搜档网
当前位置:搜档网 › 基于Matlab的语音识别系统的设计

基于Matlab的语音识别系统的设计

基于Matlab的语音识别系统的设计
基于Matlab的语音识别系统的设计

摘要

语音识别主要是让机器听懂人说的话,即在各种情况下,准确地识别出语音的内容,从而根据其信息执行人的各种意图。语音识别技术既是国际竞争的一项重要技术,也是每一个国家经济发展不可缺少的重要技术支撑。本文基于语音信号产生的数学模型,从时域、频域出发对语音信号进行分析,论述了语音识别的基本理论。在此基础上讨论了语音识别的五种算法:动态时间伸缩算法(Dynamic Time Warping,DTW)、基于规则的人工智能方法、人工神经网络(Artificial Neural Network,ANN)方法、隐马尔可夫(Hidden Markov Model,HMM)方法、HMM和ANN的混合模型。重点是从理论上研究隐马尔可夫(HMM)模型算法,对经典的HMM模型算法进行改进。

语音识别算法有多种实现方案,本文采取的方法是利用Matlab强大的数学运算能力,实现孤立语音信号的识别。Matlab 是一款功能强大的数学软件,它附带大量的信号处理工具箱为信号分析研究,特别是文中主要探讨的声波分析研究带来极大便利。本文应用隐马尔科夫模型(HMM) 为识别算法,采用MFCC(MEL频率倒谱系数)为主要语音特征参数,建立了一个汉语数字语音识别系统,其中包括语音信号的预处理、特征参数的提取、识别模板的训练、识别匹配算法;同时,提出利用Matlab图形用户界面开发环境设计语音识别系统界面,设计简单,使用方便,系统界面友好。经过统计,识别效果明显达到了预期目标。

关键词:语音识别算法;HMM模型;Matlab;GUI

ABSTRACT

Speech Recognition is designed to allow machines to understand what people say,and accurately identify the contents of voice to execute the intent of people.Speech recognition technology is not only an important internationally competed technology,but also an indispensable foundational technology for the national economic development.Based on the mathematical model from the speech signal,this paper analyze audio signal from the time domain,frequency domain proceeding,and discussed the basic theory of speech recognition technology.Five algorithm are discussed:Dynamic Time Warping(DTW)、Rule-based Artificial Intelligence,Artificial Neural Network(ANN),Hidden Markov Model(HMM),HMM combined with ANN.The focus is put in the theoretical studies of Hidden Markov(HMM) model algorithm,and the classical HMM algorithm is improved.

Speech recognition algorithm is realized in various programs,this article taking the method is to use Matlab powerful mathematical operation ability to realize the recognition of speech signal isolation. Matlab is a powerful mathematic software with a mass of toolboxes dealing with signal processing. It gives a terrific shortcut to the research of signal processing,especially the wave analysis. We can characterize the sound with key parameters such as intensity, frequency etc. In this paper, hidden Markov model (HMM) recognition algorithm using MFCC (MEL

frequency cepstral coefficients) as the main voice characteristic parameters, the establishment of a Chinese digital speech recognition system, including the preprocessing of the speech signal,the extraction of characteristic parameters the training of the recognition template,identifying matching algorithm;the same time,the use of Matlab graphical user interface development environment designed speech recognition system interface,is designed to be simple,easy to use,friendly interface. Besides,to have a simple exploration of the voice recognition is another target.After statistics,recognition result obviously is made out as the expected goal.

Key words:Speech recognition algorithm;HMM model;Matlab;GUI

目录

一、前言 (1)

1.1语音识别的发展历史 (1)

1.2语音识别研究现状 (1)

1.3语音识别系统的分类 (2)

1.4语音识别系统的基本构成 (3)

1.5语音识别技术难点 (3)

1.6语音识别发展前景 (4)

二、语音信号分析 (4)

2.1语音学知识 (4)

2.1.1音素和音节 (5)

2.1.2汉语的声调 (5)

2.1.3语音信号产生模型 (6)

2.2语音信号数字化和预处理 (7)

2.2.1数字化 (7)

2.2.2预加重处理 (7)

2.2.3防混叠滤波 (8)

2.2.4加窗处理 (8)

2.3语音信号的时域分析 (9)

2.3.1短时能量分析 (9)

2.3.2短时平均过零率 (11)

2.3.3短时自相关函数和短时平均幅度差函数 (12)

2.3.4语音端点检测 (13)

2.4语音信号的频域分析 (14)

2.4.1滤波器组法 (14)

2.4.2傅立叶频谱分析 (14)

2.5特征参数提取 (15)

2.5.1 LPCC倒谱系数 (15)

2.5.2 Mel频率倒谱系数 (16)

三、语音识别主要算法 (17)

3.1动态时间伸缩算法 (17)

3.2基于规则的人工智能方法 (18)

3.3人工神经网络方法 (19)

3.4隐马尔可夫方法 (20)

3.5 HMM和ANN的混合模型 (21)

四、隐含马尔可夫模型算法 (23)

4.1 HMM的基本理论和数学描述 (23)

4.2 HMM的三个基本问题及解决算法 (24)

4.3 HMM算法的改进 (31)

4.4 HMM的结构和类型 (33)

4.5 HMM算法实现的问题 (34)

五、基于Matlab环境下的语音识别算法实现 (35)

5.1识别系统平台介绍 (35)

5.2在Matlab中HMM算法的实现 (36)

5.2.1端点检测 (36)

5.2.2特征参数提取 (36)

5.2.3训练和识别 (37)

5.3实验结论分析 (38)

六、结束语 (39)

6.1回顾 (39)

6.2展望 (39)

七、致谢 (40)

参考文献 (40)

一、前言

1.1语音识别的发展历史

作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技术一直受到各国科学界的广泛关注。以语音识别开发出的产品应用领域非常广泛,有声控电话交换、语音拨号系统、信息网络查询、家庭服务、宾馆服务、旅行社服务系统、订票系统、声控智能玩具、医疗服务、银行服务、股票查询服务、计算机控制、工业控制、语音通信系统、军事监听、信息检索、应急服务、翻译系统等,几乎深入到社会的每个行业、每个方面,其应用和经济社会效益前景非常广泛。因此语音识别技术既是国际竞争的一项重要技术,也是每一个国家经济发展不可缺少的重要技术支撑。研究语音识别,开发相应的产品有着广泛的社会意义和经济意义。

语音识别中的说话人辨认的研究始于20世纪30年代。早期的工作主要集中在人耳听辨试验和探讨听音识别的可能性方面。Bell实验室的L.G.Kesta目视观察语谱图进行识别,提出了“声纹(Voiceprint)”的概念。Bell实验室的S.Pruzansky提出了模版匹配和概率统计方差分析的声纹识别方法,形成了声纹识别研究的一个高潮。60年代末和70

年代初语音识别最重要的发展是语音信号线性预测编码(LPC)技术和动态时间规整(DTW)技术,有效地解决了语音的特征提取和时间不等长匹配问题,对特定人的语音识别十分有效。研究特点是以孤立字语音识别为主,通常把孤立字作为一个整体来建立模板。80年代,语音识别研究的重点之一是连接词语音识别,开发了各种连接词语音识别和关键词识别算法,如多级动态规划语音识别算法。另一个重要发展是语音识别算法从模板匹配技术转向基于统计模型技术。

1.2语音识别研究现状

20世纪90年代后,在细化模型的设计、参数提取和优化,以及系统的自适应技术上取得了一些关键进展。语音识别技术进一步成熟,并开始向市场提供产品。由于中国的国际地位不断提高,以及在经济和市场方面所处的重要地位,汉语语音识别也越来越受到重视。IBM、Microsoft、L&H等公司相继投入到汉语语音识别系统的开发中,其投资也逐年增加。IBM开发的Viavoice和Microsoft开发的中文识别引擎代表了当前汉语语音识别的最高水平。台湾的一些大学和研究所也开发出大词汇量非特定人连续语音识别演示系统。日本也先

后在语音识别领域大展头角,还有如Philips公司开发的Speech—Media和Speech Pearl两套软件,涵盖了自然语音识别与理解的对话系统。

我国语音识别研究工作近年来发展很快,同时也从实验室逐步走向实用。从1987年开始执行863计划后,国家863《智能计算机主题》专家组为语音识别研究立项。每两年滚动一次,从1991年开始,专家组每一至二年举行一次全国性的语音识别系统测试。汉语语音识别研究已经走上组织化的道路。目前我国大词汇量连续语音识别系统的研究已经接

近国外最高水平。

语音识别发展到一定阶段,世界各国都加快了语音识别引用系统的研究开发,通常连续语音是含有较完整语法信息的连续语句,最接近于人的自然讲话方式,从非连续语音到连续语音的研究面临着很多完全不同的技术难点,非连续语音的识别是一些孤立的声波片段,连续语音则面临着如何切分声波的问题。诸如此类的新问题使连续语音识别率的提高比非连续语音更加困难。

