搜档网
当前位置:搜档网 › Chipsbank(芯邦)CBM2091主控芯片复位修复过程

Chipsbank(芯邦)CBM2091主控芯片复位修复过程

Chipsbank(芯邦)CBM2091主控芯片复位修复过程
Chipsbank(芯邦)CBM2091主控芯片复位修复过程

Chipsbank(芯邦)CBM2091主控芯片复位修复过程

2008-09-21 10:58 P.M.

自已手头上的一个UNIS清华紫光4G型U盘

因量产过程中因错误设置导至用umptool2090量产无法认出FLASH(虽然系统能识别出为一个CD-ROM)经过查找BBS上的信息资料得出我的Chipsbank(芯

邦)CBM2091需用硬件方式修复(软件不是找不到就是不派用场)经查阅为只需拆开UNIS清华紫光4G型U盘取出主板找到主控芯片CBM2091即管脚41和42用针短路接法可以成功复位修复。

流程如下:

一:拆开UNIS清华紫光4G型U盘,工具可用钟表螺丝刀里的一字1.4mm型打开靠USB端口的那一塑料卡套。有机修经验的一定会很快而又完美无损的打开的吧

拆解UNIS清华紫光4G型U盘

二:找到主板上的主控芯片CBM2091看清方向即管脚第41脚和第42脚(看芯片正面的左下角有一个圆圈即第1脚从左至右至12管脚,接着逆时针方向数至41与42脚)

用针来修复主控芯片复位

Chipsbank(芯邦)CBM2091

三:用针把它插入41与42脚的中间即短接两管脚(注意在此操作时不能与电脑USB接上口)手保持住针头对主控芯片41与42脚的短接,再后电脑以打开了此量产工具界面时接上USB口。量产工具能识别出来后即可放开41与42脚的针了。

第41与42脚的短接位置

复位后识别出的U盘

复位后识别出的U盘

四:用量产工具重新制作一下即可。重

单片机复位原理总结

题6是作者在2006年10月份全国巡回人才招聘的考题,居然60%的同学得零分,却只有一位同学得满分,这种现象值得我们彻底地反思。 题6:单片机上电复位电路如图3所示,请回答下列问题(12分): (1)该复位电路适用于高电平复位还是低电平复位? (2)试述复位原理,画出上电时Vc的波形; (3)试述二极管D的作用。 图3RC复位电路 答案:(1)低电平复位。 (2)在图3中,CPU上电时,但由于电容C两端的电压V C不能突变,因此V C保持低 不断上升,上升曲线如图4所示。只要选择合适电平。但随着电容C的充电,V C 就可以在CPU复位电压以下持续足够的时间使CPU复位。复位之后,的R和C,V C V 上升至电源电压,CPU开始正常工作。相当于在CPU上电时,自动产生了一个C 一定宽度的低电平脉冲信号,使CPU复位。 4 RC充放电曲线 图 (3)当电源电压消失时,二极管D为电容C提供一个迅速放电的回路,使/RESET端迅速回零,以便下次上电时CPU能可靠复位。 这是一个非常重要的知识点,如果CPU的复位电路设计得不合理将会导致CPU严重死机,并且影响与CPU有关的外围器件的稳定性,比如存储器上电丢失数据。因此我们在学习的过程中,一定要善于将前后的知识连贯起来。千万不要随意放过哪怕一个细小的问题,只有这样才能做到融会贯通。在管理新产品的开发过程中,作者发现出现质量事故的产品都是由一些看起来并不起眼的小问题所引起的,最终给企业带来的损失却是巨大的,甚至是毁灭性的打

击。 二、复位电路的工作原理 在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢? 在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。 开机的时候为什么为复位 在电路图中,电容的的大小是10uF,电阻的大小是10k。所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。 也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。 按键按下的时候为什么会复位 在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位。 总结: 1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。 2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。

常用芯片引脚图

.v .. .. 常用芯片引脚 74LS00数据手册 74LS01数据手册 74LS02数据手册 74LS03数据手册 74LS04数据手册 74LS05数据手册 74LS06数据手册 74LS07数据手册 74LS08数据手册 74LS09数据手册 74LS10数据手册 74LS11数据手册

