这类载体只取病毒基因组中维持在哺乳动物中进行复制的有关序列以及抗性标记基因,使它与一个细菌质粒融合,这样的重组体也能够在大肠杆菌中进行复制和增殖,不过这种重组体不能够被包装成病毒颗粒,不能出现裂解感染的情况。

43基因工程多肽疫苗:使微生物对人体具保护作用的抗原基因经体外重组表达后所制备的生物活性多肽类疫苗称基因工程多肽或亚单位疫苗。其表达系统可以是酵母,也可以是哺乳动物细胞,若无需糖基化的多肽疫苗甚至可在大肠杆菌等原核细胞中表达。

44基因置换(gene replacement):是指将致病基因整个地被有功能的正常基因所置换,使致病基因永久地得到更正。但操作难度大,有伦理学问题。

45基因修正(gene correction)是指将致病基因的突变碱基序列予以纠正,而正常序列部分予以保留,使突变的致病基因恢复正常功能。即使致病基因的突变序列纠正为正常序列(用碱基点突变技术)。

46基因修饰(gene augmentation)则是指将目的基因导入缺陷细胞或其它细胞,目的基因的表达产物可修饰和改变缺陷细胞的功能或使原有的功能得到加强。47基因失活(gene inactivation)就是应用反义技术(antisense technology)特异封闭某些基因的表达,以达到抑制或阻止某些有害基因的表达。SiRNA的基因干扰可造成靶基因(异常基因)的失活(或沉默)。

48转基因动物:就是把外源性目的基因导入动物的受精卵或其囊胚细胞中,并在细胞基因组中稳定整合,再将合格的重组受精卵或囊胚细胞筛选出来,采用借腹怀孕法寄养在雌性动物的子宫内, 使之发育成具表达目的基因的胚胎动物, 并能传给下一代。这样,生育的动物为转基因动物。这类动物由于外源性目的基因的稳定存在而赋于子代动物个体。

49动物克隆:是一种通过核移植过程进行无性繁殖的技术。取发育早期的动物胚胎细胞,或成年动物的体细胞,使之与去掉细胞核的卵母细胞融合,经短期培养后形成胚胎细胞并移植到生殖周期相近的母体之中,可以发育成为正常动物个体。经过核移植而产生的动物,其遗传结构与细胞核供体完全相同。这种不经过有性生殖过程,而是通过核移植生产遗传结构与细胞核供体相同动物个体的技术,就叫做动物克隆。

50基因敲除:是向正常生物个体内引入某个突变基因位点而选择性地使某特定基因功能失活的技术,可培养出靶向性剔除某基因的动物,而导致行为特性改变。但由于同源位点和重组率低等原因,障碍较大。

51 ES细胞:胚胎干细胞,不仅具有全能分化能力,而且可以在体外培养建立细胞株。同时还有无限增殖和自我更新等功能。若把培养的细胞接种到恰当的动物胚胎中培育分娩后,便可发育出嵌合体动物。

52基因组:表示某物种单倍体的总DNA。对于二倍体高等生物其配子的DNA总和即为一组基因组,不同生物基因组数目不同。

53基因表达:生物体的遗传信息都是以核苷酸序列编码的形式储存在遗传物质DNA上。基因表达的过程就是遗传信息经过转录,翻译等及其复杂的生物化学反应,最终产生具有生物功能的蛋白质。即DNA→RNA→蛋白质。DNA中含有的基因

遗传信息决定了物种的遗传和变异,并通过表达蛋白质来呈现遗传性状。

54 RT-PCR:即逆转录PCR,先在逆转录酶的作用下以mRNA为模板合成cDNA,再以cDNA为模板进行PCR反应。这样,低浓度的mRNA被扩增放大易于检测。是一种快速、简便且敏感性极高的检测RNA的方法,可用于分析基因的转录产物、克隆cDNA及合成cDNA探针、改造cDNA序列等。其关键步骤是RNA的逆转录,要求RNA 模板必须是完整的且不含DNA,蛋白质等杂质。

55载体(vector):可以插入核酸片段、能携带外源核酸进入宿主细胞,并在其中进行独立和稳定的自我复制的核酸分子。主要包括五类:质粒,λ噬菌体的衍生物,柯斯质粒,单链DNA噬菌体M13,动物病毒。

56基因:指编码有功能蛋白质多肽链或RNA分子所必须的全部核酸序列。一个基因不仅含有编码蛋白质肽链或DNA分子的核酸序列,还包括保证转录所必须的调控序列及位于编码区上游5’端的启动子非编码序列,内含子和位于编码区下游3’端的终止子非编码序列。前者为结构基因后者为调控基因。

57 密码子(codon):由3个相邻的核苷酸组成的mRNA基本编码单位。有64种密码子,其中有61种氨基酸密码子(包括起始密码子,AUG、ATG也编码蛋氨酸和甲硫氨酸)及3个终止密码子(UAA,UAG,UGA),由它们决定多肽链的氨基酸种类和排列顺序的特异性以及翻译的起始和终止,。

1 什么叫做基因?何谓基因的新概念?基因的主要功能是什么?

答:概念见名解56.

所谓基因的新概念是随着近年分子生物实验技术的发展,从分子水平上研究基因的结构和功能,提出的移动基因,断裂基因,重叠基因,假基因等基因的新概念。功能:基因是编码蛋白质或者RNA分子基本遗传信息的基本遗传单位,最终可合成各种特异的多肽,具有不同的功能。从化学角度看,基因是具有特定功能和结构的连续脱氧核糖核苷酸序列,是构成染色体的重要组成部分,是构成DNA的功能单位。

2真核细胞基因组中的基因常有内含子存在,能否在原核细胞中表达?能,为什么?不能,为什么?

答:不能,真核细胞基因序列中的内含子是插入在结构基因中间使其不能连续的间隔基因序列片段,可随DNA 转录参与形成前体mRNA,而后在转录后的加工修饰过程中通过两次转脂反应而剪切,在原核细胞中,由于其基因组序列不包括这类内含子,也缺乏相应的内含子的剪接功能和转录后加工系统。因此不能完成内含子基因序列的剪切过程,是一种无效转录。同时,真核生物基因在原核细胞中表达还必须有相应的原核RNA聚合酶以及可识别的原核细胞的启动子, 才能催化RNA的合成。

3试述DNA分子的结构及其意义。

答: DNA一级结构:即DNA分子中脱氧核糖核苷酸的排列顺序。其中A,T,C,G 碱基分布不均匀,但脱氧核糖和磷酸均一样。意义:1、蕴藏着极为丰富的转换为蛋白质的遗传信息;2、一些特定序列以其大量信息决定着DNA的空间结构及基因间相互作用和调控功能。

DNA二级结构:为DNA双螺旋结构,由两条反向平行互补的脱氧核糖核苷酸链组成,两条链之间靠碱基间的氢键结合,多为右手螺旋。意义:解释了DNA 复制时两条链可分别作为模板生成新的子代互补链,从而形成遗传信息稳定传递的半保留复制机制。

DNA三级结构,指双螺旋结构基础上的卷曲,包括线状双链中可能有的扭结和超

螺旋、多重螺旋和分子内单链形成的环及环状DNA中的扭结、超螺旋和连环等体拓扑学状态。意义:1、使DNA体积更小,2、DNA的线性序列带遗传信息,而紧绷的超螺旋状态储存着必要的生物学过程的能量和信息。是一种重要的功能态。三链DNA:双螺旋结构基础上形成的三链螺旋结构。意义:1、作为精确切割双螺旋DNA靶序列的分子剪刀;2、作为基因表达抑制物,选择阻断靶基因,抑制转录;3、阻止序列专一性蛋白质结合,影响DNA 与蛋白质结合及DNA复制转录等。

四链DNA:如端粒酶是真核细胞DNA 3’末端特殊重复序列,对染色体起保护作用。

4 试述cDNA文库的构建及其意义?

答:过程:1、cDNA克隆:选用目的基因含量丰富的组织细胞,提取总RNA,根据3’末端polyA尾长度不一,用亲和层析法获取较纯的mRNA2、第一股 cDNA 合成:以分离纯化的mRNA为模板,以Oligo(dT) 为引物在反转录酶的作用下,沿模板的3’→5’方向合成。对于较长的mRNA分子很难得到全长cDNA,也可用随机引物法,以6~8个核苷酸为随机引物,从mRNA的不同结合点合成全长cDNA 第一链(RNA-DNA)3、第二股cDNA的合成:⑴自身引导法⑵置换合成法⑶外加引物合成法 4、cDNA与载体连接和导入宿主细胞:cDNA加头或衔接尾,使产生的黏性末端与载体相应的黏性末端互补,形成重组DNA。

意义:1、以成熟mRNA 为模板合成的cDNA无内含子,大大减小其长度,便于操作。2、真核生物细胞表达mRNA 的量比人类基因组少很多,因此减少了筛选目的基因的工作量。3、某一特定功能基因在mRNA 中拷贝量大于基因组,利于获得较多模板。4、可从全长cDNA序列中直接找到编码区,推测氨基酸顺序,分析性质和功能。5、基因克隆后可在原核细胞中表达有生物活性的蛋白。

5基因组文库构建的过程及意义?

答:过程:1、分离纯化基因组DNA,提取哺乳动物细胞染色体DNA;2、制备全部基因组的DNA片断:包括完全酶解,部分酶解和机械切割。3、构建基因组文库载体,常用载体:粘性质粒,λ噬菌体,酵母人工染色体系统。4、DNA片段与载体的连接包装:直接与经BamHⅠ消化酶切的λ噬菌体的黏性末端在T4连接酶的作用下进行重组结合形成重组DNA,然后进行体外包装产生完整的具有强感染力的噬菌体颗粒,继而形成噬菌斑。5、导入细胞,一定条件下进入大肠杆菌培养增殖。

基因组DNA +粘性质粒→重组DNA→转化细菌→菌落

②基因组DNA +λ噬菌体→重组DNA→包装成噬菌体→感染细菌→噬菌斑

意义:1、可便于研究基因组中5’末端控制基因转录的调控序列,内含子的分布和作用以及重复序列的数量及分布的大小。2、开展“人类基因组计划”研究。

3、在哺乳动物细胞中,是表达目的蛋白的基本形式之一。

6什么是限制性核酸内切酶?

答:限制性核酸内切酶是一类可以识别双链DNA的特异序列,并在识别位点或其周围切割双链DNA的一类限制酶。主要从原核生物中国分离纯化而来。根据限制酶的结构,辅因子的作用方式,可将限制酶分为三种类型:I型、II型及III型。Ⅰ型既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型只催化非甲基化的DNA的水解;III型同时具有修饰及认知切割的作用。

7.链终止DNA测序法基本原理及过程?