经过几十年的发展和摸索,人们终于在实验室突破了大词汇量、连续语音和非特定人这三大障碍,第一次把这三个特性一起集中于一个系统中,并以此确定了统计方法和模型在语音识别和语音处理中的主流地位。在声学识别层次,以多个说话人发音的大规模语音数据为基础,以马尔可夫链为基础的语音序列建模方法HMM(隐含马尔可夫模型)比较有效的解决了语音信号短时稳定、长时时变的特性,并且能根据一些基本建模单元构造成连续语音的句子模型,达到了比较高的建模精度和建模灵活性。

目前在语音识别研究领域非常活跃的课题为稳健语音识别、说话人自适应技术、大词汇量关键词识别算法、语音识别的可信度评测算法、基于类的语言模型和自适应语言模型,以及深层次的自然语音的理解。研究的方向也越来越侧重于口语对话系统。

1.3语音识别系统的分类

语音识别是近年来十分活跃的一个研究领域。在不远的将来,语音识别技术有可能作为一种重要的人机交互手段,辅助甚至取代传统的键盘、鼠标等输入设备,在个人计算机上进行文字录入和操作控制。本文介绍了语音识别的基本流程、所用到的语音参数算法、语音识别的训练算法和识别算法做初步的探究,主要运用了特定人孤立词识别的DTW算法和非特定人识别的连续HMM算法的Matlab识别系统。

语音识别按说话人的讲话方式可分为孤立词(Isolated Word)识别、连接词(Connected Word)识别和连续语音(Continuous Speech)识别。孤立词识别是指说话人每次只说一个词或短语,每个词或短语在词汇表中都算作一个词条,一般用在语音电话拨号系统中。连接词语音识别支持一个小的语法网络,其内部形成一个状态机,可以实现简单的家用电器的控制,而复杂的连接词语音识别系统可以用于电话语音查询、航空定票等系统。连续语音识别是指对说话人以日常自然的方式发音,通常特指用于语音录入的听写机。显然,连续非特定人语音识别的难度要大得多,因为不仅有说话人口音的问题,还有协同发音、断字断句、搜索等问题,除了考虑语音的声学模型外还要涉及到语言模型,如构词法、文法等。

从识别对象的类型来看,语音识别可以分为特定人(Speaker Dependent)语音识别和非特定人(Speaker Independent)语音识别。特定人是指只针对一个用户的语音识别,非特定人则可用于不同的用户。实际上,非特定人语音识别的初始识别率往往都比较低,一般都要求用户花一定的时间对系统进行训练,将系统的参数进行一定的自适应调整,才能使识别率达到满意的程度。

非特定人大词表连续语音识别是近几年研究的重点,也是研究的难点。目前的连续语音识别大多是基于HMM(隐马尔可夫模型)框架,并将声学、语言学的知识统一引入来改善这个框架,其硬件平台通常是功能强大的工作站或PC机。

1.4语音识别系统的基本构成

语音识别系统的典型实现方案为:输入的模拟语音信号首先要进行预处理,包括预滤波、采样和量化、加窗、端点检测、预加重等。语音信号经预处理后,接下来很重要的一环就是特征参数提取。对特征参数的要求是:1,提取的特征参数能有效地代表语音特征,具有很好的区分性。2,各阶参数之间有良好的独立性。3,特征参数要计算方便,最好有高效的计算方法,以保证语音识别的实时实现。

在训练阶段,将特征参数进行一定的处理之后,为每个词条得到一个模型,保存为模版库。在识别阶段,语音喜好经过相同的通道得到语音参数,生成测试模版,与参考模版进行匹配,将匹配分数最高的参考模版作为识别结果。同时还可以在很多先验知识的帮助下,提高识别的准确率。

1.5语音识别技术难点

虽然语音识别已突破了最初对技术的检验阶段,而进入通过对话及系统形象的设计,建立用户喜爱的应用系统时期。然而语音技术本身仍在不断进步,为市场提供更新更好的应用模式和技术。目前,技术及应用的焦点主要集中在三个方面。

首先,带口音(Dialect)语音的识别。首先要明确的是,口音是指同一种语言在不同地区的发音有所不同,与同一地区(例如中国)的不同方言是有区别的。例如,中国的八大方言多属于与普通话(北方语系)不同的语系。也就是说是有别于普通话的不同的语言,应该用不同的声学模型来描述。而对于口音的适应性首先是由声学模型本身的品质决定的。对某一种口音,语言的声学模型的适应性决定了基础识别率,而在此基础上的优化和模型适应方案则提供了很好的解决方案。例如Nuance公司,作为拥有最大市场和最多用户的公司,也拥有最多的用户语音数据,保证了它极高的基础识别率。此外,该公司的系统优化工具为所有系统提供一个实用、有效的优化方法。优化过程对所有系统的表现都会有提高,也可以解决小范围的口音问题。而针对严重的口音问题,它的声学模型适应机制提供了很好的解决方案,可以使系统的识别率有很大改善。

焦点之二是背景噪音。人多的公共场所巨大的噪音对语音识别的影响自不用说,早期即使在实验室环境下,敲击键盘、挪动麦克风都会成为背景噪音。它将破坏原始语音的频谱,或者把原始语音部分或全部掩盖掉,造成识别率下降。实际应用中,噪音是无法避免的。研究将要解决的问题就是如何把原始语音从背景噪音中分离出来,即所谓提高音质(speech enhancement)或减噪(noise reduction)的预处理。这将会使识别系统具有很强的适应性。在这方面,Nuance优化的语音参数、灵活的模型结构、新的建模方法以及独有的噪音抑制功能,使得系统在背景环境噪声、手机、车载免提等高噪音环境下能保持良好的工作状况。

第三个就是“口语”的问题。这就是用户说话的自由度问题。它既涉及到自然语言理解,又与声学有关。语音识别技术的最终目的是要让用户在“人机对话”的时候,能够像进行“人人对话”一样自然。而一旦用户以跟人交谈的方式来进行语音输入时,口语的语法不规范和语序不正常的特点会给语义的分析和理解带来困难。你也许接触到一些语音软件声称是可以做到自然语言识别,而在这方面真正有实用商业系统的只有Nuance公司。Nuance的最新版识别软件所提供的“随意说(Say anything)”技术,使用户可以以自然的

语言说出自己的需求。例如,“我对我的手机上的一些功能不太明白,想问一下”,或者“嗯,我的账单应该到期了,请帮我查一下要交多少钱”。它为用户提供了一种像“人人对话”的自然语音交互界面,这种更加友善的界面允许一般对话时的一些行为,如停顿及不完全的语句等。

1.6语音识别发展前景

语音技术是目前世界上最热门和最具有发展前景的技术之一。从某种意义上说,语音识别是将计算机变成真正的“智能化”设备的最佳途径。语音作为当前通讯系统中最自然的通信媒介,随着计算机和语音处理技术的发展,不同语种之间的语音翻译将成为语音研究的热点。自然语音数据库的设计:语音特征的提取;利用语音料库进行声学模型训练的研究;适应说话人声学模型的研究;语音识别算法的研究:语言翻译和对话处理的研究等成为语音技术的热点方向。语音识别研究的另一个发展方向是人体语言与口语相结合的多媒体人机交互。目前这种采用声觉、视觉两种信息融合进行识别的研究在全球范围内己经展开,成为语音识别研究的重要发展方向和研究热点之一。

一位业界的资深人士对IT产业发展的提出的八大预言之一即为:语音成为新人机界面。语音识别技术的成熟使人机界面发生革命性突破,网络时代用户需要更自然、更简单、更方便的以语音为中心点的人机界面。未来几年里,真正实用的语音识别和音字转换技术将首次走出实验室,走进千家万户的电器设备中。摩尔定律所预言的硬件产品奇迹般的更新速度使计算机处理复杂运算的能力突飞猛进,也使体积庞大的语音库有机会栖身于普通用户的硬盘或其他存储介质上;技术方面,新的语音统计算法日趋成熟:市场需求方面,简化PDA、移动电话和其他信息家电原本繁琐的操作步骤的最佳途径便是通过语音技术。

另外,语音识别是一门交叉学科,语音识别技术关系到多学科的研究领域,在不同领域上的进步都会促进语音识别的发展。(1)物理学(声学):声音产生与传播原理、声电转换以及声音在房间回响等相关知识。(2)生理学:有关人的声道与耳朵的生理结构、耳朵的听觉特征,在脑内高层的语言处理等。(3)统计学和模式识别理论;基于各种统计方法对模式进行匹配,以及建立有关的统计模型,对语音特征参数进行估值和分类。(4)信息理论和计算机科学:各种算法的研究、快速搜索查找匹配的方法。(5)语言学:有关人的语言产生、感觉方面的知识。(7)数字信号处理技术:信号的时域分析、噪声消除、数字滤波、线性预测等方面的知识。(8)微电子技术:超大规模集成电路(VLSI)技术的发展对语音识别的具体应用有很大的影响,VLSI使语音识别系统商品化成为可能。

