搜档网
当前位置:搜档网 › 图像压缩编码

图像压缩编码

图像压缩编码
图像压缩编码

多媒体技术实验—图像压缩编码

一、实验目的

1.了解有关数字图像压缩的基本概念,了解几种常用的图像压缩编码方式;

2.进一步熟悉JPEG编码与离散余弦变换(DCT)变换的原理及含义;

3.掌握编程实现离散余弦变换(DCT)变换及JPEG编码的方法;

4.对重建图像的质量进行评价。

二、实验原理

1、图像压缩基本概念及原理

图像压缩主要目的是为了节省存储空间,增加传输速度。图像压缩的理想标准是信息丢失最少,压缩比例最大。不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下3类:

(1)无损压缩编码种类

哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev编码。(2)有损压缩编码种类

预测编码,DPCM,运动补偿;

频率域方法:正交变换编码(如DCT),子带编码;

空间域方法:统计分块编码;

模型方法:分形编码,模型基编码;

基于重要性:滤波,子采样,比特分配,向量量化;

(3)混合编码

JBIG,H.261,JPEG,MPEG等技术标准。

2、JPEG 压缩编码原理

JPEG是一个应用广泛的静态图像数据压缩标准,其中包含两种压缩算法(DCT 和DPCM),并考虑了人眼的视觉特性,在量化和无损压缩编码方面综合权衡,达到较大的压缩比(25:1以上)。JPEG既适用于灰度图像也适用于彩色图像。其

中最常用的是基于DCT变换的顺序式模式,又称为基本系统。JPEG 的压缩编码大致分成三个步骤:

(1)使用正向离散余弦变换(forward discrete cosine transform,FDCT)把空间域表示的图变换成频率域表示的图。

(2)使用加权函数对DCT系数进行量化,该加权函数使得压缩效果对于人的视觉系统最佳。

(3)使用霍夫曼可变字长编码器对量化系数进行编码。

3、离散余弦变换(DCT)变换原理

离散余弦变换(DCT)是一种实数域变换,其变换核为实数余弦函数,图像处理运用的是二维离散余弦变换,对图像进行DCT,可以使得图像的重要可视信息都集中在DCT的一小部分系数中。二维DCT变换是在一维的基础上再进行一次DCT变换,公式如下:

11

(0.5)(0.5)

(,)()()(,)cos cos

()

N N

i j

i j

F u v c u c v f i j u v

N N

u

c u

u

ππ

==

++

????

=????

????

=

=

∑∑

(1)

f为原图像,经DCT 变换之后,F为变换矩阵。(0,0)

F是直流分量,其他为交流分量。上述公式可表示为矩阵形式:

(0.5)

(,)()cos

T

F AfA

j

A i j c i i

N

π

=

+

??

=??

??

(2)

其中A是变换系数矩阵,为正交阵。

逆DCT 变换:

(,)(,)

T

f i j A F u v A

=

(3)

这里我们只讨论两个N相等的情况,即图像为方形(行列数相等),在实际应用中对不是方阵的数据都应先补齐再进行变换的。

4、图象质量评价

保真度准则是压缩后图象质量评价的标准。客观保真度准则:原图象和压缩图象

之间的均方根误差或压缩后图象的均方根信噪比。主观保真度准则:极好、良好、通过、勉强、低劣、不能用。 客观保真度准则 新旧图像的均方误差

(4)

均方根误差

(5)

把压缩后图像表示成原图像和噪声的叠加

(6) 均方信噪比

(7)

三、实验内容及步骤

读取一张大小为512x512的灰度图像(或彩色图像,并将其灰度化) 实验一:

1) 把图像分解成若干个8x8的子块; 2) 对每个子块分别作DCT 变换;

3) 保留变换后的直流分量,将交流分量全部清零; 4) 使用逆DCT 变换,得到新的图像,观察图片变化。 实验二:

1) 直接对整张原图像做DCT 变换; 2) 保留直流分量,交流分量全部清零;

3) 再用逆DCT 变换,得到新的图像,观察图片变化,注意与实验一结果的区别。 实验三:

1) 直接对整张原图像做DCT 变换; 2) 保留直流分量;

3) 尝试保留有限个交流分量的个数;

4) 直到逆DCT 变换以后的图像可以达到可观察的效果,与实验一结果作比较。 对以上三个实验中逆DCT 变换后所获得的图像做质量评价。

()()()1111

2

200

00

,/,N N N N ms x y x y SNR f x y e x y ----=====∑∑∑∑()()11

22

2001,,N N x y e f x y g x y N --===-????∑∑rms e =()()(),,,f x y g x y e x y =+

四、实验结果与分析原图:

实验一:

灰度图:

DCT变换后:

质量评价:

均方根误差=0.0688,均方信噪比=35.2072,客观保真度较好,图片较模糊。实验二:

灰度图:

DCT变换后:

质量评价:

均方根误差=0.3411,均方信噪比=1.4305,客观保真度非常差,图片全灰,由于DCT变换时只保留了直流分量又没有分块,故保留的信号相对原图来说极少,信号大量丢失,信噪比很低。

实验三:

灰度图:

DCT变换后:

质量分析:

均方根误差=0.0745,均方信噪比=29.9949,这是保留了频域左上角32*32区域后所得的结果,可以发现较实验二比较图像已大为改观,由于保留了部分交流分量,图像的信噪比较实验二有较大提升。与实验一相比,对512*512图像,分成8*8子块但是只保留子块直流分量情况,类似于全图直接DCT取频域内共64*64散点区域,所以实验三结果的客观保真度与实验一的仍有一定差距。

对于全图直接DCT,保留的交流分量越多,图像效果越好:

32*32:

64*64:

128*128:

256*256:

随着保留的交流分量的增加,图像的均方根误差越来越小,均方信噪比越来越高,图像的客观保真度越来越好。

图像压缩编码方法

图像压缩编码方法综述 概述: 近年来, 随着数字化信息时代的到来和多媒体计算机技术的发展, 使得人 们所面对的各种数据量剧增, 数据压缩技术的研究受到人们越来越多的重视。 图像压缩编码就是在满足一定保真度和图像质量的前提下,对图像数据进行变换、编码和压缩,去除多余的数据以减少表示数字图像时需要的数据量,便于 图像的存储和传输。即以较少的数据量有损或无损地表示原来的像素矩阵的技术,也称图像编码。 图像压缩编码原理: 图像数据的压缩机理来自两个方面:一是利用图像中存在大量冗余度可供压缩;二是利用人眼的视觉特性。 图像数据的冗余度又可以分为空间冗余、时间冗余、结构冗余、知识冗余 和视觉冗余几个方面。 空间冗余:在一幅图像中规则的物体和规则的背景具有很强的相关性。 时间冗余:电视图像序列中相邻两幅图像之间有较大的相关性。 结构冗余和知识冗余:图像从大面积上看常存在有纹理结构,称之为结构 冗余。 视觉冗余:人眼的视觉系统对于图像的感知是非均匀和非线性的,对图像 的变化并不都能察觉出来。 人眼的视觉特性: 亮度辨别阈值:当景物的亮度在背景亮度基础上增加很少时,人眼是辨别 不出的,只有当亮度增加到某一数值时,人眼才能感觉其亮度有变化。人眼刚 刚能察觉的亮度变化值称为亮度辨别阈值。 视觉阈值:视觉阈值是指干扰或失真刚好可以被察觉的门限值,低于它就 察觉不出来,高于它才看得出来,这是一个统计值。 空间分辨力:空间分辨力是指对一幅图像相邻像素的灰度和细节的分辨力,视觉对于不同图像内容的分辨力不同。 掩盖效应:“掩盖效应”是指人眼对图像中量化误差的敏感程度,与图像 信号变化的剧烈程度有关。 图像压缩编码的分类: 根据编码过程中是否存在信息损耗可将图像编码分为: 无损压缩:又称为可逆编码(Reversible Coding),解压缩时可完全回复原始数据而不引起任何失真; 有损压缩:又称不可逆压缩(Non-Reversible Coding),不能完全恢复原始数据,一定的失真换来可观的压缩比。 根据编码原理可以将图像编码分为: 熵编码:熵编码是编码过程中按熵原理不丢失任何信息的编码。熵编码基

图像压缩编码实验报告

图像压缩编码实验报告 一、实验目的 1.了解有关数字图像压缩的基本概念,了解几种常用的图像压缩编码方式; 2.进一步熟悉JPEG编码与离散余弦变换(DCT)变换的原理及含义; 3.掌握编程实现离散余弦变换(DCT)变换及JPEG编码的方法; 4.对重建图像的质量进行评价。 二、实验原理 1、图像压缩基本概念及原理 图像压缩主要目的是为了节省存储空间,增加传输速度。图像压缩的理想标准是信息丢失最少,压缩比例最大。不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下3类: (1)无损压缩编码种类 哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev编码。(2)有损压缩编码种类 预测编码,DPCM,运动补偿; 频率域方法:正交变换编码(如DCT),子带编码; 空间域方法:统计分块编码; 模型方法:分形编码,模型基编码; 基于重要性:滤波,子采样,比特分配,向量量化; (3)混合编码 JBIG,H.261,JPEG,MPEG等技术标准。 2、JPEG 压缩编码原理 JPEG是一个应用广泛的静态图像数据压缩标准,其中包含两种压缩算法(DCT和DPCM),并考虑了人眼的视觉特性,在量化和无损压缩编码方面综合权衡,达到较大的压缩比(25:1以上)。JPEG既适用于灰度图像也适用于彩色图像。其中最常用的是基于DCT变换的顺序式模式,又称为基本系统。JPEG 的压缩编码大致分

jpeg编码原理

一、JPEG算法概要 JPEG(Joint Photographic Experts Group)是一个由ISO和IEC两个组织机构联合组成的一个专家组,负责制定静态的数字图像数据压缩编码标准,这个专家组开发的算法称为JPEG算法,并且成为国际上通用的标准,因此又称为JPEG标准。JPEG是一个适用范围很广的静态图像数据压缩标准,既可用于灰度图像又可用于彩色图像。 JPEG专家组开发了两种基本的压缩算法,一种是采用以离散余弦变换(Discrete Cosine Transform,DCT)为基础的有损压缩算法,另一种是采用以预测技术为基础的无损压缩算法。使用有损压缩算法时,在压缩比为25:1的情况下,压缩后还原得到的图像与原始图像相比较,非图像专家难于找出它们之间的区别,因此得到了广泛的应用。例如,在VCD 和DVD-Video电视图像压缩技术中,就使用JPEG的有损压缩算法来取消空间方向上的冗余数据。为了在保证图像质量的前提下进一步提高压缩比,近年来JPEG专家组正在制定JPEG2000标准,这个标准中将采用小波变换(Wavelet)算法。 JPEG压缩是有损压缩,它利用了人的视角系统的特性,使用量化和无损压缩编码相结合来去掉视角的冗余信息和数据本身的冗余信息。 压缩编码大致分成三个步骤: 1、使用正向离散余弦变换(Forward Discrete Cosine Transform,FDCT)把空间域表示的图变换成频率域表示的图。 2、使用加权函数对DCT系数进行量化,这个加权函数对于人的视觉系统是最佳的。 3、使用霍夫曼可变字长编码器对量化系数进行编码。 译码或者叫做解压缩的过程与压缩编码过程正好相反。 JPEG算法与彩色空间无关,因此“RGB到YUV变换”和“YUV到RGB变换”不包含在