答:原理:在单链DNA合成链延伸过程中,若以dNTP为原料,新掺入的脱氧核

苷酸5’-P与前一个核苷酸戊糖的3’-OH以磷酸二酯键相连,可使链不断延伸。但若在反应体系中加入ddNTP,可替代具有相同碱基的dNTP,但由于ddNTP不具有3’-OH,下一个核苷酸不能与之连接,使得DNA链的合成终止。因此,可以特定的放射标记,通过放射自显影获知最后一位核苷酸的碱基类型,从而获知相应的DNA序列。

过程:1、以待测序列的单链DNA为模板,加入适当的DNA引物和4种dNTP,其中一种是带放射标记的,分别加入相应的反应体系(A/T/C/G)中。同时,每个反应体系加入一定比例的ddNTP和DNA聚合酶。2、PCR合成。由于同一反应体系中有dNTP和ddNTP,因此会竞争相同的碱基部位,若以前者结合,则合成继续,后者则使合成停止。因此,最终会得到很多长度不同的合成链。3、将合成结束后的产物分四条相邻泳道进行凝胶电泳,每个体系为一条泳道。则产生四条分子量从小到大,从正极到负极的梯度条带。4、将凝胶电泳产物通过放射自显影,在X光胶片上显现四条并列的“梯子”条带。5、对四条“梯子”条带并列分析。从最下的正极向上依次将最短的DNA链到最长链的末端碱基读出。即从5’→3’直接读出这条链的碱基顺序,但要注意的是,这条链是待测模板链的互补链,还需要进行互补转换,最终得到待测链序列。

8试绘图并说明大引物PCR定点诱变法的过程。

答:如图P183页。

原理:以第一轮PCR产物作为第二

轮PCR扩增的引物。第一轮以引物2

和引物3扩增出短片段DNA,引物2含

有预先设计的突变序列。待PCR产物经

纯化后除去原来的引物,然后以上一轮

PCR扩增产物作为大引物,并与引物1

一起再对靶基因作第二轮PCR扩增,其

产物即为突变的DNA。

9.何谓基因工程的四大里程碑和三大

技术发明?

答:四大里程碑:1、1944年Oswald Avery报道肺炎球菌转化实验,不仅证明了生物的遗传物质是DNA,而且还证明了DNA可以转移,并把一个细胞的性状传递给另一个细胞;2、1953年James waston和Francis Crick阐明了DNA双螺旋结构,建立了DNA半保留复制及蛋白质合成的中心法则,提出了遗传信息是DNA→RNA→蛋白质,也阐明了转录翻译过程中出现误差造成生物变异;3、遗传密码子的破译:1961年Monod和Jacob提出操纵子学说,1968年Crick和Nireberg完全破译64个遗传密码子,确定遗传信息是以密码子方式传递的;4、基因转移载体的发现:20世纪60年代,发现了细菌的质粒,它是指生物体染色体以外的环状DNA,具有独立自我复制的能力,可在微生物细胞间转移。

三大技术发明:1、工具酶的发明(内切酶、合成酶、连接酶);2、基因合成和测序(合成仪、测序仪);3、PCR技术(PCR扩增仪)。

10 基因重组常用哪几种载体?其共同特点如何?

答:常用载体有5类:质粒,λ噬菌体的衍生物,柯斯质粒,单链DNA噬菌体M13,动物病毒。

共同特征:①在寄主细胞中能自我复制②容易从寄主细胞中分离纯化③载体DNA 分子中有不影响扩增的非必需区④有单一酶切位点(多克隆位点):一种酶在一

个载体上只有一个酶切位点。多克隆位点:一个载体上的某一个区域含有多个单一酶切位点⑤能赋予细胞特殊的遗传标记⑥表达载体还应有表达调控元件(启动子、增强子、终止子,SD序列)。

11作为理想的质粒载体有哪些基本条件?

答:作为理想的质粒载体,应具备以下几个条件(1)能自主复制,即本身是复制子(2)具有一种或多种限制酶的单一切割位点,并在此位点中插入外源基因片段,不影响本身的复制功能;(3)在基因组中有1-2个筛选标记,为寄主细胞提供易于检测的表型特征,(4)分子量要小,多拷贝,易于操作。

12什么叫插入失活,举例说明之?

答:外源基因片段克隆到插入型载体上后,会使噬菌体的某种生物功能丧失效力,即所谓的插入失活效应,也为克隆基因的选择提供了表型。常用的有免疫功能失活和大肠杆菌β-半乳糖甘酶失活。

例一:免疫功能失活。Imm434是噬菌体434的免疫区段,通过噬菌体杂交的办法导入λ噬菌体基因组,构成插入型的派生载体。在CⅠ基因内部有EcoRⅠ和Hind Ⅲ的单一切割位点,若在这两个位点中任意一个插入外源DNA片段,都会导致C Ⅰ基因的失活,阻遏蛋白合成受阻,进入溶菌周期,结果产生出清晰的噬菌斑,而亲本噬菌体CⅠ未失活,可以变成溶原的状态,形成浑浊的噬菌斑。

例二:β-半乳糖甘酶基因组中含有一个大肠杆菌的LacZ区段,在诱导物IPTG 存在下,可指导合成β-半乳糖甘酶与X-gal结合形成蓝色化合物。因此由这样的载体感染的大肠杆菌Lac-指示菌,涂布在含有IPTG和X-gal的培养基上,会形成蓝色噬菌斑。但若在LacZ区段插图外源DNA片段,就会阻断其编码序列使其失活,从而不能形成相应的蓝色噬菌斑。

13如何从所克隆到的基因重组体载体中鉴定基因的存在和正确性?

答:1、利用遗传标志的表型特征筛选:(1)由载体提供的性状进行筛选:a、抗生素抗性标记筛选:当带有完整抗性基因的载体转化抗性细胞后,所有转入载体的细菌都获得了抗性,被转化的阳性克隆菌,能在含相应抗生素的平板上生长形成菌落,而未转化的原宿主菌则不能生长。b、抗性基因的插入失活筛选:在含有两个抗性基因的载体中,如果目的基因DNA 片段插入其中一个抗性基因,就会导致抗性基因功能失活,用两个含不同抗生素的平板进行对照筛选。c、β-半乳糖甘酶LacZ基因失活:通过基因内互补作用,使缺失LacZ基因的突变体和带有完整LacI而无β-半乳糖甘酶活性的的突变体结合,形成有功能活性的β-半乳糖甘酶。(2)根据插入基因的遗传性状进行筛选:如亮氨酸(Leu)为Leu营养缺陷菌所必须,如果外源基因中能够表达Leu,则可使细菌生长。

2、根据重组子的结构特征筛选:(1)重组子大小鉴别筛选:菌落→提取质粒→单切酶→电泳质粒。携带外源目的基因的重组子质粒分量大,条带滞后,反之在前。适用于插入片段大的重组体筛选。(2)酶切鉴定:菌落→提取质粒→双切酶→电泳质粒。原载体无外源目的片段,电泳为一条带,装有外源基因的载体有原载体和目的基因片段两条带。(3)PCR筛选法:利用能与插入基因片段两端互补的特异引物,以少量抽提的重组子DNA为模板扩增出特异片段的转化子为携有目的基因的重组子,还可进行直接测序。(4)原位杂交:在培养基平板上的菌落或噬菌斑按照其原来的位置原位不变的转移到滤膜上,并在原位溶菌裂解,DNA变性和用特异探针进行杂交。(5)斑点杂交:将重组体DNA或RNA提取出来,将样品点在硝酸纤维膜上进行杂交。纯化的重组体去除了杂质干扰。(6)Southern blot:将同源片段定位在某个酶切片段中,可用于对克隆后片段的基因定位,也

可测其含量。

14、质粒单酶切点的基因连接如何降低本底和防止自我环化和提高连接效率?答:一般用细菌的或小牛肠的碱性磷酸酶(BAP或CAP),预先处理线性的载体DNA分子,以移去其末端的5’-P基团,于是在连接反应中,它自己的两个末端就再也不能被连接酶共价连接起来了。这样形成的杂种DNA分子的每一个连接位点中,载体DNA都只有一条链是外源DNA连接上的,而另外一条链由于失去了5’-P基团,不能作此连接,故留下一个具有3’-OH和5’-OH的缺口,尽管如此,这样的DNA分子仍然可以导入细菌细胞,并在寄主细胞内完成缺口的修复工作。另外,也可改用双酶切片段的定向克隆,用两个不同的限制性核酸内切酶切割目的基因和载体,产生两个不同的粘性末端,避免该现象。

15如何利用抗体标记基因筛选阳性克隆?

答:1、抗生素抗性标记筛选:大多数质粒载体均带有抗生素抗性基因,如抗氨苄西林基因等,当带有完整抗性基因的载体转化抗性细胞后,所有转入载体的细菌都获得了抗性,被转化的阳性克隆菌能在相应抗生素的琼脂平板上生长,如pBR220的抗氨苄西林基因可使克隆菌在氨苄西林平板上生长并形成菌落,而未被转化的原宿主菌则不能生长。

2、抗性基因的插入失活:在含有两个抗性基因的载体中,如果目的基因DNA片段插入其中一个抗性基因,就会导致该抗性基因的功能失活,用两个分别含不同抗生素药物的平板进行对照筛选,可筛选出阳性重组子克隆菌株。如pBR322质粒编码有Tet抗性基因和Amp抗性基因,若通过外源DNA片段使Tet或Amp抗性基因失活,则重组体克隆能在只含有一种抗生素的平板上生长繁殖的重组体克隆即为阳性转化。

16真核表达调控的顺式作用元件和反式作用因子有哪些?其作用特点是什么?答:顺式作用元件有:启动子,增强子,沉默子,衰减子,终止子。

作用特点:1、多数位于真核生物结构基因上游,只有终止子位于下游,而增强子可以在上游也可以在下游。2、能够与DNA结合蛋白质结合的特定序列的DNA 片段。3、决定转录起始位点和RNA聚合酶的转录效应。

反式作用因子因子:通用转录因子和转录调节因子。

作用特点:1、同一DNA序列可被不同蛋白质识别。2、不同蛋白质因子可与不同DNA 序列发生联系,但直接连接为少数。3、蛋白质-蛋白质或DNA-蛋白质的结合,均导致构象上得细微变化,构象变化常是实现调控功能的分子基础。4、在反式作用因子的自身生物合成过程中,有相当大的可变性和可塑性。

17、目的基因表达系统有哪几种?其特点如何?

答:主要有原核(如大肠杆菌)和真核(如哺乳动物细胞)两大表达系统。

两个系统的特点:1、真核生物DNA大部分是非裸露的,由核膜包裹,DNA 转录后需由特殊的肽链引导出核膜后开始翻译。原核生物大部分DNA属于非结合状态,又无核膜相隔,边转录边翻译。2、真核生物DNA 中存在内含子,不翻译,可在转录后的加工修适中剪切掉。原核生物DNA序列中没有内含子,也没有转录后相应的剪切过程。3、真核生物具有在需要时以可控方式重拍某些DNA片段和扩增特定基因的机制,原核生物中罕见。4、真核生物有3种不同的RNA聚合酶,分别参与不同类型的RNA分子转录作用。而原核生物往往只有一种RNA聚合酶。

5、真核生物产生的mRNA分子寿命大多比原核生物长。

6、真核生物初级转录产物可进行转录后的加工修饰。不仅可除去内含子,还可以再mRNA分子的5’末端加帽,3’末端加尾。

7、真核生物不存在操纵子结构,转录产物mRNA为单顺

反子,其表达调控成散在瀑布样型。原核基因表达调控顺序为操纵子,转录产物为多顺反子,可直接与一定数量的核糖体结合形成为多聚核糖体。8、真核生物基因为多拷贝。而原核生物中除了rRNA,tRNA和启动子部分区域为重复序列,其余基因很少含重复序列。9、真核生物一条mRNA上同时只能合成一条肽链,原核生物每个核糖体可独立合成一条肽链,多聚核糖体可同时在一条链上合成多条肽链。10、真核生物翻译过程不需要SD序列的特异性结合,原核生物必须依赖这种序列。11、原核生物表达的外源基因蛋白产物不能被糖基化。

18基因工程疫苗研究开发常用的技术途径有哪些?