二、语音信号分析

2.1语音学知识

在连续数字语音识别过程中,为了提高连续数字匹配搜索算法的有效性以及数字的识别率,必须要将对数字语音的研究细化到语音学的层次上,包括对各数字的音素和音节的特性和各数字的声调进行深入研究。

2.1.1音素和音节

音素是语音信号的最基本组成单位,可分为浊音和清音两大类。

浊音通过喉部发声,发声时声带振动,声带振动的基本频率称为“基音频率”,其倒数称为“基音周期”。清音通过将口腔内有的空气释放出来而发声,发声时喉部封闭,由于该气流通过一个狭窄通道时在口腔中形成流,因此具有明显的随机噪声的特点。

音节是由音素结合而成的发声最小单位,一个音节由“元音”和“辅音”构成。当声带振动发出的声音气流从喉腔、咽腔进入口腔从唇腔出去时,这些声腔完全开放,气流顺利通过,这种音称为元音。元音构成一个音节的主干,无论从长度还是能量上看,元音在音节中都占主要部分。所有元音都是浊音。发音时呼出的气流,由于通路的某一部分封闭起来或受到阻碍,气流被阻不能畅通,而克服发音器官的这种阻碍而产生的音素称为辅音。辅音也有清浊之分。辅音出现在音节的前端或者后端或前后两端。

2.1.2汉语的声调

汉语是一种声调语言,相同声母和韵母构成的音节随声调的不同而具有完全不同的意义,对应着不同的汉字。所以,在汉语的相互交谈中,不但要凭借不同的元音和辅音来辨别这些字或词的意义,还需要从不同的声调来区别它,也就是说声调有辨义作用。

汉语普通话的声调有阴平、阳平、上声、去声等四种声调(另外,有时还包括“轻声”),这些基本的调型在语句中虽然受语法、语气的影响而有所变动,但基本上不改变原有的模式一调型。声调的变化就是浊音基音周期(或基音频率)的变化,各个韵母段中基音周期随时问的变化产生了声调,变化的轨迹称为声调曲线。声调曲线从一个韵母的起始端开始,到韵母的终止端结束。不同声调的声调曲线的开始段称为弯头段,呈共同上升走向;末尾一段呈共同下降走向,称为降尾段;而中间一段具有不同的特点,这一段称为调型段。一般来说,弯头段和降尾段对声调的听辨不起作用,起作用的是调型段。而一段语音,它的起始和结尾处的波形幅度较小,要准确地测出这些地方的基音周期并不容易,因此可将这两处的波形忽略,只测调型段这一部分波形的基音周期。图2.1给出了单独说一个音节时的四种声调的典型曲线(Hz F /0)。

图2.1 声调的四种模式

2.1.3语音信号产生模型

语音信号是声道被激励发生共振而产生的输出。由于在发音过程中声道是运动的,因此可以用一个时变线性系统来模拟。理想的模型是线性的,且时不变的;但是语音信号是一连串的时变过程,且声门和声道相互耦合形成了语音信号的非线性特性。做一个合理的假设,当在较短的时间间隔内表示语音信号时,则可以采用线性时不变模型。它包括激励模型、声道模型、和辐射模型。图2.2给出了经典的语音信号的产生模型,语音信号被看成是线性时不变系统在随机噪声或准周期脉冲序列激励下的输出。

图2.2语音信号产生模型

2.2语音信号数字化和预处理

2.2.1数字化

为了将原始的模拟语音信号变为数字信号,必须经过采样和量化两个步骤,从而得到时间和幅度上均为离散的数字语音信号。根据采样定理,当采样频率大于信号的2倍带宽时,在采样过程中不会丢失信息,且从采样信号中可以精确地重构原始信号波形。在实际语音信号处理中,采样频率通常为7~10kHz 。在信号的带宽不明确时,采样前应接入抗混叠滤波器(低通滤波器),使其带宽限制在某个范围内;否则,如果采样频率不满足采样定理,则会产生混叠。此时,信号中的高频成分将产生失真。

采样之后要对信号进行量化,在量化过程中不可避免的会产生误差。量化后的信号值与原始信号之间的差值为量化误差,又称为量化噪声。信号与量化噪声的功率之比为量化信噪比。若用2x δ表示输入语音信号序列的方差,max 2X 表示信号的峰值,B 表示量化分辨率(量化位长),2

e δ表示噪声序列的方差,则量化信噪比为:

)lg(2077.402.6)lg(10max 2x e x X B SNR δδδ-+== (2.1) 假设语音信号的幅度服从Laplacian 分布,此时信号幅度超过x δ4的概率很小,只有0.35%,因而可以取x X δ4m ax =。此时上式变为SNR=6.02B-7.2。上式表明,量化器中每位

字长对SNR 贡献为6dB;当B=7位时,SNR=35dB 。此时量化后的语音质量能满足一般通信系统的要求。研究表明:要使语音波形的动态变化信噪比达到55dB 的信噪比,B 应取10位以上。为了在语音信号变化范围内保持35dB 的信噪比,常用12位来量化,其中附加的5位用于补偿30dB 左右的输入动态范围变化。

2.2.2预加重处理

由于语音信号的平均功率谱受声门激励和鼻辐射的影响,在800Hz 以上的高频时约按6dB/oct 衰减,为此要在预处理中进行预加重。预加重的目的是提升高频部分,使信号的频谱变得平坦,以便于进行声道参数分析或频谱分析。预加重在防混叠滤波与A/D 转换之前进行。这样,不仅能够进行预加重,而且可以压缩信号的动态范围,有效地提高信噪比。所以为尽量提高SNR ,应在A/D 转换之前进行预加重。同时,预加重也可在A/D 转换之后进行,用具有6dB/oct 地提升高频特性地预加重数字滤波器实现。它一般是一阶的,即:11)(--=uz z H ,式中u 值接近于1,本文中去为0.94。

加重的信号在分析处理后,需要进行去加重处理,即加上6dB/oct 的下降的频率特性来还原成原来的特性。图2.3所示为对语音信号“0”的预加重处理结果。从下图可以明显

的看出,加重后语音信号中高频分量增强。

图2.3语音信号“0”的预加重处理效果

2.2.3防混叠滤波

A/D转换之前还需要加一个防混叠滤波器。如果频率干扰(50或60Hz)不严重或另有抗干扰措施,则不必用带通滤波器而只用低通滤波器即可。低通滤波器的截至频率由语音信号带宽决定,用于虑除高于l/2采样频率的信号成分或噪声,并且希望其带内波动和带外衰减特性尽可能好。A/D转换后采用低通滤波器作为平滑滤波器,对重构的语音波形的高次谐波起平滑作用,以去除高次谐波失真。对于这种低通滤波器的特性和A/D转换频率,也要求与采样时具有相同的关系。

2.2.4加窗处理

已经数字化的语音信号序列将被依次存入一个数据区。在语音信号处理中,一般用循环队列的方式来存储这些数据,以便用一个有限容量的数据区来应付数量极大的语音数据。在进行处理时,按帧从此数据区中取出数据,处理完成后再取一帧,如此进行下去。一般来说,语音信号处理的帧长一般取20ms(当F s=8kHz时,相应每帧由160个信号样值)。在

取数据时,前一帧与后一帧的交叠部分称为帧移。帧移与帧长之比一般取为0~0.5。在对语音信号进行短时分析的过程中,信号流的处理用分段或分帧来实现。一般每秒的帧数为33~100,视实际情况而定。分帧既可连续,也可采用交叠分段的方法,用可移动的有限长度窗口进行加权的方法来实现。

在10~20ms 这样的时间段内,数字化后的语音信号的频谱特性和某些物理特征参量可近似地看作是不变地。这样就可以采用平稳过程的分析处理方法来处理了。这种时间以来处理的基本手段,一般是用一个长度有限的窗序列w(n)截取一段语音信号来进行分析,并让这个窗滑动,以便分析任意时刻附近的信号。其一般式为∑∞

-∞=-?=

m n m n w m x T Q )()]([,其中T[*]表示某种运算{x(m)}为输入信号序列。通帮采用最多的窗函数是矩形窗、汉宁窗(Hanning)和哈明窗(Hamming)。本文主要采用哈明窗,其公式为:

()?????==??? ??---=其他

n L n L m n w ,0~0,112cos 46.054.0)(π (2-2) 其中L 是窗长。通常认为在一个语音帧内,应含有1~7个基音周期。然而,不同人的基音周期变化范围很大,从女性儿童的2ms 到老年男子的14ms(即基音频率为50~70Hz),所以L 的选择比较困难。通常在l0kHz 采样频率下,L 折衷选择为100~200个采样点(即持续时间为10~20ms)。

2.3语音信号的时域分析

对信号分析最自然最直接的方法是以时间为自变量进行分析,语音信号典型的时域特征包括短时能量、短时平均过零率、短时自相关系数和短时平均幅度差。

2.3.1短时能量分析

对于信号x(n),短时能量定义为:

()()[]()()[]()()n h n x m n w m x m n w m x E n N n m m n *1222∑∑+-=∞-∞

==-=-=

(2-3) 式中,h(n)=w 2(n),N 为窗长,E n 表示在信号的第n 个点开始加窗函数时的短时能量。

可以看出,短时能量可以看作语音信号的平方经过一个线性滤波器的输出,该线性滤波器的单位冲激响应为h(n),如图2.4所示。

图2.4短时能量的方框图表示

如果用x w 表示x(n)经过加窗处理后的信号,窗函数的长度为N ,则短时能量可表示为:

()∑-+==

1

2N n n m w

n m x E (2-4) 如图2.5所示为语音“0”时域波形图和语音“0”短时能量图。

图2.5语音信号“0”的短时能力函数

利用短时能量可以区分清音和浊音,因为浊音的能量比清音的能量大得多;其次可以用短时能量对有声段和无声段进行判定,对声母和韵母分界,以及对连字分界等。在语音识别系统中,一股也作为特征中的一维参数来表示语音信号能量的大小和超音段信息。

短时能量由于是对信号进行平方运算,因而认为增加了高低信号之间的差距,因此要采用短时平均幅度来表示能量的变化,其公式为:

()()()∑∑-+=∞-∞==-=

1

N n n m w m n m x m n w m x M (2-5) 如图2.6所示为“0”的短时平均幅度图。从图中可观察到,短时平均幅度对能量小的信号累计效果要比短时能量好。

图2.6语音信号“0”的短时平均幅度

2.3.2短时平均过零率

短时平均过零率是指每帧内信号通过零值的次数。对于连续语音信号,可以考察其时域波形通过时间轴的情况。对于离散信号,它实质上是信号采样点符号变化的次数。在一定程度上短时过零率可以反映出频率的信息,在浊音段一般具有较低的过零率,而在清音段具有较高的过零率,这样就可以初步判断清音和浊音,但只是相对而言,没有精确的数值关系。短时平均过零率公式为:

()[]()[]()()[]()[]∑∑-+=∞

-∞

=--=---=1

1sgn sgn 211sgn sgn 21N n n

m w w m n m x m x m n w m x m x Z (2-6) Sgn[*]是符号函数。为了解决低频的干扰,我们设立一个门限T ,将过零率的含义修改为跨过正负门限的次数。于是有:

()[]()[]()[]()[]()∑∞-∞=-??

????????+--=+----=m n m n w T m x T m x T m x T m x z 1sgn sgn 1sgn sgn 21 (2-7) 另外,可以将短时平均过零率和短时能量结合起来判断语音起止点的位置,即进行端点检测。在背景噪声较小的情况下,短时能量比较准确,但当背景噪声较大时,短时平均过零率可以获得较好的检测效果。一次一般的识别系统,其前端的端点检测过程都是将这两个参数结合用于检测语音是否真的开始。如图2.7语音信号“0”的过零率,可为端点检测提供参考。

图2.7 语音信号“0”的短时平均过零率

2.3.3短时自相关函数和短时平均幅度差函数

语音信号x w (n)的短时自相关函数R n (k)的计算式如下:

()()()()K k m x m x k R n

k

N m n n <<+=∑+=010 (2-8) 这里K 是最大的延迟点数。短时自相关函数具有一些性质,如它是偶函数假设序列具有周期性,则其自相关函数也是同周期的周期函数等。因此对于浊音语音可以用自相关函数求出语音波形序列的基音周期。

短时自相关函数是语音信号时域分析的重要参量。但是,计算自相关函数的运算量很大,其原因是乘法运算所需要的时间较长。利用快速傅立叶变换等简化计算方法都无法避免乘法运算。为了避免乘法,一个简单的方法就是利用差值,为此常常采用另一种与自相关函数类似作用的参量,即短时平均幅度差函数(AMDP)。

平均幅度差函数能够代替自相关函数进行语音分析,是基于这样一个事实:如果信号是完全的周期信号(设周期为N p 。),则相距为周期的整数倍的样点上的幅值是相等的,差值为零。即:

()()()() ,2,,00p p N N k k n x n x n d ±±==+-= (2-9)

对于实际的语音信号,d(n)虽不为零,但其值很小。这些极小值将出现在整数倍周期

的位置上。为此,可定义短时平均幅度差函数:

()()()k m x m x k F n

k

N m n n +-=∑--=10 (2-10) 显然,如果x(n)在窗口取值范围内具有周期性,则将出现极小值。如图2.8所示,对于周期性的x(n),F n (k)也呈现周期性。与R n (k)相反的是,在周期的各个整数倍点上F n (k)具有谷值而不是峰值。

图2.8语音信号“0”的自相关函数

2.3.4语音端点检测

语音端点检测的准确性和可靠性,对系统识别率的提高起着重要的作用当系统收到一段包含语音的信号时,系统需要对语音的端点进行定位,丢弃语音前.后多余的噪音段。如果语音前后噪音保留过多,则会增加不同语音的共同成分,对识别产生干扰;而如果语音部分被切割掉,则会造成语音信息的丢失,若丢失的恰是区分语音的重要特征,则造成误识。正确确定语音端点也会减少系统的计算量和存储量。语音端点检测算法主要是根据语音的一些特征参数,短时能量、过零率等完成端点检测。

端点检测有双门限前端检测算法和多门限过零率前端检测算法。双门限前端检测算法用于有话、无话鉴别或词语前端检测,通常窗长(即帧长)取10~15ms ,帧间隔(即采样间隔)取5~10ms ,有一定的抗干扰能力,即使存在小的随机噪声,只要它不使信号越过正负门限所构成的带,就不会产生虚假的过零率。

多门限过零率前端检测算法是设多个高低不同的门限。与一股的单门限过零率法相

比,可明显地减少前端误判,但是有时存在较大时延。因为首次找到高门限越过点,再往前推可能要搜索200ms 左右才能找到清音的起点,这就不便于实现实时特征提取。

2.4语音信号的频域分析

语音的感知过程与人类听觉系统具有频谱分析功能是紧密相关的。因此,对语音信号进行频谱分析,是认识语音信号和处理语音信号的的重要方法。

2.4.1滤波器组法

利用一组滤波器来分析语音信号的频谱,方法使用简单、实时性好、受外界环境的影响小。滤波器组法所用的滤波器可以是模拟滤波器,也可以是数字滤波器。滤波器可以用宽带带通滤波器,也可以用窄带带通滤波器。宽带带通滤波器具有平坦性,用它可以粗略地求取语音的频谱,其频率分辨率降低,相当于短时处理时窗宽较窄的那种情况。使用窄带带通滤波器,其频率分辨率提高,相当于短时处理时窗宽较宽的那种情况。

语音信号x(t)输入带通滤波器f 1,f 2,…… f n ,滤波器输出为具有一定频带的中心频率为f 1,f 2,…… f n 的信号。可以将滤波器组的输出经过自适应增量调制器变为二进制脉冲信号,再经过多路开关,变为一串二进制脉冲信号。这种信号可以输入计算机进行各种分析和处理。

2.4.2傅立叶频谱分析

傅立叶频谱分析是语音信号频域分析中广泛采用的一种方法。它是法国科学家J .Fourier 在1807年为了得到热传导方程的简便解法而提出的。傅立叶频谱分析的基础是傅立叶变换,用傅立叶变换及其反变换可以求得傅立叶谱、自相关函数、功率谱、倒谱。由于语音信号的特性是随着时间缓慢变化的,由此引出语音信号的短时分析。

信号x(盯)的短时傅立叶变换为:

()()()∑∞-∞=--=m jwm jw

n e m n w m x e X (2-11)

式中,w(n)为窗口函数。图2.9是从带通滤波器作用理解短时傅立叶变换。

图2.9 从带通滤波器作用理解短时傅里叶变换

()jw n e X 可以看作是加窗后函数的傅立叶变换,为了实现反变换,将()

jw n e X 进行频率

采样,即令L K w k /2π=则有

()()()[]∑∞-∞=--=m m jw jw n k k e

m n w m x e X (2-12)