数字图像压缩技术

数字图像压缩技术 二、JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(JointPhotographicExpertGroup,简称JPEG),于1989年1月形成 了基于自适合DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。 1.JPEG压缩原理及特点 JPEG算法中首先对图像实行分块处理,一般分成互不重叠的大小的块,再对每一块实行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表实行量化,量化的结果 保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后实行哈夫曼编码。JPEG的特点如下: 优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好 图像质量。 缺点:(1)因为对图像实行分块,在高压缩比时产生严重的方块效应;(2)系数实行量化,是有损压缩;(3)压缩比不高,小于502。 JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如 边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其 结果不是最优的3。 2.JPEG压缩的研究状况及其前景2 针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年 来提出了很多改进方法,最有效的是下面的两种方法: (1)DCT零树编码

DCT零树编码把DCT块中的系数组成log2N个子带,然后用零树编码方案实行编码。在相同压缩比的情况下,其PSNR的值比EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。 (2)层式DCT零树编码 此算法对图像作的DCT变换,将低频块集中起来,做反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数实行零树编码。 JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,所以在今后的研究中,应重点解决DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合实行压缩。 三、JEPG2000压缩 JPEG2000是由ISO/IECJTCISC29标准化小组负责制定的全新静止图像压缩标准。一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。 1.JPEG2000压缩原理及特点 JPEG2000编解码系统的编码器和解码器的框图如图1所示4。 编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。 JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提升 10%~30%,而且压缩后的图像显得更加细腻平滑。对于当前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在 JPEG2000系统中,通过选择参数,能够对图像实行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式

图像压缩原理

1、为什么要对图像数据进行压缩?其压缩原理是什么? 答:(1)数字图像如果不进行压缩,数据量是比较大的,例如一幅分辨率为1024×768的静态真彩色图像,其数据量为1024×768×24=2.25(MB)。这无疑对图像的存储、处理、传送带来很大的困难。事实上,在图像像素之间,无论在行方向还是列方向,都存在一定的相关性。也就是说,在一般图像中都存在很大的相关性,即冗余度。静态图像数据的冗余包括:空间冗余、时间冗余、结构冗余、知识冗余和视觉冗余、图像区域的相同性冗余、纹理的统计冗余等。图像压缩编码技术就是利用图像数据固有的冗余性和相干性,将一个大的图像数据文件转换为较小的同性质的文件。 (2)其压缩原理: 空间冗余、时间冗余、结构冗余、和视觉冗余。 2、图像压缩编码的目的是什么?目前有哪些编码方法? 答:(1)视频经过数字化处理后易于加密、抗干扰能力强、可再生中继等诸多优点,但是由于数字化的视频数据量十分巨大,不利于传输和存储。若不经压缩,数字视频传输所需的高传输率和数字视频存储所需的巨大容量,将成为推广数字电视视频通信的最大障碍,这就是进行视频压缩编码的目的。 (2)目前主要是预测编码,变换编码,和统计编码三种编码方法。 3、某信号源共有7个符号,概率分别为0.2,0.18,0.1,0.15,0.07,0.05,0.25,试进行霍夫曼编码,并解释是否进

行了压缩,压缩比为多少? 0000 0001 000 00 111 110 10 0.05 0.07 0.1 0.2 0.18 0.15 0.25 0.05×4+0.07×4+0.1×3+0.2×2+0.18×3+0.15×3+0.25×2=2.67

数字图像处理实验5 图像压缩

实验5 图像压缩 一.实验目的: 1.掌握图像压缩的原理——编码冗余,压缩比C R的计算等。 2.了解并掌握霍夫曼编码的原理、实现步骤。 3.掌握JPEG标准——通用的图像压缩/解压缩编码标准。 二.实验内容: 1.利用已给出的MATLAB自编函数库matlab_function文件夹,实现压缩比的计算。 2.对信号源符进行霍夫曼编码,以消除信源的冗余数据。 3.练习JPEG标准的压缩/解压缩技术。 三.实验原理: 1.图像压缩比C R的计算 函数imratio(f1, f2),计算图像压缩比C R,该函数来自MATLAB自编函数库matlab_function文件夹,语法如下: imratio(imread(‘filename’), ‘filename.jpg’) //第二个参数‘filename.jpg’仅是文件名,实际上是一个结构,内含压缩 //后的各种压缩信息,并不代表图像本身 >>f = imread(‘E:\医学图像处理实验讲义\实验五\car_lady.jpg’) >>imfinfo E:\医学图像处理实验讲义\实验五\car_lady.jpg //查看图像文件的详细信息 >>imwrite(f, ‘car_lady25.jpg’, ‘quality’, 25) //将压缩后的图像存到MATLAB默认路径中 >>imfinfo car_lady25.jpg //可依据图像信息计算出压缩率 >>f25 = imread(‘car_lady25.jpg’) >>Cr = imratio (f25, ‘car_lady25.jpg’) 2.霍夫曼编码 符号概率 a1 0.1875 a2 0.5 a3 0.125 a4 0.1875 函数huffman(p)进行霍夫曼编码,语法: huffman(p) //p为向量符号 >>p = [0.1875 0.5 0.125 0.1875] >>c = huffman(p)