19基因治疗展望和应用如何?

答:展望:基因治疗存在感染率低,表达水平低,长期表达效果难,整合随机性带来危害等自身问题,以及伦理道德,安全性,技术复杂,要求条件高,所用细胞寿命短等技术问题。但它是人类治疗疑难疾病的新方法,新技术,随着研究和应用的不断发展,不断深入,技术不断完善成熟,基因治疗将会在人类常见病和多发病及疑难病的有效治疗中发挥巨大作用,许多原来视为“不治之症”的疾病将应用这先进技术得到治愈,其应用前景极为广阔。

应用:1、遗传性疾病的基因治疗 2、肿瘤的基因治疗(1)抑癌基因转移的基因治疗(2)反义寡核苷酸的原癌基因失活疗法(3)药物自杀基因在肿瘤基因治疗中的应用(4)癌抗原基因转移的肿瘤基因治疗(5)多重耐药性基因转移的肿瘤基因治疗3、病毒的基因治疗(1)阻止病毒复制策略(2)使感染HIV细胞死亡的方法(3)降解策略

20有哪几种反义核苷酸基因失活疗法?简述其原理。

答:原理:反义RNA是一种与mRNA互补的RNA分子,它是双链DNA中无意义链转录的RNA,因此肿瘤癌基因活化表达的mRNA的起始翻译部位就会被相应的反义RNA互补结合形成RNA/RNA双链体,进而就阻止了核糖体与启动子结合,或阻止核糖体mRNA上移,以抑制mRNA的翻译,起到了抑制癌基因过高表达癌蛋白的效果。

反义核酸包括三类:1、将特异的反义基因重组到表达载体上,导入靶细胞中转录出反义RNA,形成双链RNA,阻碍基因的翻译。2、人工合成寡聚脱氧核糖核酸经过化学修饰导入细胞,与mRNA和DNA结合,形成RNA/DNA杂链或DNA核苷酸三聚体,影响基因的翻译或转录。3、特异性的核酸,根据癌基因设计出特异的“锤头”或“发夹”结构,它能够催化切割,降解异常表达基因的mRNA而影响基因的翻译。

21何谓“动物克隆技术”?有何应用价值?

答:动物克隆:是一种通过核移植过程进行无性繁殖的技术。取发育早期的动物胚胎细胞,或成年动物的体细胞,使之与去掉细胞核的卵母细胞融合,经短期培养后形成胚胎细胞并移植到生殖周期相近的母体之中,可以发育成为正常动物个体。经过核移植而产生的动物,其遗传结构与细胞核供体完全相同。这种不经过有性生殖过程,而是通过核移植生产遗传结构与细胞核供体相同动物个体的技术,就叫做动物克隆。

应用价值:1、培育优良畜种和生产实验动物。2、生产转基因动物。3、生产人胚胎干细胞用于细胞和组织替代疗法。4、复制濒危动物物种,保存传播动物物种资源。

22 PCR基本原理和过程?

答:原理:是依据细胞内DNA半保留复制的机理,以及体外DNA分子于不同温度下双链和单链可以互相转变的性质,在试管中给DNA的体外合成提供一种合适条件:模板DNA,寡链核苷酸引物,DNA聚合酶,合适的缓冲液系统和DNA变性、复性及延伸的温度与时间等,使目的DNA得以迅速扩增。

其技术原理如图:P135

PCR过程:1、DNA模板变性:与

体内不同,体外用94?C左右的

高温使其变性形成单链DNA。2、

模板与引物退火:PCR需要两条

寡链核苷酸作为合成时的引物,

分别与待扩增DNA的序列两端

互补。在降低温度过程中,通过

控制退火条件就能使其与扩增

区域两端配对。3、引物延伸:

在4种dNTP及Mg离子存在的条

件下,DNA聚合酶在最适作用温

度下可将核苷酸从引物3’端

掺入,沿模板延伸。整个过程约

需要30轮的循环。

23.试述RT-PCR的原理及过

程?

答:原理:即逆转录PCR,先在逆转录酶的作用下以mRNA为模板合成DNA,再以cDNA为模板进行PCR反应。这样低浓度的mRNA被扩增放大易于检测。是一种快速、简便且敏感性极高的检测RNA的方法,可用于分析基因的转录产物、克隆cDNA及合成cDNA探针、改造cDNA序列等。

RT-PCR过程:1、mRNA,引物和逆转录酶以及适当的缓冲体系在70?C5min,生成相应的cDNA。2、dNTP,DNA聚合酶,引物,适当的缓冲体系,37?C1h,而后95?C5min 灭活反应体系中的其他杂质,4?C保存。

24试述肿瘤的发生机理。

答:1、癌基因(原癌基因)的异常表达。2、抑癌基因的失活,会对癌基因的异常表达失去抑制作用。3细胞在增殖过程由于某些因素使DNA在复制过程中产生碱基错配的基因,由于细胞DNA修复功能的丧失而无法得到校正。4肿瘤转移基因和肿瘤转移抑制基因相互制约的关系发生失调或障碍。5肿瘤细胞免疫功能的

强弱也与肿瘤的发生相关。

25试述细胞周期调控异常与恶性肿瘤发生的相关性。

答:细胞周期素和CDK等细胞周期相关蛋白过表达或者缺陷,特别是那些决定细胞有G1进入S期的蛋白若表达异常,使细胞周期进程超越或突破细胞周期的控制点,细胞不能正常发生细胞自发产生的细胞死亡,衰老或分化,从而造成细胞恶性增生,形成恶性肿瘤。P53,Rb等抑癌基因的突变或缺失,与许多恶性肿瘤的发生进展和不良预后相关,如某些生长因子及其受体的高表达与癌基因异常激活有关,特别是一些与信号转导有关的蛋白酶的异常活化,以及抑制细胞凋亡基因的异常表达,均与细胞的恶变相关,如周期素D2在直肠癌中呈高表达。此外,cdk抑制物如P21、P27等基因在恶性肿瘤发生中也都有异常表达(突变,缺陷或失活)。

26试述p53对肿瘤的作用及其机理?

答:P53基因为细胞周期依赖性基因,促进表达的产物为P21蛋白,在细胞静止期表达很低,经有丝分裂刺激后,在G1期开始升高,在G1→S期表达达到高峰,M期含量最低,利于细胞进入分裂期。P21蛋白又是一种cdk抑制因子,确保细胞基因组的稳定性,使细胞在DNA损伤修复期不能进入S期,并抑制他们的活化,推迟细胞周期。P21及时对受损DNA进行修复,若不能修复,则P53基因启动细胞凋亡程序,下调bcl-2,上调bax,诱导细胞凋亡。因此,P53基因是细胞生长停止或凋亡的关卡。若P53基因突变或缺失,则失去对正常细胞的生长调控作用,细胞异常增殖,形成肿瘤。而且这种突变或缺失会遗传给子代,形成遗传性肿瘤高发家族。

27. 试述基因工程的原理和过程?

答:原理:基因工程是在分子水平上对基因进行操作的复杂技术。是在体外将外源基因组合到特定载体(病毒、质粒、噬菌体等),并将之导入到原来没有这类分子的宿主体内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。基本操作步骤:1、从生物体的基因组或cDNA文库中,分离目的基因的DNA片段。

2、将目的基因连接到具有自我复制并有选择标记的载体上,形成重组DNA分子。

3、将重组DNA分子导入受体细胞。

4、将带有重组DNA分子的细胞,通过繁殖和克隆筛选,挑选出具有重组DNA分子的阳性细胞克隆。

5、将选出的阳性细胞克隆使目的基因在细胞内进行高效表达。

28运用分子生物学知识,结合本专业,设计一个课题。

答:无标准答案。

1.何谓蛋白质的等电点?其大小和什么有关系?

答:蛋白质是两性电解质,既可与酸,又可与碱相互作用。溶液中蛋白质的带电情况,与它所处环境的pH值有关。调节溶液的pH值,可以使一个蛋白质带正电或带负电或不带电;在某一pH时,蛋白质分子中所带的正电荷数目与负电荷数相等,即静电荷为零,在电场中不移动,此时溶液的p H值即为该种蛋白质的等电点。

蛋白质的等电点主要取决于该蛋白质的氨基酸组成。含碱性氨基酸多的蛋白质其等电点要比含酸性氨基酸多的蛋白质的等电点高(大);此外,蛋白质的解离情况与所处环境的pH值、离子强度、离子的种类等有关.所以蛋白质的等电点不是一个精确的固定值,与测定时所用的缓冲液的性质、pH、离子强度等有关。

2.研究发现,多聚一L-Lys在pH7.0呈随机螺旋结构,但在pH10为a螺旋构象,为什么?预测多聚一L-Glu在什么pH条件下为随机螺旋,在什么pH 下为a螺旋构象?为什么?

答:在pH7.0时赖氨酸侧链上的ε氨基带正电荷,它们之间的静电排斥作用阻止了a螺旋的形成。在pH10时,由于接近赖氨酸的等电点,侧链是非质子化的状态,允许a螺旋的形成。对多聚一L-Glu来说,在pH7.0时,由于侧链羧基都带负电荷,它们之间的静电排斥,将干扰a螺旋的形成,应呈随机螺旋状态,在接近谷氨酸侧链的pK值为4.25~4.0时,因谷氨酸的侧链羟基是非质子化的,应呈螺旋构象。

3. 试比较蛋白质的变性作用与沉淀作用。

答:l)蛋白质的变性作用:蛋白质因受某些物理的或化学的因素的影响,分子的空间构象破坏,从而导致其理化性质,生物学活性改变的现象称为蛋白质的变性作用。强酸,强碱,剧烈搅拌,重金属盐类,有机溶剂,脉,肌类,超声波等都可使蛋白质变性。

2)蛋白质的沉淀作用:由于水化层和双电层的存在,蛋白质溶液是一种稳定的胶体溶液。如果向蛋白质溶液中加入某种电解质,以破坏其颗粒表面的双电层或调节溶液的pH,使其达到等电点,蛋白质颗粒因失去电荷变得不稳定而将沉淀析出。这种由于受到某些因素的影响,蛋白质从溶液中析出的作用称为蛋白质的沉淀作用。

如重金属盐类、有机溶剂、生物碱试剂等都可使蛋白质发生沉淀,且不能用透析等方法除去沉淀剂而使蛋白质重新溶解于原来的溶剂中,这种沉淀作用称为不可逆的沉淀作用。如果向蛋白质溶液中加入大量的盐类,如硫酸铰,蛋白质的溶解度逐渐下降,以致从溶液中沉淀出来,若用透析等方法除去使蛋白质沉淀的因素后,可使蛋白质恢复原来的溶解状态。此种沉淀作用称为可逆的沉淀作用。

沉淀的蛋白质不一定变性失活,但变性后的蛋白质一般失去活性

4.多聚L-Leu肽段在二氧杂环己烷(dioxane)存在时可形成a螺旋结构,但多聚L-Ile不能,为什么?