式中,L 为频率采样点数。

短时功率谱实际上是短时傅立叶变换幅度的平方,它是信号x(n)的短时自相关函数的傅立叶变换,即

()()()∑∞-∞==

=k jw n jw n jw n k e k R e X e P 2 (2-13)

式中R n (k )是自相关函数。图2.10是几种谱之间的关系。

图2.10 几种基于短时傅里叶变换谱之间的关系

2.5特征参数提取

2.5.1 LPCC 倒谱系数

线性预测倒谱参数(Linear Prediction Cepstrum Coefficient ,LPCC)是线性预测系数在倒谱域中的表示,该特征是基于语音信号为自回归信号的假设,利用线性预测分析获得倒谱系数。LPCC 参数的优点是计算量小,易于实现,对元音有较好的描述能力,其缺点在于对辅音的描述能力较差,抗噪声性能较差。

语音信号的倒谱与LPC 系数之间的递推关系:

()()()()()p n p n k n c a n k n c k n c a n k a n c a c p k k n k k n ≤

??????>-??? ??-=-??? ??-+==∑∑=-=1,,1111111 (2-14) 或是由LPC 得到

()()()()k C k n C n

k n n C n C LPC LPCC n k LPC LPCC --+=∑-=11 (2-15) 根据同态处理的概念和语音信号产生的模型,语音信号的倒谱c(n)等于激励信号的倒

谱()n e

?与声道传输函数的倒谱()h h ?之和。通过分析激励信号的语音特点以及声道传输函数的零极点分布情况,可知()n e

?的分布范围很宽,c(n)从低时域延伸到高时域,而()n h ?主要分布于低时域中。语音信号所携带的语音信息主要体现在声道传输函数上,因而在语音识别中通常取语音信号倒谱的低时域构成LPC 倒谱特征c ,即

()()()[]1610,,2,1≤≤=q q c c c c (2-16)

式中,q 为LPC 倒谱特征的阶数。

然而LPCC 同时也继承了LPC 的缺陷,其主要的一点就是LPC 在所有的频率上都是线性逼近语音的,而这与人的听觉的特性是不一致的;而且LPC 包含了语音高频部分的大部分噪声细节,这些都会影响系统的性能。

2.5.2 Mel 频率倒谱系数

美尔频标倒谱系数(Mel Frequency Cepstrum Coefficient ,MFCC)考虑了人耳的听觉特性,将频谱转化为基于Mel 频标的非线性频谱,然后转换到倒谱域上。由于充分考虑了人耳的听觉特性,而且没有任何的前提假设,MFCC 参数具有良好的识别性能和抗噪声能力,但其计算量和计算精度要求高。

MFCC 不同于LPCC 。在汉语数码语音识别中,MFCC 参数的性能明显优于LPCC 参数。MFCC 是采用滤波器组的方法计算出来的,这组滤波器在频率的美尔坐标上是等宽的。这是因为人类在对约1000Hz 以上的声音频率范围的感知不遵循线性关系,而是遵循在对数频率坐标上的近似线性关系。Mel 频率可以用如下公式表示:

()700/1log 2596f f Mel +?= (2-17)

对频率轴的不均匀划分是MFCC 特征区别于普通倒谱特征的最重要的特点。将频率按照式(2-17)变换到Mel 域后,Mel 带通滤波器组的中心频率是按照Mel 频率刻度均匀排列的。在实际应用中,MFCC 倒谱系数计算过程如下:

(1)将信号进行分帧,预加重和加哈明窗处理,然后进行短时傅立叶变换并得到其频谱。

(2)求出频谱平方,即能量谱,并用M 个Mel 带通滤波器进行滤波;由于每一个频带中分量的作用在入耳中是叠加的,因此将每个滤波器频带内的能量进行叠加,这时第k 个滤波器输出功率谱X(k)。

(3)将每个滤波器的输出取对数,得到相应频带的对数功率谱;并进行反离散余弦变换,得到L 个MFCC 系数,一般L 取12~16个左右。MFCC 系数为

()()[]L n M n k k C n ,,2,1,/5.0cos log =-=∑πχ (2-18)

(4)将这种直接得到的MFCC 特征作为静态特征,再将这种静态特征傲一阶和二阶差

利用MATLAB平台实现少量字的语音识别

目录 引言 (4) 1.语音识别简介 (5) 1.1语音识别系统的分类 (5) 1.2语音识别系统的基本构成 (5) 2.语音识别参数 (6) 2.1线性预测系数(LPC) (6) 2.2线性预测倒谱系数(LPCC) (8) 2.3MFCC系数 (8) 2.4参数计算流程 (9) 3.DTW算法 (11) 3.1DTW算法原理 (11) 3.2DTW的高效算法 (14) 4.HMM算法 (16) 4.1HMM的原理 (16) 4.2HMM的前向概率和后向概率 (17) 4.3识别算法——V ITERBI解码 (19) 4.4 BAUM-WELCH算法 (20) 5.实验及总结 (23) 5.1实验准备以及步骤 (23) 5.2实验结果及讨论 (25) 5.3实验结论 (29) 参考文献 (30) 致谢 (31)

引言 自上世纪80年代开始,语音识别技术的研究进入了一个蓬勃发展的时期,一些商用系统也从实验室进入市场。然而,在实际的应用中,由于各种干扰因素导致的测试条件与训练环境的不匹配,系统的性能往往会收到极大的影响。因此提高语音识别系统的性能就成为了语音识别技术真正走向实用化的关键课题。 语音识别是以声音作为研究对象它是语音信号处理的一个重要研究方向,是模式识别的一个分支涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信。本文研究了汉语语音识别技术及其实现方法。论文首先分析了语音信号预处理问题。对MFCC倒谱系数在语音识别中的运用做了详细介绍。其次研究了基于DTW的语音识别系统,针对DTW算法中系统识别性能过分依赖于端点检测、动态规划的计算量太大等缺陷,分别提出了快速DTW算法和端点松动的DTW算法,仿真结果比较理想。继而研究了基于HMM的语音识别系统。针对HMM在实际应用中的优化计算问题,包括初始模型选取,定标等进行了深入的分析与探讨。针对传统定标仍能溢出的问题,给出了无溢出的参数重估公式。

语音识别Matlab可视化编程(部分)

附录1:录音函数:audiorecorder.m % 运行平台:Windows 8.1 64bit MATLAB R2014a % 录音2秒钟 clear all;clc;close all; fs = 16000; %2é?ù?μ?ê recorder = audiorecorder; disp('Start speaking.') recordblocking(recorder, 2); disp('End of Recording.'); % 回放录音数据 play(recorder); % 获取录音数据 xx = getaudiodata(recorder,'int16'); %绘制录音数据波形 plot(xx); A6:“录音”按键回调函数 function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) fs = 16000; recorder = audiorecorder; disp('Start speaking.') recordblocking(recorder, 2); disp('End of Recording.'); % 回放录音数据 % play(recorder); % 获取录音数据 k = getaudiodata(recorder,'int16'); plot(handles.axes1,k); load mfcc.mat; [StartPoint,EndPoint]=vad(k,fs); cc=mfcc(k); cc=cc(StartPoint-2:EndPoint-2,:); test.StartPoint=StartPoint; test.EndPoint=EndPoint;

matlab语音识别系统(源代码)最新版

matlab语音识别系统(源代码)最新版

目录 一、设计任务及要求 (1) 二、语音识别的简单介绍 2.1语者识别的概念 (2) 2.2特征参数的提取 (3) 2.3用矢量量化聚类法生成码本 (3) 2.4VQ的说话人识别 (4) 三、算法程序分析 3.1函数关系 (4) 3.2代码说明 (5) 3.2.1函数mfcc (5) 3.2.2函数disteu (5) 3.2.3函数vqlbg (6) 3.2.4函数test (6) 3.2.5函数testDB (7) 3.2.6 函数train (8) 3.2.7函数melfb (8) 四、演示分析 (9) 五、心得体会 (11) 附:GUI程序代码 (12)

一、设计任务及要求 用MATLAB实现简单的语音识别功能; 具体设计要求如下: 用MATLAB实现简单的数字1~9的语音识别功能。 二、语音识别的简单介绍 基于VQ的说话人识别系统,矢量量化起着双重作用。在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。在识别(匹配)阶段,我们用VQ方法计算平均失真测度(本系统在计算距离d时,采用欧氏距离测度),从而判断说话人是谁。 语音识别系统结构框图如图1所示。 图1 语音识别系统结构框图 2.1语者识别的概念 语者识别就是根据说话人的语音信号来判别说话人的身份。语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用电话网络还可实现远程客户服务等。因此,近几年来,说话人识别越来越多的受到人们的重视。与其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,是唯一可以用作远程验证的识别技术。因此,说话人识别的应用前景非常广泛:今天,说话人识别技术已经关系到多学科的研究领域,不同领域中的进步都对说话人识别的发展做出了贡献。说话人识别技术是集声学、语言学、计算机、信息处理和人工智能等诸多领域的一项综合技术,应用需求将十分广阔。在吃力语音信号的时候如何提取信号中关键的成分尤为重要。语音信号的特征参数的好坏直接导致了辨别的准确性。