浅析图像压缩编码方法

Computer Knowledge and Technology 电脑知识 与技术第6卷第23期(2010年8月)浅析图像压缩编码方法 徐飞 (闽西职业技术学院,福建龙岩364021) 摘要:该文描述了图像压缩编码的概念,原理以及主要分类,介绍了目前常见的三种图像压缩编码方法的原理,特点以及简单讨论了其中两种方法的MATLAB 代码实现。 关键词:图像压缩编码;编码原理;编码分类;编码方法;MATLAB 中图分类号:TP301文献标识码:A 文章编号:1009-3044(2010)23-6584-03 Analysis of the Image Compression Coding Method XU Fei (Minxi Vocational &Technical College,Longyan 364021,China) Abstract:This paper is mainly about the concept,principle and classification of image compression coding,introduces the concepts and characteristic of three kinds of image compression coding methods that are common used,and discusses how to using matlab to accomplish the two common methods which mentions in the front. Key words:image compression coding;coding principle;coding classification;coding method;MATLAB 现代社会是信息社会,随着信息技术的发展,图像信息被广泛应用于多媒体通信、计算机系统和网络中。因为对图像的要求越来越高,图像信息量也越来越大,所以在传输之前需要进行信息处理,必须采用合适的方法对其进行压缩,因此有必要对图像压缩编码方法进行研究。 1图像压缩编码 1.1概述 图像压缩编码就是在满足一定保真度和图像质量的前提下,对图像数据进行变换、编码和压缩,去除多余的数据以减少表示数字图像时需要的数据量,便于图像的存储和传输。即以较少的数据量有损或无损地表示原来的像素矩阵的技术,也称图像编码。 1.2图像压缩编码原理 图像数据的压缩机理来自两个方面:一是利用图像中存在大量冗余度可供压缩;二是利用人眼的视觉特性。 1.2.1图像数据的冗余度 1)空间冗余: 在一幅图像中规则的物体和规则的背景具有很强的相关性。 2)时间冗余:电视图像序列中相邻两幅图像之间有较大的相关性。 3)结构冗余和知识冗余: 图像从大面积上看常存在有纹理结构,称之为结构冗余。 4)视觉冗余:人眼的视觉系统对于图像的感知是非均匀和非线性的,对图像的变化并不都能察觉出来。 1.2.2人眼的视觉特性 1)亮度辨别阈值:当景物的亮度在背景亮度基础上增加很少时,人眼是辨别不出的,只有当亮度增加到某一数值时,人眼才能感觉其亮度有变化。人眼刚刚能察觉的亮度变化值称为亮度辨别阈值。 2)视觉阈值:视觉阈值是指干扰或失真刚好可以被察觉的门限值,低于它就察觉不出来,高于它才看得出来,这是一个统计值。3)空间分辨力:空间分辨力是指对一幅图像相邻像素的灰度和细节的分辨力,视觉对于不同图像内容的分辨力不同。 4)掩盖效应:“掩盖效应”是指人眼对图像中量化误差的敏感程度,与图像信号变化的剧烈程度有关。 1.3图像压缩编码的分类 根据编码过程中是否存在信息损耗可将图像编码分为: 1)无损压缩:又称为可逆编码(Reversible Coding),解压缩时可完全回复原始数据而不引起任何失真; 2)有损压缩:又称不可逆压缩(Non-Reversible Coding),不能完全恢复原始数据,一定的失真换来可观的压缩比。 根据编码原理可以将图像编码分为: 1)熵编码:熵编码是编码过程中按熵原理不丢失任何信息的编码。熵编码基本原理是给出现概率大的信息符号赋予短码字,出收稿日期:2010-06-10 作者简介;徐飞(1982-),男,福建龙岩人,闽西职业技术学院,助教,理学学士,主要研究方向为数字图象,软件开发,软件测试。ISSN 1009-3044Computer Knowledge and Technology 电脑知识与技术Vol.6,No.23,August 2010,pp.6584-6586,6589E-mail:eduf@https://www.sodocs.net/doc/53702694.html, https://www.sodocs.net/doc/53702694.html, Tel:+86-551-56909635690964

图像压缩编码

小波变换在图像压缩中的应用 学院精密仪器与光电子工程学院 专业光学工程 年级2014级 学号1014202009 姓名孙学斌

一、图像压缩编码 数字图像 图像是自然界景物的客观反映。自然界的图像无论在亮度、色彩,还是空间分布上都是以模拟函数的形式出现的,无法采用数字计算机进行处理、传输和存储。 在数字图像领域,将图像看成是由许多大小相同、形状一致的像素(Picture Element简称Pixel组成)用二维矩阵表示。图像的数字化包括取样和量化两个主要步骤。在空间将连续坐标离散化的过程为取样,而进一步将图像的幅度值整数化的过程称为量化。 图像编码技术 数据压缩就是以较少的数据量表示信源以原始形式所代表的信息,其目的在于节省存储空间、传输时间、信号频带或发送能量等。其组成系统如图所示。 过程应尽量保证去除冗余量而不会减少或较少减少信息量,即压缩后的数据要能够完全或在一定的容差内近似恢复。完全恢复被压缩信源信息的方法称为无损压缩或无失真压缩,近似恢复的方法称为有损压缩或有失真压缩。 图像压缩编码的必要性与可行性 1.图像压缩编码的必要性 采用数字技术会使信号处理技术性能大为提高,但其数据量的增加也是十分惊人的。图像数据更是多媒体、网络通信等技术重点研究的压缩对象。不加压缩的图像数据是计算机的处理速度、通信信道的容量等所无法承受的。 如果将上述的图像信号压缩几倍、十几倍、甚至上百倍,将十分有利于图像的存储和传输。可见,在现有硬件设施条件下,对图像信号本身进行压缩是解决上述矛盾的主要出路。 2.图像压缩编码的可能性 图像数据量大,同时冗余数据也是客观存在的。在有些图像中可压缩的可能性很大。一般图像中存在着以下数据冗余因素。 (1)编码冗余 编码冗余也称信息熵冗余。去除信源编码中的冗余量可以在对信息无损的前提下减少代表信息的数据量。对图像进行编码时,要建立表达图像信息的一系列符号码本。如果码本不能使每个像素所需的平均比特数最小,则说明存在编码冗余,就存在压缩的可能性。 (2)空间冗余