答:因异亮氨酸的β碳原子上有一甲基,干扰了a螺旋结构的形成。在亮氨酸分子中,甲基位于γ碳原子上,远离主链,不会干扰a螺旋结构的形成。

5. 一次突变,某蛋白质分子内的一个丙氨酸转变为缬氨酸导致该蛋白质生物活性的丢失;然而在另一次突变时,由于一个异亮氨酸转变为甘氨酸而使该蛋白质的活性恢复了,请分析可能的原因是什么?

答:第一次突变时丙氨酸转变成了缬氨酸,因后者的侧链较大,使蛋白质的构象

改变;另一次突变后由于异亮氨酸转变为甘氨酸,甘氨酸的侧链较小(和丙氨酸相似),补偿了第一次突变造成的影响。

6. 甘氨酸是蛋白质进化中高度保守的氨基酸残基吗?为什么?

答:甘氨酸是20种氨基酸中侧链最小的一个氨基酸。正因为如此,它的存在使多肽链能形成紧密的盘绕折叠(to make tight turns)或相互靠近。

7.从蛋白质的一级结构可预测它的高级结构。下面是一段肽链的氨基酸排列顺序:“L-A-H-T-Y-G-P-F-Z(Q)-A-A-M-C-K-W-E-A-Z(Q)-P-D-G-M-E-C-A-F-H-R”,问:

1)你认为此段肽链的何处会出现在β转角结构?2)何处可形成链内(intra -)二硫键?

3)假定上述顺序是一个大的球蛋白分子中的一部分结构,指出D、I、T、A、Z(Q)、K氨基酸残基可能在蛋白质分子的表面还是内部?

答:1)β转角结构很可能出现在7位和19位,即脯氨酸残基处。2)13位和24位的半肽氨酸之间可能形成二硫键。3)极性、带电荷的氨基酸如AsP,Gln,Lys一般在分子的表面,而非极性的氨基酸如Ala,Ile可能在分子内部。苏氨酸尽管有极性,但亲水性指数(hydropathy index)接近零,故它可能在分子表面或分子内。

8. 何谓基因文库?建立DNA文库(基因组文库)的基本方法是什么?

答:DNA文库(DNA library)是由一个基因组产生的所有DNA片段克隆的总称。简单地说,就是把某一基因组DNA切割成成千上万个片段,把这些片段全部克隆。于是,这些DNA片段的全部克隆含有一个生物体的全部遗传信息。就像人类知识都储存在图书馆中一样。建立DNA文库的基本方法是:(1)纯化载体DNA;(2)用相同的限制性内切酶分别切割载体DNA和基因组DNA,并经蔗糖密度梯度离心纯化切割后的基因组DNA片段,去掉太大或过小的片段;(3)将纯化的基因组DNA片段与切开的载体DNA混合并连接,产生的“连接混合物”用于转化细菌细胞或包装成噬菌体颗粒。让重组噬菌体转染细菌细胞,这样便产生了含有不同重组DNA分子的一群细菌细胞或噬菌体。从理论上讲,几乎所有的这个基因组的DNA都可能存在于这个DNA文库中。以这种方法建立的“DNA图书馆” 叫做“基因组文库”。每个细菌细胞生长成一个菌落或称一个“克隆”;每个“克隆” 中的细胞含有相同的重组DNA分子。在噬菌体构成的“文库” 中,每个重组噬菌体产生一个噬菌斑,即琼脂培养基上细菌“草坪” 中细胞被溶解产生的半透明的环斑。在一个噬菌斑中的所有重组噬菌体都是相同的。1、DNA印迹技术

Southern blotting 又称为Southern杂交,即DNA-DNA杂交分析。是研究DNA 图谱的基本技术,主要用于基因组DNA的分析,如在基因组中特异基因的定位及检测等,亦可用于分析重组质粒和噬菌体。在遗传诊断DNA图谱分析及PCR 产物分析等方面有重要价值。DNA印迹技术(Southern blotting) 用于基因组DNA、重组质粒和噬菌体的分析。

SDS Pr.EK 酚/氯仿限制性内切酶电泳

E解液DNA 酶切片段

条带印迹转移取膜杂交显示

其中印迹转移是一夜的时间,要保证DNA完全转移,可用EB染色显示红色来

测验。

(2)RNA印渍技术

Northern blotting又称为Northern杂交,即RNA-DNA杂交分析。是一种将RNA 从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。RNA印迹技术(Northern blotting) 用于RNA的定性定量分析。

主要用于检测某一组织或细胞中已知的特异mRNA的表达水平以及比较不同组织和细胞的同一基因的表达情况。

(3)蛋白质印渍技术

Western blotting

又称为Western杂交,或免疫印渍技术,即利用抗原-抗体反应,检测转移到硝酸纤维素膜上的特异性蛋白质。蛋白质的印迹分析(Western blotting) 用于蛋白质定性定量及相互作用研究。应用:用于检测样品中特异性蛋白质的存在、细胞中特异蛋白质的半定量分析以及蛋白质分子的相互作用研究等。

(4)斑点印迹Dot blotting

斑点杂交法是不经过电泳,而将被检标本直接点到膜上,烘烤固定,用于杂交。这种方法耗时短,可做半定量分析,一张膜上可同时检测多个样品。

(5)原位杂交in situ hybridization

即组织原位杂交,指组织切片或细胞涂片直接用于杂交分析。先经适当处理,使细胞通透性增加,让探针进入细胞内与DNA或RNA杂交。因此原位杂交可以确定探针的互补序列在胞内的空间位置,这一点具有重要的生物学和病理学意义。

PCR即聚合酶链反应技术,是指利用耐热DNA聚合酶的反复作用,通过变性-延伸-复性的循环操作,在体外迅速将DNA模板扩增数百万倍的一种操作技术。温度时间及循环数是如何控制的:

PCR变性(94℃,30s)退火(Tm—5℃,50s)延伸(72℃,40s)保温(72℃,10min)

其中Tm=4(G+C)+2(A+T)

1变性温度与时间:双链DNA在90—95度变性,1min若低于93度则要延长时间,温度不能过高,E活性受影响,主要取决于GC含量,G+C含量越高,则温度越高,所需时间与DNA分子的长度相关,分子越长,则变性时间越长

2退火温度与时间

一般为40-60度,30-60s,取决于引物的长度,碱基组成及其浓度,还有靶序列长度,可通过公式计算T=Tm—(5℃~10℃)=4(G+C)+2(A+T)—5℃在Tm值允许的范围内,选择较高温度可大大减少引物与模板间的非特异性结合

3延伸温度与时间,一般选择在70-75℃之间,常用72℃过高的延伸温度不利于引物和模板的结合

延伸时间可根据待扩增片段的长度而定,一般1Rb以内的DNA片段延伸1min 足够,3-4kb需要3-4min,扩增10kb,则需要延伸15min,延伸时间过长会导致特异性条带的出现,对低浓度的扩增,延伸时间要稍长一些

4循环次数主要取决于模板的浓度,一般为25-40次之间,循环次数越多,非特异性产物的量随之增多

原理:合成待扩增区域两端已知序列,与模板DNA互补的寡核苷酸特异性引物,引物的序列决定扩增片段的长度;

PCR体系基本组成成分:模板DNA 特异性引物耐热DNA聚合酶dNTPs

Mg2+

1、引物设计原则

1)引物的特异性 2)避开产物的二级结构区 3)长度寡核苷酸引物长度为15~30bp,一般为20~27mer。 4)G+C含量一般为40%~60%。Tm=4(G+C)+2(A+T)

5)碱基础随机分布:3′端不应超过3个连续的G或C 6)引物自身,引物之间无二级结构

8)引物的3′端:不可以修饰 9)引物的5′端:可以被修饰,包括:加酶切位点;标记生物素、荧光、地高辛。10)密码子的简并

PCR的主要用途:目的基因的克隆;基因的体外突变;DNA和RNA的微量分析;DNA序列测定;基因突变分析;

设计实验分析重组子筛选未出现阳性斑的原因;

制备好重组质粒转入感受态细胞,接种于有AMP的培养基上培养,挑取阳性克隆子

无阳性克隆子的原因:1连接不好,不能产生正确的重组子,2感受态细胞有问题3、操作水平不到位(转化时的温度、试剂)4试剂问题

设计实验对照1以同体积无菌水代替重组子2以同体积正常的重组质粒溶液

实验组:样本重组质粒结果出现情况:

N P S

1 × √ √&×

2 √ × √

3 ×××

出现:1结果若无阳性,则连接产物不好2说明全污染3为感受态细胞不好或操作有问题

一.PCR出现假阳性原因:

1.引物设计不合适;1.选择的扩增序列与非目的扩增序列有同源性,从而扩增出非目的性序列的PCR产物。

2.靶序列太短或引物太短导致特异性不强。解决方案:选择特异性强的区段设计引物。

2.靶序列或扩增产物的交叉污染。(1)整个基因组或大片段的污染;1.操作时小心轻柔,防止将靶序列吸入加样枪内或溅出离心管污染环境。2.除酶及不耐热物品外,所有试剂及耗材均应高温高压消毒,所用离心管及枪头均应一次性使用。

3.必要时,加样本前,反应管及试剂用紫外线照射,以破坏存在的核酸。(2)空气中的小片断核酸污染这些小片断比靶序列短,但有一定同源性,可互相拼接,与引物互补后,扩增出PCR产物,导致假阳性出现。解决方案:运用巢式PCR 来减轻或消除。

二、.出现假阴性;

1.模板因素:(1)模板中含有杂蛋白;(2)模板中含有Taq酶抑制剂;(3)模板中蛋白质残留,特别是染色体中的组蛋白残留;(4)提取制备模板时丢失过多;(5)模板核酸变性不彻底。模板因素引起假阴性解决方案:1.配制有效而稳定的消化处理液;2.提取程序固定,不宜随意改动;3.模板DNA的溶解液应固定不变。

2.酶失活:1.酶本身的质量问题(供应商的问题);2.酶存放时间太长;3.酶存放方式不当,或其他意外原因;4.忘记添加Taq酶。酶失活引起假阴性解决方案:1.检查加样程序及过程,看是否忘记加Taq酶;2.更换新的Taq酶;3.新旧两种Taq