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

matlab语音识别系统(源代码)

(威海)《智能仪器》课程设计 题目: MATLAB实现语音识别功能班级: 学号: 姓名: 同组人员: 任课教师: 完成时间:2012/11/3 目录

一、设计任务及要求 (1) 二、语音识别的简单介绍 2.1语者识别的概念 (2) 2.2特征参数的提取 (3) 2.3用矢量量化聚类法生成码本 (3) 2.4VQ的说话人识别 (4) 三、算法程序分析 3.1函数关系 (4) 3.2代码说明 (5) 3.2.1函数mfcc (5) 3.2.2函数disteu (5) 3.2.3函数vqlbg (6) 3.2.4函数test (6) 3.2.5函数testDB (7) 3.2.6 函数train (8) 3.2.7函数melfb (8) 四、演示分析 (9) 五、心得体会 (11) 附:GUI程序代码 (12) 一、设计任务及要求 用MATLAB实现简单的语音识别功能;

具体设计要求如下: 用MATLAB实现简单的数字1~9的语音识别功能。 二、语音识别的简单介绍 基于VQ的说话人识别系统,矢量量化起着双重作用。在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。在识别(匹配)阶段,我们用VQ方法计算平均失真测度(本系统在计算距离d时,采用欧氏距离测度),从而判断说话人是谁。 语音识别系统结构框图如图1所示。 图1 语音识别系统结构框图 2.1语者识别的概念 语者识别就是根据说话人的语音信号来判别说话人的身份。语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用网络还可实现远程客户服务等。因此,近几年来,说话人识别越来越多的受到人们的重视。与其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,是唯一可以用作远程验证的识别技术。因此,说话人识别的应用前景非常广泛:今天,说话人识别技术已经关系到多学科的研究领域,不同领域中的进步都对说话人识别的发展做出了贡献。说话人识别技术是集声学、语言学、计算机、信息处理和人工智能等诸多领域的一项综合技术,应用需求将十分广阔。在吃力语音信号的时候如何提取信号中关键的成分尤为重要。语音信号的特征参数的好坏直接导致了辨别的准确性。 2.2特征参数的提取 对于特征参数的选取,我们使用mfcc的方法来提取。MFCC参数是基于人的听觉特性利用人听觉的屏蔽效应,在Mel标度频率域提取出来的倒谱特征参数。

基于语音识别的智能小车设计-毕设论文

基于语音识别的智能小车 摘要 随着计算机技术、模式识别和信号处理技术及声学技术等的发展,使得能满足各种需要的语音识别系统的实现成为可能。近二三十年来,语音识别在计算机、信息处理、通信与电子系统、自动控制等领域中有着越来越广泛的应用。本设计是语音识别在控制领域的一个很好实现,它将原本需要手工操作的工作用语音来方便地完成。 语音识别按说话人的讲话方式可分为孤立词(Isolated Word)识别、连接词(Connected Word)识别和连续语音(Continuous Speech)识别。从识别对象的类型来看,语音识别可以分为特定人(Speaker Dependent)语音识别和非特定人(Speaker Independent)语音识别。本设计采用的识别类型是特定人孤立词语音识别。 本系统分上位机和下位机两大方面。上位机利用PC上MATLAB强大的数学计算能力,进行语音输入、端点监测、特征参数提取、匹配、串口控制等工作,根据识别到的不同语音通过PC串口向下位机发送不同的指令。下位机是单片机控制的一个小车,单片机收到上位机传来的指令后,根据不同的指令控制小车完成不同的动作。 该设计对语音识别的现有算法进行了验证和实现,并对端点检测和匹配算法进行了些许改进。本设计达到了预期目标,实现了所期望的功能效果。 关键词:MATLAB,语音识别,端点检测,LPC,单片机,电机控制

SMART CAR GASED SPEECH RECOGNITION ABSTRACT With the development of computer technology,pattern recognition,signal processing technology and acoustic technology etc, the speech recognition system that can meet the various needs of people is more possible to achieve.The past three decades, the voice recognition in the field of computer, information processing, communications and electronic systems, automatic control has increasingly wide range of applications. Speech recognition by the speaker's speech can be divided into isolated word (Isolated Word) identification, conjunctions (Connected Word) and continuous speech recognition (Continuous Speech) identification. Identifying the type of object from the point of view, the voice recognition can be divided into a specific person (Speaker Dependent) speech recognition and non-specific (Speaker Independent) speech recognition. This design uses the identification type is a specific person isolated word speech recognition. This design is of a good implementation of speech recognition in the control field, it does the work that would otherwise require manual operation by the voice of people easily.This system includes two major aspects:the host system and the slave system. The host system use the MATLAB on the computer which has powerful mathematical computing ability to do the work of voice input, endpoint monitoring, feature extraction, matching, identification and serial control,then it send different commands through the PC serial port to slave system according different recognised voice. The slave system is a car controlled by a single-chip micro-controller.It controls the car do different actions according different instructions received.

人脸识别系统设计与仿真 基于matlab的(含matlab源程序)版权不归自己 交流使用

人脸识别系统设计与仿真基于matlab的(含matlab源程序) 交流使用参考后自行那个删除后果自负 目录 第一章绪论 (2) 1.1 研究背景 (2) 1.2 人脸图像识别的应用前景 (3) 1.3 本文研究的问题 (4) 1.4 识别系统构成 (5) 1.5 论文的内容及组织 (7) 第二章图像处理的Matlab实现 (8) 2.1 Matlab简介 (8) 2.2 数字图像处理及过程 (8) 2.2.1图像处理的基本操作 (8) 2.2.2图像类型的转换 (9) 2.2.3图像增强 (9) 2.2.4边缘检测 (10) 2.3图像处理功能的Matlab实现实例 (11) 2.4 本章小结 (15) 第三章人脸图像识别计算机系统 (16) 3.1 引言 (16) 3.2系统基本机构 (17)

3.3 人脸检测定位算法 (18) 3.4 人脸图像的预处理 (25) 3.4.1 仿真系统中实现的人脸图像预处理方法 (26) 第四章基于直方图的人脸识别实现 (29) 4.1识别理论 (29) 4.2 人脸识别的matlab实现 (29) 4.3 本章小结 (30) 第五章总结 (31) 致谢 (32) 参考文献 (33) 附录 (35)

第一章绪论 本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。 1.1 研究背景 自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。 在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。 同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己

matlab语音识别系统(源代码)版

目录 一、设计任务及要求 (1) 二、语音识别的简单介绍 语者识别的概念 (2) 特征参数的提取 (3) 用矢量量化聚类法生成码本 (3) 的说话人识别 (4) 三、算法程序分析 函数关系 (4) 代码说明 (5) 函数mfcc (5) 函数disteu (5) 函数vqlbg (6) 函数test (6) 函数testDB (7) 函数train (8) 函数melfb (8) 四、演示分析 (9) 五、心得体会 (11) 附:GUI程序代码 (12)

一、设计任务及要求 用MATLAB实现简单的语音识别功能; 具体设计要求如下: 用MATLAB实现简单的数字1~9的语音识别功能。 二、语音识别的简单介绍 基于VQ的说话人识别系统,矢量量化起着双重作用。在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。在识别(匹配)阶段,我们用VQ方法计算平均失真测度(本系统在计算距离d时,采用欧氏距离测度),从而判断说话人是谁。 语音识别系统结构框图如图1所示。

图1 语音识别系统结构框图 语者识别的概念 语者识别就是根据说话人的语音信号来判别说话人的身份。语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用电话网络还可实现远程客户服务等。因此,近几年来,说话人识别越来越多的受到人们的重视。与其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,是唯一可以用作远程验证的识别技术。因此,说话人识别的应用前景非常广泛:今天,说话人识别技术已经关系到多学科的研究领域,不同领域中的进步都对说话人识别的发展做出了贡献。说话人识别技术是集声学、语言学、计算机、信息处理和人工智能等诸多领域的一项综合技术,应用需求将十分广阔。在吃力语音信号的时候如何提取信号中关键的成分尤为重要。语音信号的特征参数的好坏直接导致了辨别的准确性。 特征参数的提取 对于特征参数的选取,我们使用mfcc 的方法来提取。MFCC 参数是基于人的听觉特性利用人听觉的屏蔽效应,在Mel 标度频率域提取出来的倒谱特征参数。 MFCC 参数的提取过程如下: 1. 对输入的语音信号进行分帧、加窗,然后作离散傅立叶变换,获得频谱分布信息。 设语音信号的DFT 为: 10,)()(112-≤≤=∑-=-N k e n x k X N n N nk j a π(1) 其中式中x(n)为输入的语音信号,N 表示傅立叶变换的点数。