JPEG图像压缩原理

JPEG编码 JPEG是联合图象专家组(Joint Picture Expert Group)的英文缩写,是国际标准化组织(ISO)和CCITT联合制定的静态图象的压缩编码标准。和相同图象质量的其它常用文件格式(如GIF,TIFF,PCX)相比,JPEG是目前静态图象中压缩比最高的。我们给出具体的数据来对比一下。例图采用Windows95目录下的Clouds.bmp,原图大小为640*480,256色。用工具SEA(version1.3)将其分别转成24位色BMP、24位色JPEG、GIF(只能转成256色)压缩格式、24位色TIFF压缩格式、24位色TGA压缩格式。得到的文件大小(以字节为单位)分别为:921,654,17,707,177,152,923,044,768,136。可见JPEG比其它几种压缩比要高得多,而图象质量都差不多(JPEG处理的颜色只有真彩和灰度图)。 正是由于JPEG的高压缩比,使得它广泛地应用于多媒体和网络程序中,例如HTML语法中选用的图象格式之一就是JPEG(另一种是GIF)。这是显然的,因为网络的带宽非常宝贵,选用一种高压缩比的文件格式是十分必要的。 JPEG有几种模式,其中最常用的是基于DCT变换的顺序型模式,又称为基线系统(Baseline),以下将针对这种格式进行讨论。 1.JPEG的压缩原理 JPEG的压缩原理其实上面介绍的那些原理的综合,博采众家之长,这也

正是JPEG有高压缩比的原因。其编码器的流程为: 图9.3 JPEG编码器流程 解码器基本上为上述过程的逆过程: 图9.4 解码器流程 DCT 下面对正向离散余弦变换(FDCT)变换作几点说明。 (1)对每个单独的彩色图像分量,把整个分量图像分成8×8的图像块,如图所示,并作为两维离散余弦变换DCT的输入。通过DCT变换,把能量集中在少数几个系数上。 (2)DCT变换使用下式计算: 它的逆变换使用下式计算:

图像压缩与编码

实验项目3、图像压缩与编码 一、实验目的 (1)理解图像压缩编码的基本原理; (2)掌握用程序代码实现DCT变换编码; (3)掌握用程序代码实现游程编码。 二、实验原理及知识点 1、图像压缩编码 图像信号经过数字化后,数据量相当大,很难直接进行保存。为了提高信道利用率和在有限的信道容量下传输更多的图像信息,必须对图像进行压缩编码。 图像压缩技术标准一般可分为如下几种:JPEG压缩(JPEG Compression)、JPEG 2000 、H.26X标准(H.26X standards)以及MPEG标准(MPEG standards)。数字压缩技术的性能指标包括:压缩比、平均码字长度、编码效率、冗余度。 从信息论角度分,可以将图像的压缩编码方法分为无失真压缩编码和有限失真编码。前者主要包括Huffman编码、算术编码和游程编码;后者主要包括预测编码、变换编码和矢量量化编码以及运动检测和运动补偿技术。 图像数据压缩的目的是在满足一定图像质量的条件下,用尽可能少的比特数来表示原始图像,以提高图像传输的效率和减少图像存储的容量,在信息论中称为信源编码。图像压缩是通过删除图像数据中冗余的或者不必要的部分来减小图像数据量的技术,压缩过程就是编码过程,解压缩过程就是解码过程。 2、游程编码 某些图像特别是计算机生成的图像往往包含许多颜色相同的块,在这些块中,许多连续的扫描行或者同一扫描行上有许多连续的像素都具有相同的颜色值。在这些情况下就不需要存储每一个像素的颜色值,而是仅仅存储一个像素值以及具有相同颜色的像素数目,将这种编码方法称为游程(或行程)编码,连续的具有相同颜色值的所有像素构成一个行程。 在对图像数据进行编码时,沿一定方向排列的具有相同灰度值的像素可看成是连续符号,用字串代替这些连续符号,可大幅度减少数据量。游程编码记录方式有两种:①逐行记录每个游程的终点列号:②逐行记录每个游程的长度 3、DCT变换编码 变换编码是在变换域进行图像压缩的一种技术。图1显示了一个典型的变换编码系统。 压缩 图像输入图 像N×N 图1 变换编码系统 在变换编码系统中,如果正变换采用DCT变换就称为DCT变换(离散余弦变换)编码系统。DCT用于把一幅图像映射为一组变换系数,然后对系数进行量化和编码。对于大多数的正常图像来说,多数系数具有较小的数值且可以被粗略地量化(或者完全抛弃),而产生的图像失真较小。

数字图像压缩技术的研究现状与展望

图像压缩技术的现状和展望 一.前言介绍 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,具有庞大数据量的数字图像通信对现有的有限带宽以严峻的考验,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 本文通过介绍其发展历程及其基本原理和其现阶段的应用,对图像压缩编码技术进行了系统性概述,最后对其前景作了总体上的展望。 二.图像压缩编码技术的发展历程 图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有60多年的历史了。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。 三.JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(Joint Photographic Expert Group,简称JPEG),于1989年1月形成了基于自适应DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。 1.JPEG 压缩原理 JPEG 算法中首先对图像进行分块处理,一般分成互不重叠的大小的块,再对每一块进行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表进行量化,量化的结果保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag 扫描重新组织,然后进行哈夫曼编码。 2. JPEG压缩的研究状况及其前景

最新数字图像处理(基础)教案

数字图像处理(基础)教案 一、基础知识 第一节、数字图像获取 一、目的 1掌握使用扫描仪等数字化设备以及计算机获取数字图像的方法; 2修改图像的存储格式。 二、原理 用扫描仪获取图像也是图像的数字化过程的方法之一。 扫描仪按种类可以分为手持扫描仪,台式扫描仪和滚筒式扫描仪(鼓形扫描仪)。 扫描仪的主要性能指标有x、y方向的分辨率、色彩分辨率(色彩位数)、扫描幅面和接口方式等。各类扫描仪都标明了它的光学分辨率和最大分辨率。分辨率的单位是dpi,dpi是英文Dot Per Inch的缩写,意思是每英寸的像素点数。 扫描仪工作时,首先由光源将光线照在欲输入的图稿上,产生表示图像特征的反射光(反射稿)或透射光(透射稿)。光学系统采集这些光线,将其聚焦在CCD上,由CCD将光信号转换为电信号,然后由电路部分对这些信号进行A/D转换及处理,产生对应的数字信号输送给计算机。当机械传动机构在控制电路的控制下,带动装有光学系统和CCD的扫描头与图稿进行相对运动,将图稿全部扫描一遍,一幅完整的图像就输入到计算机中去了。