酶同时使用。

3.引物:1.引物质量;2.引物浓度;3.两条引物的浓度是否对称等。引物引起假阴性解决方案:1.选定一个好的引物合成单位;2.引物浓度不仅要看OD值,稀释时更要平衡其摩尔浓度;3.引物应高浓度小量分装保存,防止反复冻融或长期冷冻保存,导致引物的变质降解失效,也可要求合成单位将固体分装;4.引物设计不合理,如长度不够,引物本身或两条引物之间形成二聚体等。

4.Mg2+浓度:Mg2+浓度对PCR扩增效率影响极大,浓度过高可降低PCR扩增的特异性;浓度过低则影响PCR扩增产量甚至使PCR扩增失败,出现假阴性。5.反应体积的改变:做小体积PCR后,再做大体积时,一定要重新摸索条件,而非简单地将反应体系中的各个成分加大几倍,否则易失败。

6.物理原因:1.变性温度低,变性时间短;2.退火温度过高,影响引物与模板的结合而降低PCR扩增效率;3.延伸时间过短等。

7.靶序列变异:靶序列变异导致假引性的情况常常发生在靶序列变异正好发生于特异性引物与之结合部的中间,使引物失效。解决方案:根据已知序列重新选择区段设计引物。

1增效PCR(booster PCR):当扩增少于1000拷贝的模板DNA时会遇到两个问题:一是形成引物二聚体,一是非特异扩增.消耗了引物和酶,而特异扩增片段产量降低。对于这种情况,可设置二步PCR,先用较低浓度的引物进行初级PCR,此时由于引物少,形成产物二聚体的可能减少,但它并不影响靶序列的扩增,只是由于引物少产量不高。约经15~20个循环后补充引物量,以初级PCR 产物为模板进行扩增,靶序列的产量将相应增加。

2)巢式PCR(nest PCR)此时也是进行二步PCR,与上面不同的是,第二级PCR 需另行设置反应体系,并应用另外的PCR引物,此时引物的位置位于初级PCR 引物的内侧,用初级PCR产物做模板,进行第二步PCR,这样只有初级PCR中特异的扩增片段才能被二级引物扩增。除了达到增效PCR同样的目的外,还提高了最终产物的特异性。

3)多重PCR 在同一PCR体系中加入若干对PCR引物,如果这些引物的退火温度相近,并且所覆盖的区域不重叠,这样的反应体系可同时扩增多个DNA片段。多重PCR常用来检测同一基因的多个外显子的缺失,或在检测缺失设置内对照。4)RT-PCR RT-PCR是以mRNA为模板,经逆转录酶作用合成cDNA。使微量的mRNA(pg水平)迅速扩增(达ng~μg水平),大大提高mRNA的检出灵敏度。应用于基因表达与调控的研究。

RAN杂交出现多条带的原因. Nothern bloting杂交的原因

RNA在转录的时进行可变剪接:长度不等,但有部分共同序列,存在保守序列。该RNA可能是某一多基因家族成员转录的产物。

拷贝数差异:重复基因,重复次数不同

mRNA发生断裂、降解:部分断裂或部分降解,分子量变小,但仍保留与探针接合区。

假阳性:探针特异性不高

杂交条件不严谨:洗膜不彻底

Western bloting杂交出现多条带的原因:后加工问题,蛋白质碱基;表达过程碰到限制;Pr降解。??

呼吸耗氧量下降的可能原因(滞育) 电子传递和辅酶;

NADH NADH- Q还原酶(Ⅰ)

FADH2 琥珀酸-Q还原酶(Ⅱ)CoQ cell色素还原酶(Ⅲ)b,c 1

Cell色素c cell色素氧化酶(Ⅳ)a,a3 O2

好氧下降的原因:NADH/ FADH2量不足;H能否传递给aa3;细胞色素氧化酶等E活性降低;O2供应不足。

糖蛋白中寡糖链的还原端残基与多肽链的氨基酸残基形成两种糖肽键:

N-糖肽键:糖的半缩醛羟基与肽链上的Asn的酰胺基团上的氨基形成N-糖肽键。

O-糖肽键:糖链上的半缩醛羟基与肽链上的Thr, Ser, HyPro, HyLys的羟基形成O-糖肽键;

N-糖链的合成:N-糖链的合成与肽链的合成同时进行,合成部位是粗面内质网和高尔基体;N-糖链的合成的抑制剂是衣霉素;N-糖链的生物合成步骤:合成以酯键相连的寡糖前体(G-寡糖);将前体转移到正在增长着的肽链上;除去前体的某些糖单位;在剩余的寡糖核心上再加入另外的糖分子。

伴翻译(co-translation):N-糖链合成是和蛋白质肽链的合成同时进行,所以被称为伴翻译。

转化实验父性遗传

蛋白质分离峰值分析蛋白质提取纯化时的图分析;

乳糖操纵子共3个结构基因,它们一起组成一个转录单位,即LacZAY,它们共用一个启动子PLAC。P是RNA聚合酶识别和结合的部位。在结构基因的上游还有个操纵基因O。Lac1通常位于启动子的上游,表达的蛋白质是通过蛋白质和DNA之间的相互作用来影响转录,称其为调节基因。P不是强启动子,因此要保持高水平转录,结构基因就需要一种专一的活化蛋白,称cAMP受体蛋白或分解代谢活化蛋白(CAP).这样由P.O.CAP结合位点三部分构成了操纵子的调控区.

转录起始负调控:当乳糖不存在时,细胞内有活性的阻遏蛋白浓度超过诱导剂异构乳糖浓度时,提示LAC操纵子处于阻遏状态。这是因为调节基因LAC1表达的阻遏蛋白与操纵基因结合,阻断了RNA聚合酶通过操纵区的转录启动。当乳糖存在时,作为诱导剂的异构乳糖能与阻遏蛋白结合使具有阻遏活性的四聚体蛋白质转变为无活性的亚基单体,脱离操纵基因而发生转录(总的说来就是有时阻遏无时转录)。

CAP的正性调节:细菌中的CAMP与葡萄糖的分解代谢有关。当细菌利用葡萄糖分解提供能量时,它生成少而分解多,含量低;当无葡萄糖供应时,它含量增加,特异性的与CRP结合,CRP构象变化成CAP ,它能与特异的DNA序列结合,增强RNA酶的转录活性,可提高50多倍。综述:正调节和负调节根据存在的碳源性质及水平来协调操纵子的表达。当阻遏蛋白封闭转录时,CAP不能作用,但如果没有CAP的加强作用,即使阻遏蛋白解聚,转录活性依然不高。色氨酸操纵子的调节

由该操纵子调节基因TrpR所表达的蛋白质是一个无阻遏活性的二聚体蛋白,该蛋白受周围环境中色氨酸浓度的调节。当色氨酸浓度高时,无需更多表达色氨酸的酶,而色氨酸本身与无活性的阻遏蛋白结合,后者被激活,增加了对操纵基因O的亲和力,封闭操纵基因,色氨酸合成酶系表达被阻断。色氨酸浓度低时,尽管阻遏蛋白存在,但它缺乏色氨酸本身有效浓度的变构激活,此转录。

衰减子细调:转录衰减指转录可正常启动,但当转录进入第一结构基因之前立

即停止转录的过程。在第一结构基因trpI即翻译起始部位上游开始有162个碱基组成的前导序列,作用就是减弱操纵子的转录作用。如前所述,色氨酸浓度未达到变构无活性阻遏蛋白时,但已经有点多时,先导序列就可以降低转录作用。

父性遗传:特征由雄性亲本的基因或功能自我复制的细胞器单独地传递给子代。例如在动物胚胎中,中心粒来源于受精精子携带的中心粒。Y连锁基因在性别决定和精子形成中起作用。

生物氧化损伤及其修复

一、生物体内的活性氧(reactive oxygen species, ROS)

1. 活性氧的种类

1.1 自由基型的ROS:

(1) 超氧阴离子,superoxide anion,

(2) 羟自由基,hydroxyl radical,

(3) 氢过氧基,hydroperoxyl radical,

(4) 烷氧基,alkoxy radical,

(5) 烷过氧基,peroxy radical,

(6) 铁酰血红素蛋白基,ferroyl haem protein radical.

1.2 非自由基类型的ROS:

(1) 过氧化氢,hydrogen peroxide,

(2) 次溴酸,hypobromous acid,

(3) 次氯酸,hypochlorous acid,

(4) 臭氧,ozone,

(5) 单线态氧,single oxygen,

(6) 氢过氧化物,hydroperoxide.

2. ROS的产生部位

2.1 线粒体电子传递链产生超氧阴离子---约0.2%的呼吸耗氧转换为ROS。

2.1.1 复合体Ⅰ和Ⅲ是产生超氧阴离子的主要部位

2.1.2 复合体Ⅰ中FMN和FAD产生超氧阴离子

2.1.3 泛醌的非酶氧化产生超氧阴离子,复合体Ⅰ和Ⅲ中都含有泛醌,可见泛醌的非酶氧化是产生超氧阴离子的关键。电子传递受阻,是大量产生超氧阴离子的重要原因。

2.1.4 细胞色素产生超氧阴离子---含有亚铁离子的细胞色素辅基血红素极易与氧结合,成为氧合血红素,在进一步解离时产生超氧阴离子。

2.1.5 影响呼吸电子传递链产生超氧阴离子的主要三个因素

(1) 电子传递链的电子传递是否通畅,受阻则超氧阴离子产生量大;

(2) 电子传递链上的氧浓度,[O2] 高则超氧阴离子产生量大;

(3) 线粒体的呼吸状态,当ADP耗尽,而氧尚未耗尽时,即状态四超氧阴离子产量最大。

2.1.6 线粒体产生的ROS是维持正常生理功能所必需的。ROS生成与ATP合成偶联。

2.2 微粒体产生超氧阴离子

微粒体 (microsome) 的内质网上NADPH-细胞色素P450还原酶催化NADPH给出电子,其血红素-亚铁在有氧时产生超氧阴离子。

2.3 过氧化物酶体产生过氧化氢

过氧化物歧化酶体(peroxisome)中含有氨基酸氧化酶(amino acid oxidase),催化氨基酸氧化,产生过氧化氢。

2.4 细胞膜产生超氧阴离子

细胞膜上NADPH氧化酶催化产生超氧阴离子,后者起着重要的信号传导与基因表达调节作用。

3. 产生ROS的代谢

3.1超氧阴离子的产生

分子生物学--名词解释(全)