基于MATLAB的特定人语音识别算法设计毕业设计

本科毕业设计 基于MATLAB的特定人语音识别算法设计

摘要 语言是人类交换信息最方便、最快捷的一种方式,在高度发达的信息社会中,用数字化的方法进行语音的传送、存储、识别、合成和增强等是整个数字化通信网中最重要、最基本的组成部分之一。而在随着科技技术的发展的今天,除了人与人之间的自然语言通信之外,人与机或机器与机器之间也开始使用语言。也就是因为如此,需要涉及到语音识别技术。为了解决机器能“听懂”人类的语言,在科技如此迅猛发展的今天,语音识别技术一直受到各国科学界的关注,其对计算机发展和社会生活的重要性也日益凸显出来。 在孤立字语音识别中,如语音密码锁,汽车控制等领域,都运用到了特定人语音识别技术,也就是DTW算法,相对于HMM算法,DTW算法具有简单操作。在相同环境下,两者识别效果相差不大,但是HMM算法要复杂得多,主要体现在HMM算法在训练阶段需要提供大量的语音数据,而DTW算法则不需要额外的计算。所以在特定人语音识别当中,DTW算法被广泛使用。 在本次设计中,将运用到MATLAB平台来对语音信号进行处理及识别。相对于C 语言而言,MATLAB平台更能给用户提供一个简单易懂的代码分析窗口。而且在个性化设计中,MATLAB可以为用户提供一个人性化界面--GUI。所以,此次设计,通过MATLAB 平台建立一个GUI界面,接着对一组语音信号的输入进行预处理及端点检测,提取特征参数(MFCC),形成参考模块。然后再对一组相同的语音信号输入进行同样的操作作为测试模块,与参考模块进行DTW算法进行匹配,输出匹配后的识别结果。 关键词:MATLAB GUI 端点检测MFCC DTW

基于matlab的语音识别系统

机电信息工程学院专业综合课程设计 系:信息与通信工程 专业:通信工程 班级:081班 设计题目:基于matlab的语音识别系统 学生姓名: 指导教师: 完成日期:2011年12月27日

一.设计任务及要求 1.1设计任务 作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技术一直受到各国科学界的广泛关注。以语音识别开发出的产品应用领域非常广泛,有声控电话交换、语音拨号系统、信息网络查询、家庭服务、宾馆服务、旅行社服务系统、订票系统、声控智能玩具、医疗服务、银行服务、股票查询服务、计算机控制、工业控制、语音通信系统、军事监听、信息检索、应急服务、翻译系统等,几乎深入到社会的每个行业、每个方面,其应用和经济社会效益前景非常广泛。本次任务设计一个简单的语音识别系。 1.2设计要求 要求:使用matlab软件编写语音识别程序 二.算法方案选择 2.1设计方案 语音识别属于模式识别范畴,它与人的认知过程一样,其过程分为训练和识别两个阶段。在训练阶段,语音识别系统对输入的语音信号进行学习。学习结束后,把学习内容组成语音模型库存储起来;在识别阶段,根据当前输入的待识别语音信号,在语音模型库中查找出相应的词义或语义。 语音识别系统与常规模式识别系统一样包括特征提取、模式匹配、模型库等3个基本单元,它的基本结构如图1所示。 图1 语音识别系统基本结构图 本次设计主要是基于HMM模型(隐马尔可夫模型)。这是在20世纪80年代引入语音识别领域的一种语音识别算法。该算法通过对大量语音数据进行数据统计,建立识别词条的统计模型,然后从待识别语音信号中提取特征,与这些模

型进行匹配,通过比较匹配分数以获得识别结果。通过大量的语音,就能够获得一个稳健的统计模型,能够适应实际语音中的各种突发情况。并且,HMM算法具有良好的识别性能和抗噪性能。 2.2方案框图 图2 HMM语音识别系统 2.3隐马尔可夫模型 HMM过程是一个双重随机过程:一重用于描述非平稳信号的短时平稳段的统计特征(信号的瞬态特征);另一重随机过程描述了每个短时平稳段如何转变到下一个短时平稳段,即短时统计特征的动态特性(隐含在观察序列中)。人的言语过程本质上也是一个双重随机过程,语音信号本身是一个可观测的时变列。可见,HMM合理地模仿了这一过程,是一种较为理想的语音信号模型。其初始状态概率向量π,状态转移概率矩阵向量A,以及概率输出向量B一起构成了HMM的3个特征参量。HMM 模型通常表示成λ={π,A,B}。 2.4HMM模型的三个基本问题 HMM模型的核心问题就是解决以下三个基本问题: (1)识别问题:在给定的观测序列O和模型λ=(A,B,π)的条件下,如何有效地计算λ产生观测序列O的条件概率P(O︱λ)最大。常用的算法是前后向算法,它可以使其计算量降低到N2T次运算。 (2)最佳状态链的确定:如何选择一个最佳状态序列Q=q1q2…qT,来解释观察序列O。常用的算法是Viterbi算法。 (3)模型参数优化问题:如何调整模型参数λ=(A,B,π),使P(O︱λ)最大:这是三个问题中最难的一个,因为没有解析法可用来求解最大似然模型,所以只能使用迭代法(如Baum-Welch)或使用最佳梯度法。 第一个问题是评估问题,即已知模型λ=(A,B,π)和一个观测序列O,如何计算由该模型λ产生出该观测序列O的概率,问题1的求解能够选择出与给定的观测序列最匹配的HMM模型。 第二个问题力图揭露模型中隐藏着的部分,即找出“正确的”状态序列,这是一个典型的估计问题。

matlab语音识别系统

· (威海)《智能仪器》课程设计 题目: MATLAB实现语音识别功能班级: 学号: 姓名: 同组人员: 任课教师: 完成时间:2012/11/3

目录 一、设计任务及要求 (1) 二、语音识别的简单介绍 2.1语者识别的概念 (2) 2.2特征参数的提取 (3) 2.3用矢量量化聚类法生成码本 (3) 2.4VQ的说话人识别 (4) 三、算法程序分析 3.1函数关系 (4) 3.2代码说明 (5) 3.2.1函数mfcc (5) 3.2.2函数disteu (5) 3.2.3函数vqlbg (6) 3.2.4函数test (6) 3.2.5函数testDB (7) 3.2.6 函数train (8) 3.2.7函数melfb (8) 四、演示分析 (9) 五、心得体会 (11) 附:GUI程序代码 (12)

一、设计任务及要求 用MATLAB实现简单的语音识别功能; 具体设计要求如下: 用MATLAB实现简单的数字1~9的语音识别功能。 二、语音识别的简单介绍 基于VQ的说话人识别系统,矢量量化起着双重作用。在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。在识别(匹配)阶段,我们用VQ方法计算平均失真测度(本系统在计算距离d时,采用欧氏距离测度),从而判断说话人是谁。 语音识别系统结构框图如图1所示。 图1 语音识别系统结构框图 2.1语者识别的概念 语者识别就是根据说话人的语音信号来判别说话人的身份。语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用网络还可实现远程客户服务等。因此,近几年来,说话人识别越来越多的受到人们的重视。与其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,是唯一可以用作远程验证的识别技术。因此,说话人识别的应用前景非常广泛:今天,说话人识别技术已经关系到多学科的研究领域,不同领域中的进步都对说话人识别的发展做出了贡献。说话人识别技术是集声学、语言学、计算机、信息处理和人工智能等诸多领域的一项综合技术,应用需求将十分广阔。在吃力语音信号的时候如何提取信号中关键的成分尤为重要。语音信号的特征参数的好坏直接导致了辨别的准确性。

基于matlab的语音识别技术

项目题目:基于Matlab的语音识别 一、引言 语音识别技术是让计算机识别一些语音信号,并把语音信号转换成相应的文本或者命令的一种高科技技术。语音识别技术所涉及的领域非常广泛,包括信号处理、模式识别、人工智能等技术。近年来已经从实验室开始走向市场,渗透到家电、通信、医疗、消费电子产品等各个领域,让人们的生活更加方便。 语音识别系统的分类有三种依据:词汇量大小,对说话人说话方式的要求和对说话人的依赖程度。 (1)根据词汇量大小,可以分为小词汇量、中等词汇量、大词汇量及无限词汇量识别系统。 (2)根据对说话人说话方式的要求,可以分为孤立字(词)语音识别系统、连接字语音识别系统及连续语音识别系统。 (3)根据对说话人的依赖程度可以分为特定人和非特定人语音识别系统。 二、语音识别系统框架设计 2.1语音识别系统的基本结构