图1.1扫描仪的工作原理 扫描仪扫描图像的步骤是:首先将欲扫描的原稿正面朝下铺在扫描仪的玻璃板上,原稿可以是文字稿件或者图纸照片;然后启动扫描仪驱动程序后,安装在扫描仪内部的可移动光源开始扫描原稿。为了均匀照亮稿件,扫描仪光源为长条形,并沿y方向扫过整个原稿;照射到原稿上的光线经反射后穿过一个很窄的缝隙,形成沿x方向的光带,又经过一组反光镜,由光学透镜聚焦并进入分光镜,经过棱镜和红绿蓝三色滤色镜得到的RGB三条彩色光带分别照到各自的CCD上,CCD将RGB光带转变为模拟电子信号,此信号又被A/D变换器转变为数字电子信号。至此,反映原稿图像的光信号转变为计算机能够接受的二进制数字电子信号,最后通过串行或者并行等接口送至计算机。扫描仪每扫一行就得到原稿x方向一行的图像信息,随着沿y方向的移动,在计算机内部逐步形成原稿的全图。 在扫描仪的工作过程中,有两个元件起到了关键的作用。一个是CCD,它将光信号转换成为电信号;另一个是A/D变换器,它将模拟电信号变为数字电信号。CCD是Charge Couple Device的缩写,称为电荷耦合器件,它是利用微电子技术制成的表面光电器件,可以实现光电转换功能。CCD 在摄像机、数码相机和扫描仪中应用广泛,只不过摄像机中使用的是点阵CCD,即包括x、y两个方向用于摄取平面图像,而扫描仪中使用的是线性CCD,它只有x一个方向,y方向扫描由扫描仪的机械装置来完成。CCD芯片上有许多光敏单元,它们可以将不同的光线转换成不同的电荷,从而形成对应原稿光图像的电荷图像。如果我们想增加图像的分辨率,就必须增加CCD上的光敏单元数量。实际上,CCD的性能决定了扫描仪的x方向的光学分辨率。A/D变换器是将模拟量(Analog)转变为数字量(Digital)的半导体元件。从CCD获取的电信号是对应于图像明暗的模拟信号,就是说图像由暗到亮的变化可以用从低到高的不同电平来表示,它们是连续变化的,即所谓模拟量。A/D变换器的工作是将模拟量数字化,例如将0至1V的线性电压变化表示为0至9的10个等级的方法是:0至小于0.1V 的所有电压都变换为数字0、0.1至小于0.2V的所有电压都变换为数字1……0.9至小于1.0V的所有电压都变换为数字9。实际上,A/D变换器能够表示的范围远远大于10,通常是2^8=256、2^10=1024或者2^12=4096。如果扫描仪说明书上标明的灰度等级是10bit,则说明这个扫描仪能够将图像分成1024个灰度等级,如果标明色彩深度为30bit,则说明红、绿、蓝各个通道都有1024个等级。显然,该等级数越高,表现的彩色越丰富。 步骤

图像压缩技术的综述

题目:图像压缩技术的综述 学生姓名:徐欢学号: 系别:计算机与信息学院专业:计算机科学与技术 入学年份:年月 导师姓名:陈蕴谷职称学位:讲师硕士研究生 导师所在单位:中国科学院合肥物质研究院 完成时间年月 .引言 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 图像数据是用来表示图像信息的,如果不同的方法为表示相同的信息使用了不同的数据量,那么使用较多数据量的方法中,有些数据必然代表了无用的信息,或者是重复的表示了其他数据表示的信息,前者成为数据冗余,后者成为不相干信息。图像压缩编码的主要目的,就是通过删除冗余的或者是不相干的信息,以尽可能地的数码率来存储和传输数字图像数据。 图像压缩编码技术可以追溯到年提出的电视信号数字化,到今天已经有多年的历史了。在此期间出现了很多种图像压缩编码方法,特别是到了年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。 图像编码基础 图像编码压缩是指在满足一定图像质量的条件下,用尽可能少的数据量来表示图像。编码技术比较系统的研究始于信息论,从此理论出发可以得到数据压缩的两种基本途径。一种是联合信源的冗余度也寓于信源间的相关性之中,去除他