1. 半保留复制(semiconservative replication):DNA复制时,以亲代DNA的每一股做模板,以碱基互补配对原则,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为半保留复制。 2.复制子replicon:由一个复制起始点构成的DNA复制单位。 57. 复制起始点(Ori C)DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸序列顺序的片段,即复制起始点。 24.(35)复制叉(replication fork)是DNA复制时在DNA链上通过解旋、解链和SSB蛋白的结合等过程形成的Y字型结构称为复制叉。 3. Klenow 片段klenow fragment:DNApol I(DNA聚合酶I)被酶蛋白切开得到的大片段。 4. 外显子exon、extron:真核细胞基因DNA中的编码序列,这部分可转录为RNA,并翻译成蛋白质,也称表达序列。 5.(56)核心启动子core promoter:指保证RNA聚合酶Ⅱ转录正常起始所必需的、最少的DNA序列,包括转录起始位点及转录起始位点上游TATA区。(Hogness区) 6. 转录(transcription):是在DNA的指导下的RNA聚合酶的催化下,按照硷基配对的原则,以四种核苷酸为原料合成一条与模板DNA互补的RNA 的过程。 7. 核酶(ribozyme):是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。 8.(59)信号肽signal peptide:常指新合成多肽链中用于指导蛋白质的跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端)。 9.顺式作用元件(cis-acting element):真核生物DNA中与转录调控有关的核苷酸序列,包括增强子、沉默子等。 10.错配修复(mismatch repair,MMR):在含有错配碱基的DNA分子中,使正常核苷酸序列恢复的修复方式;主要用来纠正DNA双螺旋上错配的碱基对,还能修复一些因复制打滑而产生的小于4nt的核苷酸插入或缺失。修复的过程是:识别出正确的链,切除掉不正确的部分,然后通过DNA聚合酶III和DNA连接酶的作用,合成正确配对的双链DNA。 直接修复direct repair:是将被损伤碱基恢复到正常状态的修复。有三种修复方式:1光复活修复2、O6-甲基鸟嘌呤-DNA甲基转移酶修复3单链断裂修复。

考研生物化学名词解释

PartI生化名解 1.肽单元(peptideunit):参与肽键的6个原子Ca1、C、O、N、H、Ca2位于同一平面,Ca1和Ca2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Ca是两个肽平面的连接点,两个肽平面可经Ca的单键进行旋转,N—Ca、Ca—C是单键,可自由旋转。 2.结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3.模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4.蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5.蛋白质的等电点(isoelectricpoint,pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6.酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考)

最新分子生物学名词解释

分子生物学名词解释

名词解释 1. 基因(gene): 2. 结构基因(structural gene): 3. 断裂基因(split gene): 4. 外显子(exon): 5. 内含子(intron): 6. 多顺反子RNA(polycistronic/multicistronic RNA): 7. 单顺反子RNA(monocistronic RNA): 8. 核不均一RNA(heterogeneous nuclear RNA, hnRNA): 9. 开放阅读框(open reading frame, ORF): 10. 密码子(codon): 11. 反密码子(anticodon): 12. 顺式作用元件(cis-acting element): 13. 启动子(promoter): 14. 增强子(enhancer): 15. 核酶(ribozyme) 16. 核内小分子RNA(small nuclear RNA, snRNA) 17. 信号识别颗粒(signal recognition particle, SRP) 18. 上游启动子元件(upstream promoter element) 19. 同义突变(same sense mutation) 20. 错义突变(missense mutation) 21. 无义突变(nonsense mutation)

22. 移码突变(frame-shifting mutation) 23. 转换(transition) 24. 颠换(transversion) (三)简答题 1. 顺式作用元件如何发挥转录调控作用? 2. 比较原核细胞和真核细胞mRNA的异同。 3. 说明tRNA分子的结构特点及其与功能的关系。 4. 如何认识和利用核酶? 5. 若某一基因的外显子发生一处颠换,对该基因表达产物的结构和功能有什么影响? 6. 举例说明基因突变如何导致疾病。 (四)论述题 1. 真核生物基因中的非编码序列有何意义? 2. 比较一般的真核生物基因与其转录初级产物、转录成熟产物的异同之处。 3. 真核生物的基因发生突变可能产生哪些效应? (二)名词解释 1.基因组(genome) 2. 质粒(plasmid) 3.内含子(intron) 4.外显子(exon) 5.断裂基因(split gene) 6.假基因(pseudogene)

分子生物学名词解释

分子生物学:从广义来讲,分子生物学是从分子水平阐明生命现象和生物学规律的一门新兴的边缘学科。它主要对蛋白质及核酸等生物大分子结构和功能以及遗传信息的传递过程进行研究。 DNA重组技术:DNA重组技术(又称基因工程)是将DNA片段或基因在体外经人工剪接后,按照人们的设计与克隆用载体定向连接起来,转入特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 信号转导:是指外部信号通过细胞膜上的受体蛋白传到细胞内部,并激发诸如离子通透性、细胞形状或其它细胞功能方面的应答过程。 转录因子:是指一群能与基因5′端上游特定序列专一结合,从而保证目的基因以特定强度在特定时间和空间表达的蛋白质分子。 功能基因组:又称后基因组,是在基因组计划的基础上建立起来的,它主要研究基因及其所编码蛋白质的结构和功能,指导人们充分准确地利用这些基因的产物。 结构分子生物学:就是研究生物大分子特定空间结构及结构的运动变化与其生物学功能关系的科学。 生物信息学:是生物科学和信息科学重大交叉的前沿学科,它依靠计算机对所获得数据进行快速高效计算、统计分类以及生物大分子结构功能的预测。 染色体:是指存在于细胞核中的棒状可染色结构,由染色质构成。染色质是由DNA、RNA和蛋白质形成的复合体。染色体是一种动态结构,在细胞周期的不同阶段明显不同。 C-值(C-value):一种生物单位体基因组DNA的总量。 C-值矛盾(C-value paradox):基因组大小与机体的遗传复杂性缺乏相关性。 核心DNA(core DNA):结合在核心颗粒而不被降解的DNA。 连接DNA(linker DNA):重复单位中除核心DNA以外的其它DNA。 DNA多态性:指DNA序列中发生变异而导致的个体间核苷酸序列的差异,主要包括单核苷酸多态性和串联重复序列多态性两类。 DNA的一级结构:是指4种核苷酸的排列顺序,表示了该DNA分子的化学组成。又由于4种核苷酸的差异仅仅是碱基的不同,因此又是指碱基的排列顺序。 DNA的二级结构:是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。 DNA的高级结构:是指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。 DNA骨架:核苷酸的磷酸基团与脱氧核糖在外侧,通过磷酸二酯键相连接而构成DNA分子的骨架 正超螺旋:由于双链紧缠而引起的超螺旋。 负超螺旋:由于双链松缠而引起的超螺旋。 半保留复制:每个子代分子的一条链来自亲代DNA,另一条则是新合成的,这种复制方式称为DNA的半保留复制。 复制原点:DNA分子复制的特定起点。 复制叉:正在进行复制的复制起点呈现叉子的形式,称为复制叉。

分子生物学名词解释

重要名词:(下划线的尤其重要) 1.常染色质:细胞间期核内染色质折叠压缩程度较低,碱性染料着色浅而均匀的区域, 是染色质的主体部分。DNA主要是单拷贝和中度重复序列,是基因活跃表达部分。2.异染色质:细胞间期核内染色质压缩程度较高,碱性染料着色较深的区域。着丝粒、端 粒、次缢痕,DNA主要是高度重复序列,没有基因活性。 3.核小体:核小体是染色体的基本组成单位,它是由DNA和组蛋白构成的,组蛋白H3、 H4、H2B、H2A各两份,组成了蛋白质八聚体的核心结构,大约200bp的DNA盘绕在蛋白质八聚体的外面,相邻两个核小体之间结合了1分子的H1组蛋白。 4.组蛋白:是染色体的结构蛋白,其与DNA组成核小体。根据其凝胶电泳性质可将其分 为H1、H2A、H2B、H3及H4。 5.转座子:是在基因组中可以移动和自主复制的一段DNA序列。 6.基因:原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是 遗传的基本单位。它包括结构蛋白和调控蛋白。 7.基因组:每个物种单倍体染色体的数目及其所携带的全部基因称为该物种的基因组。 8.顺反子:由顺/反测验定义的遗传单位,与基因等同,都是代表一个蛋白质的DNA 单 位组成。一个顺反子所包括的一段DNA与一个多肽链的合成相对应。 9.单顺反子和多顺反子: 真核基因转录的产物是单顺反子mRNA,即一个基因一条多肽链,每个基因转录都有各自的调控原件。 多顺反子是指原核生物一个mRNA分别编码多条多肽链,而这些多肽链对应的DNA片段位于一个转录单位内,享用同一对起点和终点。 10.转录单位:即转录时,DNA上从启动子到终止子的一段序列。原核生物的转录单位往 往可以包括一个以上的基因,基因之间为间隔区,转录之后形成多顺反子mRNA,可以编码不同的多肽链。真核生物的转录单位一般只有一个基因,转录产物为单顺反子RNA,只编码一条多肽链。 11.重叠基因:是指两个或两个以上的基因共有一段DNA序列重叠基因有多种重叠方式, 比如说大基因内包含小基因,几个基因重叠等等。 12.断裂基因:在真核生物基因组中,基因是不连续的,在基因的编码区域内部含有大量的 不编码序列,从而隔断了对应于蛋白质的氨基酸序列。这种不连续的基因又称断裂基因或割裂基因 13.限制性内切酶:限制性内切酶是一类能够识别双链DNA分子中的某种特定核苷酸序列, 并在相关位置切割DNA双链结构的核酸内切酶。 14.超螺旋:如果固定DNA分子的两端,或者本身是共价闭合环状DNA或与蛋白质结合 的DNA分子,DNA分子两条链不能自由转动,额外的张力不能释放,DNA分子就会发生扭曲,用以抵消张力。这种扭曲称为超螺旋(supercoil),是双螺旋的螺旋。 15.拓扑异构酶:通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来 改变DNA连环数的酶。拓扑异构酶I主要消除负超螺旋,作用一次超螺旋交叉数变化+1;拓扑异构酶II主要引入负超螺旋,作用一次L变化-2。TOPO I催化DNA的单链

dw 生物化学名词解释

动物生物化学名词解释 氨基酸:含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连接在α-碳上。 必需氨基酸:指人(或其它脊椎动物)自己不能合成,需要从饮食中获得的氨基酸,例如赖氨酸、苏氨酸等氨基酸。 非必需氨基酸指人(或其它脊椎动物)自己能由简单的前体合成的,不需要由饮食供给的氨基酸,例如甘氨酸、丙氨酸等氨基酸。 等电点:使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。 茚三酮反应: 在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 肽键:一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。 肽:两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 蛋白质一级结构:指蛋白质中共价连接的氨基酸残基的排列顺序。层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。 离子交换层析:使用带有固定的带电基团的聚合树脂或凝胶层析柱分离离子化合物的层析方法。 透析:过小分子经半透膜扩散到水(或缓冲液)的原理将小分子与生物大分子分开的一种分离纯化技术。 凝胶过滤层析:也叫做分子排阻层析,一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其它分子的层析技术。 高压液相层析:使用颗粒极细的介质,在高压下分离蛋白质或其它分子混合物的层析技术。 凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。 SDS-聚丙烯酰胺凝胶电泳:在有去污剂十二烷基硫酸钠存在下的聚丙烯酰胺凝胶电泳。SDS-PAGE只是按照分子大小分离的,而不是根据分子所带的电荷和大小分离的。 等电聚焦电泳:利用特殊的一种缓冲液(两性电解质)在聚丙烯酰胺凝胶内制造一个pH梯度,电泳时每种蛋白质就将迁移到它的等电点(pI)处,即梯度中的某一pH时,就不再带有净的正或负电荷了。双向电泳:是等电聚焦电泳和SDS-PAGE的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。 Edman降解: 从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 同源蛋白质: 来自不同种类生物、而序列和功能类似的蛋白质。例如血红蛋白。构型:一个有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构型的改变往往使分子的光学活性发生变化。 构象:指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 肽单位:又称之肽基(peptide group),是肽链主链上的重复结构。是由参与肽键形成的氮原子和碳原子和它们的4个取代成分:羰基氧原子、酰胺氢原子和两个相邻的α-碳原子组成的一个平面单位。蛋白质二级结构: 在蛋白质分子中的局部区域内氨基酸残基的有规则的排列,常见的二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。 蛋白质三级结构: 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕、折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用、氢键范德华力和盐键(静电作用力)维持的。 蛋白质四级结构: 多亚基蛋白质的三维结构。实际上是具有三级结构的多肽链(亚基)以适当方式聚合所呈现出的三维结构。 α-螺旋(α-helix):蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基氧与多肽链C端方向的第4个残基(第n+4个)的酰胺氮形成氢键。在典型的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm。 β-折叠(β-sheet):是蛋白质中的常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链或相邻肽链的另一个酰胺氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(走向都是由N到C方向);或者是反平行排列(肽链反向排列)。 β-转角: 也是多肽链中常见的二级结构,连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变