语音识别系统本质上是一种模式识别系统,其基本结构原理框图如图l所示,主要包括语音信号预处理、特征提取、特征建模(建立参考模式库)、相似性度量(模式匹配)和后处理等几个功能模块,其中后处理模块为可选部分。 三、语音识别设计步骤 3.1语音信号的特征及其端点检测 图2 数字‘7’开始部分波形 图2是数字”7”的波形进行局部放大后的情况,可以看到,在6800之前的部分信号幅度很低,明显属于静音。而在6800以后,信号幅度开始增强,并呈现明显的周期性。在波形的上半部分可以观察到有规律的尖峰,两个尖峰之间的距离就是所谓的基音周期,实际上也就是说话人的声带振动的周期。 这样可以很直观的用信号的幅度作为特征,区分静音和语音。只要设定一个

门限,当信号的幅度超过该门限的时候,就认为语音开始,当幅度降低到门限以下就认为语音结束。 3.2 语音识别系统 3.2.1语音识别系统的分类 语音识别按说话人的讲话方式可分为3类:(1)即孤立词识别(isolated word recognition),孤立词识别的任务是识别事先已知的孤立的词,如“开机”、“关机”等。(3)连续语音识别,连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话。 从识别对象的类型来看,语音识别可以分为特定人语音识别和非特定人语音识别,特定人是指针对一个用户的语音识别,非特定人则可用于不同的用户。显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。 3.2.2语音识别系统的基本构成 语音识别系统的实现方案如图3所示。输入的模拟语音信号首先要进行处理,包括预滤波,采样和量化,加窗,端点检测,预加重等。语音信号经处理后,接下来很重要的一环就是特征参数提取。 图3 语音识别系统 在训练阶段,将特征参数进行一定的处理之后,为每个词条得到一个模型,保存为模版库。在识别阶段,语音信号经过相同的通道得到语音参数,生成测试模版,与参考模板进行匹配,将匹配分数最高的参考模型作为识别结果。 3. 2.3 语音识别系统的特征参数提取 特征提取是对语音信号进行分析处理,去除对语音识别无关紧要的冗余信息,获得影响语音识别的重要信息。语音信号是一种典型的时变信号,然而如果把观察时间缩短到十毫秒至几十毫秒,则可以得到一系列近似稳定的信号。人的发音器官可以用若干段前后连接的声管进行模拟,这就是所谓的声管模型。 全极点线性预测参数 (LPC: Liner Prediction Coeffieient)可以对声管模型进行很好的描述,LPC参数是模拟人的发声器官的,是一种基于语音合成的参数模型。 在语音识别中,很少用LPC系数,而是用LPC倒谱参数 (LPCC: Liner Prediction Cepstral Coefficient)。LPCC参数的优点是计算量小,对元音有较好的描述能力,其缺点在于对辅音的描述能力较差,抗噪声性能较差。

语音识别的matlab实现

语音识别的MATLAB实现 声控小车结题报告 小组成员:关世勇吴庆林 一、项目要求: 声控小车是科大华为科技制作竞赛命题组的项目,其要求是编写一个语言识别程序并适当改装一个小型机动车,使之在一个预先不知道具体形状的跑道上完全由声控来完成行驶比赛。跑道上可以有坡面,坑,障碍等多种不利条件,小车既要具有较快的速度,也要同时具有较强的灵活性,能够克服上述条件。 二、项目分析: 由于小车只要求完成跑道上的声控行驶,所以我们可以使用简单的单音命令来操作,如“前”、“后”、“左”、“右”等。 由于路面有各种不利条件,而且规则要求小车尽可能不越过边线,这就决定了我们的小车不能以较高的速度进行长时间的快速行驶。所以我们必须控制小车的速度和行进距离。 由于外界存在噪声干扰,所以我们必须对噪声进行处理以减小其影响。 鉴于上诉各种要求,我们决定对购买的遥控小车进行简单改造,使用PC机已有的硬件条件编写软件来完成语音的输入,采集,处理和识别,以实现对小车的控制。 三、解决思路与模块: 整个程序大致可划分为三个模块,其结构框图如下图所示: 整个程序我们在Visual C++ 环境下编写。 四、各模块的实现: 1 声音的采集: 将声音信号送入计算机,我们利用了声卡录音的低层操作技术,即对winmm.lib进行API调用。具体编程时这一部分被写在一个类中(Soundin类)。 在构造函数中设定包括最大采样率(11025),数据缓存(作为程序一次性读入的数据,2048),声卡本身所带的一些影响采样数据等的各种参数; 调用API函数waveInGetNumDevs(返回UNIT,参数为空)检察并打开声音输入设备,即声卡;并进而使用waveInGetDevCaps得到声卡的容量(在waveInCaps中存有该数据,对其进行地址引用,从DWORD dwFormats得到最大采样率、声道数和采样位); 创建一个叫WaveInThreadEvent的事件对象,并赋予一个Handle,叫m_WaveInEvent,开始利用线程指针m_WaveInThread调用自定义的线程WaveInThreadProc; 对结构WAVEFORMATEX中WaveInOpen开始提供录音设备。注意设备句柄的得到是通过对HWAVEIN 型数据m_WaveIn的引用。 由于通过这种方式进行录音的文件格式是.wav,所以要先设置录音长度,以及对头文件进行一些设置:包括buffer的地址为InputBuffer的初始地址,大小为录音长度的两倍,类型。使用waveInPrepareHeader 为录音设备准备buffer。然后使用waveInAddBuffer函数为录音设备送出一个输入buffer。最后使用waveInStart(m_WaveIn)打开设备。 程序中WaveInThreadProc需要提出另外说明,因为通过这个线程我们可以实现采样和数据提取。该线程首先定义一个指向CsoundIn类的指针pParam,并将其宏定义为PT_S。而线程参数即为空指针pParam。使用WaitForSingleObject将录音过程设置为一旦开始就不中止(除非中止线程)。在此线程中做如下两个工作:将数据送入buffer,并将数据传入某个参数(其调用一个函数,将buffer中的数据送入该函数的参

基于Matlab的语音识别系统的设计

摘要 语音识别主要是让机器听懂人说的话,即在各种情况下,准确地识别出语音的内容,从而根据其信息执行人的各种意图。语音识别技术既是国际竞争的一项重要技术,也是每一个国家经济发展不可缺少的重要技术支撑。本文基于语音信号产生的数学模型,从时域、频域出发对语音信号进行分析,论述了语音识别的基本理论。在此基础上讨论了语音识别的五种算法:动态时间伸缩算法(Dynamic Time Warping,DTW)、基于规则的人工智能方法、人工神经网络(Artificial Neural Network,ANN)方法、隐马尔可夫(Hidden Markov Model,HMM)方法、HMM和ANN的混合模型。重点是从理论上研究隐马尔可夫(HMM)模型算法,对经典的HMM模型算法进行改进。 语音识别算法有多种实现方案,本文采取的方法是利用Matlab强大的数学运算能力,实现孤立语音信号的识别。Matlab 是一款功能强大的数学软件,它附带大量的信号处理工具箱为信号分析研究,特别是文中主要探讨的声波分析研究带来极大便利。本文应用隐马尔科夫模型(HMM) 为识别算法,采用MFCC(MEL频率倒谱系数)为主要语音特征参数,建立了一个汉语数字语音识别系统,其中包括语音信号的预处理、特征参数的提取、识别模板的训练、识别匹配算法;同时,提出利用Matlab图形用户界面开发环境设计语音识别系统界面,设计简单,使用方便,系统界面友好。经过统计,识别效果明显达到了预期目标。 关键词:语音识别算法;HMM模型;Matlab;GUI ABSTRACT Speech Recognition is designed to allow machines to understand what people say,and accurately identify the contents of voice to execute the intent of people.Speech recognition technology is not only an important internationally competed technology,but also an indispensable foundational technology for the national economic development.Based on the mathematical model from the speech signal,this paper analyze audio signal from the time domain,frequency domain proceeding,and discussed the basic theory of speech recognition technology.Five algorithm are discussed:Dynamic Time Warping(DTW)、Rule-based Artificial Intelligence,Artificial Neural Network(ANN),Hidden Markov Model(HMM),HMM combined with ANN.The focus is put in the theoretical studies of Hidden Markov(HMM) model algorithm,and the classical HMM algorithm is improved. Speech recognition algorithm is realized in various programs,this article taking the method is to use Matlab powerful mathematical operation ability to realize the recognition of speech signal isolation. Matlab is a powerful mathematic software with a mass of toolboxes dealing with signal processing. It gives a terrific shortcut to the research of signal processing,especially the wave analysis. We can characterize the sound with key parameters such as intensity, frequency etc. In this paper, hidden Markov model (HMM) recognition algorithm using MFCC (MEL

相关主题