图像压缩编码

Discussion on Wavelet B ases Selection for Digital Image Compression H AN Fang2f ang,XU Shuang,ZHENG De2zhong (College o f Electric Engineering,Yanshan Univer sity,Qinhuangdao Hebei066004,China) Abstract: This paper studies the selection of optimal wavelet bases.The merits of biorthog onal spline wavelets are dis2 cussed and dem onstrated.C ontinuity of spline derivatives assures wavelets sm ooth and symmetry of biorthog onal wavelets makes the filters have linear phase.Those features can reduce distortion and guarantee the reconstructed images quality. K ey w ords: Optimal wavelet bases;Image com pression;S pline wavelets;Biorthog onal wavelets 关于数字图像压缩中小波基选择问题的探讨① 韩芳芳,徐 爽,郑德忠 (燕山大学,电气工程学院,河北 秦皇岛 066004) 摘要:针对数字图像压缩编码中最优小波基的选择问题,论证了双正交样条小波基的优点,并对其进行了推导。样条小波的导数连续性保证了小波基的光滑性,双正交对偶小波的对称性使得滤波器具有线性相位,可减小失真,保证重构图像的质量。 关键词:最优小波基;图像压缩;样条小波;双正交小波 中图分类号:T N919 文献标识码:A 文章编号:1004-1699(2004)01-0154-04 图像是人类感知信息的重要途径之一。然而图像经过采样及量化编码后数据量巨大,给传输与存储带来很多困难,因而需要对图像数据进行有效的压缩。在F ourier分析基础上发展起来的小波分析,提供了一种自适应的时域和频域同时局部化的分析方法,通过伸缩和平移等运算功能进行多尺度细化分析,能够有效地从信号中提取信息。小波分析用于数字图像压缩,压缩比高,压缩速度快,压缩后信号与图像的特征不变,且在传递过程中可以抗干扰。因此小波分析成为数字图像处理及压缩编码的有力工具。 如何选择最优小波基是图像压缩编码中所面临的一个棘手问题。对于图像信号而言,一方面要对巨大的数据量进行有效压缩,另一方面,要保持重建图像的质量满足视觉要求。小波基的选择存在一些标准,如平滑性、逼近精度、支撑大小和滤波频率等,如何最佳的组合这些特征是一个难点所在。 1 小波基的选择问题 如何最合理、快速的选择小波基,目前这方面的研究并无定论。在小波基的选择中,一般较为看重以下几方面: 平滑性与消失矩。消失矩表明了小波变换后的能量集中程度,消失矩阶数很大时,精细尺度下的高频部分数值有许多是小得可以忽略的(奇异点除外)[1]。从重构图像质量角度而言,平滑性的影响要 2004年3月 传 感 技 术 学 报 第1期 ①收稿日期:2003211210 作者简介:韩芳芳(1978-)女,硕士研究生,主要研究方向为视频信号压缩编码; 徐 爽(1978-)女,硕士研究生,主要研究方向为信号处理与语音编码; 郑德忠(1952-)男,教授,博士生导师,河北省人工智能学会副理事长,中国电子协会高级会员,主要从事信号 处理和先进控制等方面的研究工作,已在国内外发表论文50余篇。qhdzdz@https://www.sodocs.net/doc/53702694.html,.

数字图像处理图像编码要点

数字图像处理上机实习报告(DIP4----DIP7) 学生姓名:杜坤 班级:071123 学号:20121003699 指导老师:傅华明

DIP-4 图像编码 一.题目要求 对图实施费诺-香农编码和解码,计算图像熵,平均码长和冗余度。 二.算法设计 1.测试脚本的程序框图 开始 读入图像的 数据为a 统计各个灰度值的概率 将码字初始化 编码 根据编码的码字对 图像数据进行输出 解码 将解码后的数据 data变行为8*8 计算图像的熵 计算图像的 平均码长 编码的编码效率 计算冗余度 校对编码前后的数 据 结束 2.编码程序框图 读入图像的直方图,将图像的灰度值按照概率大小排序,按照香农编码的规则编码。 香农编码将概率由大到小,由上到下排成一排,然后分为两组。是将大的一组概率赋值为0,概率小的一组赋值为1,这是赋值的原则。然后依次的重复,直到每组只有一种输入元素为止。

3.解码程序框图 三.实现代码 1.脚本文件 clear all load mat p = impr(a); %统计概率 code = FanoCodeInit(p); %Fano编码初始化

code = FanoEncoder(code);%Fano编码 outstream = FanoCodeStream(a,code); %输出 data = FanoDecoder(outstream,code);%解码 data = reshape(data,8,8); %恢复8*8的形状 data = data'; %转置 I = abs(p.*log2(p)); disp('图像的熵为:'); H = sum(I(:)) %计算熵 disp('图像的平局码长为:') B = FanoCodeLength(code); %求平均长度 disp('编码冗余度为:'); r = B/H - 1 %求冗余 disp('编码效率为:') e = H/B %求编码效率 if isequal(a,data) msgbox('解码后的数据和输入的数据完全吻合'); end 2.统计灰度的概率 function [p]= impr(f) %概率统计 [m,n] = size(f); graymax = max(f(:)); %找出灰度最大值,划定统计范围p = zeros(1,graymax + 1); for i = 1:m for j = 1:n x = f(i,j) + 1; p(x) = p(x) + 1; end end p = p/(m*n); End 3.码字的初始化 function [code] = FanoCodeInit(p) %FanoShano码字初始化 [m,n] = size(p); for i = 1:n code(i).gray = i - 1; code(i).p = p(i); code(i).str = ''; end

图像压缩(JPEG)编码算法及压缩过程的实现

秋风,秋雨,秋天的景色 ?博客园 ?首页 ?博问 ?闪存 ?新随笔 ?联系 ?订阅 ?管理 随笔- 234 文章- 0 评论- 22 图象压缩(JPEG)编码算法及压缩过程的实现转 图象压缩(JPEG)编码算法及压缩过程的实现 摘要 本文首先介绍了静态图像压缩(JPEG)编码算法的基本原理、压缩的实现过程及其重要过程的离散余弦变换(DCT)算法的实现原理及软件实现的例程,其次着重介绍了压缩过程中的DCT、量化和编码三个重要步骤的实现原理。 关键词:图像压缩有损压缩 JPEG 离散余弦变换 DCT 量化 第一章图像压缩编码的综述 1.1 图象压缩的目的和方法 图象的数字化表示使得图象信号可以高质量地传输,并便于图像的检索、分析、处理和存储。但是数字图像的表示需要大量的数据,必须进行数据的压缩。即使采用多种方法对数据进行了压缩,其数据量仍然巨大,对传输介质、传输方法和存储介质的要求较高。因此图象压缩编码技术的研究显得特别有意义,也正