分子生物学名词解释等

名词解释 1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列的长度为6~200碱基对。 20、基因家族:真核生物基因组中来源相同、结构相似、功能相关的一组基因,可能由某一共同祖先基因经重复和突变产生。 21、基因簇:基因家族的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。 22、超基因家族:由基因家族和单基因组成的大基因家族,各成员序列同源性低,但编码的产物功能相似。如免疫球蛋白家族。 23、假基因:一种类似于基因序列,其核苷酸序列同其相应的正常功能基因基本相同、但却不能合成功能蛋白的失活基因。 24、复制:是指以原来DNA(母链)为模板合成新DNA(子

分子生物学名词解释最全

第一章名词解释 1.基因(gene)是贮存遗传信息的核酸(DNA或RNA)片段,包括编码RNA和蛋白质的结构基因以及转录调控序列两部分。 2. 结构基因(structural gene)指基因中编码RNA和蛋白质的核苷酸序列。它们在原核生物中连续排列,在真核生物中则间断排列。 3.断裂基因(split gene真核生物的结构基因中,编码区与非编码区间隔排列。 4. 外显子(exon)指在真核生物的断裂基因及其成熟RNA中都存在的核酸序列。 5.内含子(intron)指在真核生物的断裂基因及其初级转录产物中出现,但在成熟RNA中被剪接除去的核酸序列。 6.多顺反子RNA(polycistronic/multicistronic RNA)一个RNA分子上包含几个结构基因的转录产物。原核生物的绝大多数基因和真核生物的个别基因可转录生成多顺反子RNA。 7.单顺反子RNA(monocistronic RNA)一个RNA分子上只包含一个结构基因的转录产物。真核生物的绝大多数基因和原核生物的个别基因可转录生成单顺反子RNA。 8. 核不均一RNA(heterogeneous nuclear RNA, hnRNA)是真核生物细胞核内的转录初始产物,含有外显子和内含子转录的序列,分子量大小不均一,经一系列转录后加工变为成熟mRNA。 9. 开放阅读框(open reading frame, ORF)mRNA分子上从起始密码子到终止密码子之间的核苷酸(碱基)序列,编码一个特定的多肽链。 10.密码子(codon) mRNA分子的开放读框内从5' 到3' 方向每3个相邻的核苷酸(碱基)为一组,编码多肽链中的20种氨基酸残基,或者代表翻译起始以及翻译终止信息。

生化名词解释

生化名词解释1 1.氨基酸的等电点:当溶液在某一特定的pH值时,氨基酸以两性离子的形式存在,正电荷数与负电荷数相等,净电荷为零,在直流电场中既不向正极移动也不向负极移动,这时溶液的pH值称为该氨基酸的等电点,用pI表示。 2.肽键:是指键,是一个氨基酸的α–COOH基和另一个氨基酸的α–NH2基所形成的酰胺键。 3.多肽链:由许多氨基酸残基通过肽键彼此连接而成的链状多肽,称为多肽链。 4.肽平面:肽链主链的肽键具有双键的性质,因而不能自由旋转,使连接在肽键上的六个原子共处于一个平面上,此平面称为肽平面。 5.蛋白质的一级结构:多肽链上各种氨基酸残基的排列顺序,即氨基酸序列。 6.肽单位:多肽链上的重复结构,如Cα–CO–NH–Cα称为肽单位,每一个肽单位实际上就是一个肽平面。 7.多肽:含有三个以上的氨基酸的肽统称为多肽。 8.氨基酸残基:多肽链上的每个氨基酸,由于形成肽键而失去了一分子水,成为不完整的分子形式,这种不完整的氨基酸被称为氨基酸残基。 9.蛋白质二级结构:多肽链主链骨架中,某些肽段可以借助氢键形成有规律的构象,如α–螺旋、β–折叠和β–转角;另一些肽段则形成不规则的构象,如无规卷曲。这些多肽链主链骨架中局部的构象,就是二级结构。 10.超二级结构:在球状蛋白质分子的一级结构顺序上,相邻的二级结构常常在三维折叠中相互靠近,彼此作用,从而形成有规则的二级结构的聚合体,就是超二级结构。 11.结构域:在较大的蛋白质分子里,多肽链的三维折叠常常形成两个或多个松散连接的近似球状的三维实体,即是结构域。它是球蛋白分子三级结构的折叠单位。 12.蛋白质三级结构:指一条多肽链在二级结构(超二级结构及结构域)的基础上,进一步的盘绕、折叠,从而产生特定的空间结构。或者说三级结构是指多肽链中所有原子的空间排布。维系三级结构的力有疏水作用力、氢键、范德华力、盐键(静电引力)。另外二硫键在某些蛋白质中也起着非常重要的作用。 13.蛋白质四级结构:由相同或不同的亚基(或分子)按照一定的排布方式聚合而成的聚合体结构。它包括亚基(或分子)的种类、数目、空间排布以及相互作用。 14.二硫键:指两个硫原子之间的共价键,在蛋白质分子中二硫键对稳定蛋白质分子构象起重要作用。 15.二面角:在多肽链中,Cα碳原子刚好位于互相连接的两个肽平面的交线上。Cα碳原子上的Cα–N和Cα–C都是单键,可以绕键轴旋转,其中以

分子生物学名词解释1

分子生物学名词解释 第二章(主要的:核小体、半保留复制、复制子、单链结合蛋白、岗崎片段、错配修复、DNA的转座、C值矛盾、前导链与后随链。) 1. C值反常现象(C值矛盾C-value paradox): C值是一种生物的单倍体基因组DNA的总量。 真核细胞基因组的最大特点是它含有大量的重复 序列,而且功能DNA序列大多被不编码蛋白质的非 功能DNA所隔开,这就是著名的“C值反常现象”。 C值一般随着生物进化而增加,高等生物的C值一般大于低等生物。某些两栖动物的C值甚至比哺乳动物还大,而在两栖动物里面,C值变化也很大。 2.DNA的半保留复制: 由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。 3.DNA聚合酶: ●以DNA为模板的DNA合成酶 ●以四种脱氧核苷酸三磷酸为底物 ●反应需要有模板的指导 ●反应需要有3 -OH存在 ●DNA链的合成方向为5 3 4.DNA连接酶(1967年发现):若双链DNA中一条链有切口,一端是3’-OH,另一端是5‘-磷酸基,连接酶可催化这两端形成磷酸二酯键,

而使切口连接。但是它不能将两条游离的DNA单链连接起来 DNA连接酶在DNA复制、损伤修复、重组等过程中起重要作用5.DNA 拓扑异构酶(DNA Topisomerase): 拓扑异构酶?:使DNA一条链发生断裂和再连接,作用是松解负超螺旋。主要集中在活性转录区,同转录有关。例:大肠杆菌中的ε蛋白 拓扑异构酶Π:该酶能暂时性地切断和重新连接双链DNA,作用是将负超螺旋引入DNA分子。同复制有关。 例:大肠杆菌中的DNA旋转酶 6. DNA 解螺旋酶/解链酶(DNA helicase) 通过水解ATP获得能量来解开双链DNA。 E.coli中的rep蛋白就是解螺旋酶,还有解螺旋酶I、II、III。rep蛋白沿3 ’ 5’移动,而解螺旋酶I、II、III沿5 ’ 3’移动。 7. 单链结合蛋白(SSBP-single-strand binding protein):稳定已被解开的DNA单链,阻止复性和保护单链不被核酸酶降解。 8. 从复制原点到终点,组成一个复制单位,叫复制子.每个DNA复制的独立单元被称为复制子(replicon),主要包括复制起始位点(Origine of replication)和终止位点 9.复制时,解链酶等先将DNA的一段双链解开,形成复制点,这个复制点的形状象一个叉子,故称为复制叉 10.DNA的半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制。

分子生物学名词解释

Central dogma (中心法则):DNA 的遗传信息经RNA 一旦进入蛋白质就不能再输出了。Reductionism (还原论):把问题分解为各个部分,然后再按逻辑顺序进行安排的研究方法。Genome (基因组):单倍体细胞的全部基因。 transcriptome(转录组):一个细胞、组织或有机体在特定条件下的一组完整基因。roteome (蛋白质组):在大规模水平上研究蛋白质特征,获得蛋白质水平上的关于疾病的发生、细胞代谢等过程的整体而全面的认识。 Metabolome (代谢组):对生物体内所有代谢物进行定量分析并寻找代谢物与生病理变化的相关关系的研究方法。 Gene (基因):具有遗传效应的DNA 片段。 Epigenetics (表观遗传学现象):DNA 结构上完全相同的基因,由于处于不同染色体状态下具有不同的表达方式,进而表现出不同的表型。 Cistron (顺反子):即结构基因,决定一条多肽链合成的功能单位。 Muton(突变子):顺反子中又若干个突变单位,最小的突变单位被称为突变子。 recon(交换子):意同突变子。 Z DNA(Z型DNA) :DNA 的一种二级结构,由两条核苷酸链反相平行左手螺旋形成。Denaturation (变性):物质的自然或非自然改变。 Renaturation (复性):变形的生物大分子恢复成具有生物活性的天然构想的现象。egative superhelix (负超螺旋):B-DNA 分子被施加左旋外力,使双螺旋体局部趋向松弛,DNA分子会出现向右旋转的力的超螺旋结构。 C value paradox (C值矛盾):生物 overlapping gene(重叠基因):不同的基因公用一段相同的DNA序列。体的大C值与小c值不相等且相差非常大。 interrupted gene (断裂基因):由若干编码区和非编码区连续镶嵌而成的基因。 splitting gene(间隔基因):意思与断裂基因相同。 jumping gene(跳跃基因):一段可以从原位上单独复制并断裂下来,环化后插入另一位点并对其后的基因起调控作用。 Transposon (转座子):与跳跃基因意思相同。 eudo gene(假基因):与功能基因相似却失去基因活性的基因。 Retro-transposon(反转录转座子):转座子从DNA到RNA再到DNA的转移过程。Replicon (复制子):从复制起点到复制终点的DNA区段。 emiconservative replication(半保留复制):DNA复制过程中亲代DNA双链分开作为模板合成两条新生子链,每条新生链均含有一条母链和一条新合成的链。 emi-discontinuous replication(半不连续复制):前导链以连续复制的方式完成子代DNA的合成,而后随链以不连续复制的方式完成冈崎片段的合成。 leading strand(前导链):随着复制叉的分开,以显露的单链DNA为模板聚合dNTP而延伸的链。 lagging strand (后随链):复制叉的延伸与新生链的延伸背道而驰的链。 dUMP fragment (dUMP片段):约1200个核苷酸中有一个错配而引起的DNA 链被切断而形成的大小形似冈崎片段的DNA 分子片段。 replisome (复制体):连接酶等内在的酶分子集中于复制叉处组成一个复合体协同互作,完成DNA 复制的复合体。 Telomerase (端粒酶):端粒酶是参与真核生物染色体末端的端粒DNA 复制的一种核糖核蛋白酶。由RNA 和蛋白质组成,其本质是一种逆转录酶。它以自身的RNA 作为端粒DNA 复制的模版,合成出富含脱氧单磷酸鸟苷Deoxyguanosine Monophosphate(dGMP)

考研--生物化学名词解释集锦

生物化学名词解释集锦 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid)3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis)24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds)3.不对称比率(dissymmetry ratio)4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect)10.减色效应(hypo chromic effect)11.噬菌体(phage) 12.发夹结构(hairpin structure)13.DNA 的熔解温度(melting temperature Tm) 14.分子杂交(molecular hybridization)15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(Km 值) 2.底物专一性(substrate specificity)3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1.生物氧化(biological oxidation)2.呼吸链(respiratory chain) 3.氧化磷酸化(oxidative phosphorylation) 4.磷氧比P/O(P/O) 5.底物水平磷酸化(substrate level phosphorylation) 6.能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway)

分子生物学名词解释

一、名词解释: 1.顺反子:在反式构型中,不能互补的各个突变体在染色体上所占的一个区域称为顺反子, 顺反子是一个必须保存完整才能具备正常生理功能的最小单位。 11.突变子:是指一个顺反子内部发生突变的最小单位,一个突变子可以小到只有一对碱基。111.重组子:是基因内不能由重组分开的遗传单位,即基因内出现重组的最小区间,重组子 的单位可以小到核苷酸对。 2.断裂基因:在真核生物中,基因的编码序列在DNA分子上是不连续排列的,而是被不编码序列所隔开。 3.假基因:具有与功能基因相似的序列,但由于许多涂点以致失去了原来的功能,所以假基 因是没有功能的基因。 4.错配修复:在含有错配碱基的DNA中,使正常核苷酸序列恢复的修复方式。 5.转座子:存在于染色体DNA上可以自主复制和位移的一段DNA序列。 6.增强子:增强启动子转录活性的DNA序列。 7.同源重组:两个双螺旋DNA分子间通过配对链断裂和再连接,而产生的片段间交换的过 程。 8.启动子:RNA聚合酶特异性识别,结合和开始转录的一段保守的DNA序列。 10.RNA编辑:转录后的RNa为在编码区发生碱基的突变,加入或缺失的现象。 11.摇摆假说:反密码子和密码子配对时前两个碱基严格遵守碱基互补配对原则,但第三个 碱基有一定的自由度可以“摆动”。 12.SD序列:在原核生物mRNA起始密码AUG上游,存在4到9个富含嘌呤的一致性序列。 13.操纵子:基因表达和调控的单位,由启动子、操纵基因及其所控制的一组功能上相关的 结构基因所组成。 14.weigle效应:紫外线处理的病毒借助于宿主细胞的DNA复制机制进行修复,重新产生活性,此时,如将寄主细胞预先用紫外光照射,则比未经照射的要产生更高的活化效应。 15.弱化子:mRNA合成起始以后,除非培养基中完全没有色氨酸,转录总在这个区域终止, 产生一个仅有140个核苷酸的RNA分子,终止trp基因的转录,则这个区域成为弱化子。16.正调控:没有调节蛋白存在时,基因是关闭的,加入这种调节蛋白后,基因表达活性被 关闭。 17.负调控:没有调节蛋白存在时,基因是表达的,加入这种调节蛋白后,基因的活性就被 关闭。 18.可诱导调节:一些基因在特殊的代谢物或化合物的作用下,由原来的关闭状态转变为工 作状态,即在某些物质的诱导下使基因活化。 19.可阻遏调节:基因平时是开启的,由于一些特殊代谢物或化合物的积累而将其关闭,阻 遏了基因的表达。 20.复制体:复制过程所有参与复制的蛋白组成一个大的复合体,沿复制叉进行先导链和后 随链的合成。 21.细胞生物学:是研究核算、蛋白质等生物大分子的结构与功能,并从分子水平阐述蛋白 质与核酸、蛋白质与蛋白质之间相互作用的关系及其基因表达调控机理的学科。 22.C值矛盾:是指真核生物中DNA含量反常现象。主要表现为①C值不随生物的进化程度和复杂性而增加②亲缘关系密切的生物C值相差甚大③高等真核生物具有比用于遗传高得 多的C值。 23.冈崎片段:一些较短的DNA片段,在原核生物中长约100-200nt。 24.半不连续复制:当DNA复制时,一跳链连续,另一条链不连续,因此成为半不连续复制。 25.密码的兼并性:同一种氨基酸具有两个或更多个密码子的现象。

分子生物学名词解释 (3)

名词解释(在“分子生物学试题及答案”中找答案) 1.cDNA与cccDNA:cDNA就是由mRNA通过反转录酶合成得双链DNA;cccDNA就是游离于染色体之外得质粒双链闭合环形DNA. 2。标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列得结构块,此种确定得折叠类型通常称为超二级结构。几乎所有得三级结构都可以用这些折叠类型,乃至她们得组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMPreceptorprotein ),cAM P与CRP结合后所形成得复合物称激活蛋白CAP(cAMP activatedprotein) 4。回文序列:DNA片段上得一段所具有得反向互补序列,常就是限制性酶切位点。 5。micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA得翻译。6.核酶:具有催化活性得RNA,在RNA得剪接加工过程中起到自我催化得作用. 7。模体:蛋白质分子空间结构中存在着某些立体形状与拓扑结构颇为类似得局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基得肽段,引导蛋白质得跨膜。 9.弱化子:在操纵区与结构基因之间得一段可以终止转录作用得核苷酸序列。 10。魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因得表达.产生这一应急反应得信号就是鸟苷四磷酸(ppGpp)与鸟苷五磷酸(pppGpp).PpGpp与pppGpp得作用不只就是一个或几个操纵子,而就是影响一大批,所以称她们就是超级调控子或称为魔斑. 11。上游启动子元件:就是指对启动子得活性起到一种调节作用得DNA序列,-10区得TATA、-35区得TGACA及增强子,弱化子等. 12。DNA探针:就是带有标记得一段已知序列DNA,用以检测未知序列、筛选目得基因等方面广泛应用。 13.SD序列:就是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用得抗体. 15。考斯质粒:就是经过人工构建得一种外源DNA载体,保留噬菌体两端得COS区,与质粒连接构成. 16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴—4—氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌.称之为蓝—白斑筛选。 17.顺式作用元件:在DNA中一段特殊得碱基序列,对基因得表达起到调控作用得基因元件。 18.Klenow酶:DNA聚合酶I大片段,只就是从DNA聚合酶I全酶中去除了5’3’外切酶活性 19.锚定PCR:用于扩增已知一端序列得目得DNA。在未知序列一端加上一段多聚dG 得尾巴,然后分别用多聚dC与已知得序列作为引物进行PCR扩增. 20。融合蛋白:真核蛋白得基因与外源基因连接,同时表达翻译出得原基因蛋白与外源蛋白结合在一起所组成得蛋白质. 二、填空 1. DNA得物理图谱就是DNA分子得()片段得排列顺序。2。RNA酶得剪切分为()、()两种类型。 3。原核生物中有三种起始因子分别就是()、( )与( )。 4.蛋白质得跨膜需要()得引导,蛋白伴侣得作用就是

生物化学中英文名词解释汇总

生物化学上册中英文名词解释汇总 第一部分:糖类 1.糖(Saccharide):糖是多羟醛或多羟酮及其缩聚物和某些衍生物的总称。 2.单糖(monosaccharide):也称简单糖,不能被水解成更小分子的糖类,是多羟醛或多 羟酮。常见的单糖有葡萄糖(Glucose)、果糖(Fructose)、半乳糖(galactose)。 3.寡糖(oligosaccharide):又称低聚糖,是由2~20个单糖通过糖苷键连接而成的糖类 物质。可分为二糖、三糖、四糖、五糖等。 4.二糖(disaccharide):又称双糖,是最简单的寡糖,由2个分子单糖缩合而成。常见 的二糖有蔗糖(sucrose)、乳糖(lactose)、麦芽糖(maltose)。 5.多糖(polysaccharide):由多分子单糖或单糖的衍生物聚合而成。 6.同多糖(homopolysaccharide)由同一种单糖聚合而成,如淀粉(starch)、糖原 (glycogen)、纤维素(cellulose)。 7.杂多糖(heteropolysaccharide)有不同种单糖或单糖衍生物聚合而成,如透明质酸 (hyaluronic acid,HA)、肝素(heparin,Hp)等。 8.糖胺聚糖(glycosaminoglycan,GAG)又称粘多糖,氨基多糖和酸性多糖。是动植物特 别是高等动物的结缔组织中的一类结构多糖。例如透明质酸.硫酸软骨素.硫酸角质素等。 9.蛋白聚糖(proteoglycan):由一条或多条糖胺聚糖和一个核心蛋白共价连接而成,糖 含量可超过95%。主要存在于软骨、腱等结缔组织,构成细胞间质。由于糖胺聚糖有密集的负电荷,在组织中可吸收大量的水而赋予粘性和弹性,具有稳定、支持和保护细胞的作用。 10.糖蛋白(glycoprotein):短链寡糖与蛋白质以共价键连接而形成的复合物,其总体性质 更接近蛋白质。糖蛋白的寡糖链参与分子识别和细胞识别。 11.糖脂(glycolipid) 12.脂多糖(lipopolysaccharide) 第二部分脂质 1.脂质:lipid是一类低溶于水而高溶于非极性溶剂的生物有机分子。 2.储存脂质(storage lipid)、结构脂质(structure lipid)、活性脂质(active lipid) 3.单纯脂质(simple lipid)、复合脂质(compound lipid)、衍生脂质(derived lipid) 4.脂肪(真脂(fat)、脂肪酸(fatty acid,FA)

相关主题