是由于图象压缩编码技术及传输技术的不断发展、更新,推动了现代多媒体技术应用的迅速发展。 1.1.1 图象压缩的目的 图象采样后,如果对之进行简单的8bit量化和PCM编码,其数据量是 巨大的。以CIF(Common Intermediate Format)格式的彩色视频信号为例,若采样速率为25帧/秒,采样样点的Y、U、V分量均为8bit量化,则一秒钟的数据量为: 352×288×3×8×25=60.83Mbit 要传输或存储这样大的数据量是非常困难的,必需对其进行压缩编码,在满足实际需要的前提下,尽量减少要传输或存储的数据量。 虽然数字图象的数据量巨大,但图象数据是高度相关的。一幅图象的内部相邻象素之间,相邻行之间的视频序列中相邻图象之间有大量冗余信息—空间相关性和时间相关性,可以使用各种方法尽量去除这些冗余信息,减少图象的数据量。 除了时间冗余和空间冗余外,在一般的图象数据中还存在信息熵冗余、结构冗余、知识冗余和视觉冗余。各种冗余就是压缩图象数据的出发点。图象编码的目的就在于采用各种方法去除冗余,以尽量少的数据量来表示个重建图象。 1.1.2图象压缩的几种方法 1.统计和字典的压缩方法 常规程序和计算机熵的数据对于那些基于利用统计变种的压缩,效果很好,这些统计变种表现在单个符号的频率以及符号或短语字符串的频率等方面,而基于字典的系统实际山就是假扮统计程序。可是遗憾的是,这类压缩对于连续色调图象的作用并不很好。 这些程序的主要问题产生于这样的一个事实:照片图象的象素广泛地分布在整个范围。如果将图象中的彩色用频率分布画出,那么频率分布图中,没有我们在统计压缩的成功的情况下所看到的“尖峰”状,实际上,如果延长这个分布图,那么从类似于电视那样的生活图象源中得出的分布图会趋于平展。这意味着,每个象素代码彼此是大约相同的出现机会,决定不存在挖掘熵差的任何机会。 基于字典的压缩程序的运行也有类似的问题,基于扫描照片的图象决定没有任何类型的数据特征以产生相同的短语的多次出现。例如,一个栅格化的图象,

图像压缩综述

图像压缩综述 摘要:随着信息时代的不断发展,数字图像处理技术得到了广泛的应用,而作为数字图像处理技术的重要组成部分——数字图像压缩,也得到了迅猛的发展。本文从数字图像压缩的概念、发展历史、图像压缩的必要性和可能性、图像压缩标准、图像压缩基本方法和图像压缩效果评价等方面进行了综述。 引言 在当前这个信息化社会中,新信息技术革命使人类被日益增多的多媒体信息所包围。多媒体信息主要是由图像、文本和声音三大元素组成。图像作为其主要元素之一,发挥着越来越重要的作用。而传输和存储图像需要占用大量的数据空间,这严重影响了传输速率和实时处理量,极大地制约了图像通信的发展。其中,数据量最大的是数字视频数据。未经处理的数字视频信息需要消耗巨大的存储资源,以主流高清视频为例,在分辨率为1280×720,帧率为30帧每秒的视频应用中,存储一分钟的视频信息,需要约18.5G(以常4:2:0视频,每像素12比特)比特存储空间,一部120分钟高清电影约需要2225G比特的存储空间。可见未经处理的视频信息量非常大,为了满足存储和传输需求,视频信息的压缩是十分必要的。在同等的通信容量下,如果图像数据可以压缩之后再传输,就可以使传输的数据量变得很小,也就能够增加通信能力。因此图像压缩编码技术受到了越来越多的关注及广泛的应用。如数码相机、USB摄像头、可视电话、视频点播、视频会议系统、数字监控系统等等,都使用到了图像或视频的压缩技术。 数字图像压缩是以尽可能少的比特数代表图像或图像中所包含的信息量的技术,图像通过压缩处理去掉其中的数据冗余、符号冗余、视觉冗余等各种冗余信息,提高传输速率,节省存储空间。 1图像压缩的发展历史 自1948年提出的电视信号数字化设想后, 即开始了图像压缩的研究,到现在已有60多年的历史。20世纪五六十年代的图像压缩编码主要集中在预测编码、哈夫曼编码等技术的研究,还不成熟。1969年在美国召开的第一届“图像编码会议”,标志着图像编码作为一门独立学科的诞生。到了七八十年代,图像压缩技术的主要成果体现在变换编码技术上, 矢量量化编码技术也有较大的发展。80年代末,小波变换理论、分形理论、人工神经网络理论、视觉仿真理论建立,人们开始突破传统的信源编码理论, 图像压缩编码向着更高的压缩率和更好的压缩质量的方向发展,进入了一个崭新的发展时期。 2图像压缩的可能性 图像之所以能够进行压缩有以下几个方面的原因: 一是原始图像数据是高度相关的,存在很大的数据冗余。如图像内相邻像素之间的空间冗余度、系列图像前后帧之间的时间冗余度、多光谱遥感图像各频谱间的频率域冗余度等,它们造成了大量的比特数浪费,消除这些冗余就可以节约码字,大大减少数据量,达到数据压 缩的目的。 二是信源符号出现的概率不同,若用相同码长表示不同出现概率的符号,就会造成符号冗余度。如果采用可变长编码技术,对出现概率高的符号用短码字,对出现概率低的符号用长码字表示,就可以消除符号冗余度,从而节约码字。 三是人眼具有视觉冗余,允许图像编码有一定的失真。人类视觉系统(HVS)是有缺陷的,人眼对于某些失真不敏感难以察觉。在许多场合中,并不要求经压缩及复原以后的图像和原始图像完全相同,可以允许有少量的失真,只要这些失真并不被人眼所察觉即可。这就为压缩比的提高提供了十分有利的条件,这种有失真的编码称为限失真编码。在多数应用中,人眼往

相关主题