第2页 共8页 74LS12数据手册 74LS13数据手册 74LS14数据手册 74LS15数据手册 74LS16数据手册 74LS17数据手册 74LS19数据手册 74LS20数据手册 74LS21数据手册 74LS22数据手册 74LS23数据手册 74LS26数据手册 74LS27数据手册 74LS28数据手册

.v .. .. 74LS30数据手册 74LS32数据手册 74LS33数据手册 74LS37数据手册 74LS38数据手册 74LS40数据手册 74LS42数据手册 [1].要求0—15时,灭灯输入(BI )必须开路或保持高电平,如果不要灭十进制数零,则动态灭灯输入(RBI )必须开路或为高电平。 [2].将一低电平直接输入BI 端,则不管其他输入为何电平,所有的输出端均输出为低电平。 [3].当动态灭灯输入(RBI )和A,B,C,D 输入为低电平而试灯输入为高电平时,所有输出端都为低电平并且动态灭灯输入(RBO )处于第电平(响应条件)。 [4].]当灭灯输入/动态灭灯输出(BI/RBO )开朗路或保持高电平而试 灯输入为低电平时,所有各段输出均为高电平。 表中1=高电平,0=低电平。BI/RBO 是线与逻辑,作灭灯输入(BI )或动态灭灯(RBO )之用,或者兼为二者之用。

51单片机复位电路有关问题

想问一下单片机复位电路问题 复位过程我明白,RST接高电平复位,接低电平单片机正常工作 但电路连接不太理解什么意思, 想知道图中电解电容的作用,既然是按键高电平复位为什么要加电解电容呢不加可以吗?如果一定要加原因是什么? 另外想知道电容作用是隔直流通交流,是绝对的直流不通过还是什么充电过程无电流放电过程有电流,求指教 我认为绛红的蓝同学说的不太好。 电容确实可以起到按键去除抖动的作用,但是这里的电容还有一个更重要的作用就是上电复位,因为考虑到芯片刚刚上电时由于供电不稳定而做出错误的计算,所以增加一个上电复位以达到延时启动CPU的目的,使芯片能够正常工作。虽然现在很多芯片自带了上电延时功能,但是我们一般还是会增加额外的上电复位电路,提高可靠性。 上电复位是如此工作的,此时不用考虑按键和你图中1K电阻的作用。上电瞬间,电压VCC短时间内从0V上升到5V(比方说5V),这一瞬间相当于交流电,电容相当于导线,5V的电压全部加在10K电阻上,也就是说,这时RST的电平状态为高电平。但是从上电开始,电容自己就慢慢充电,其两端电压呈曲线上升,最终达到5V,也就是说其正端电位为5V,负端电位为0V,其负端也就正好是RST,此时RST为低电平,单片机开始正常工作。 添加按键是为了手动复位,一般那个1K电阻可以不加。当按键按下时,电容两端构成回路并放电,使RST端重新变为高电平,按键抬起时电容又充电使RST 变回低电平。 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

芯片引脚图及引脚描述

555芯片引脚图及引脚描述 555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。 1脚为地。2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。 当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平; 2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。 4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。 5脚是控制端。 7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。 555集成电路管脚,工作原理,特点及典型应用电路介绍. 1 555集成电路的框图及工作原理 555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。 2. 555芯片管脚介绍 555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。 图2 555集成电路封装图 我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:Q=1时DIS端接地,Q=0时DIS 端悬空。另外还有复位端MR,控制电压端Vc,电源端VDD和 地端GND。这个特殊的触发器有两个特点: (1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s 即触发端(TR)则要求低电乎; (2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当V c端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:而对TR(S)端来讲,>1/3VDD是

U盘主控芯片IS903

IS903 USB3.0 Flash Disk Controller Specification Copyright ? 2010 Innostor Technology Corporation. All rights reserved.

? Copyright Innostor Technology Corporation All Rights Reserved. No part of this document may be reproduced or transmitted in any form or by any means. All information contained in this document is subject to change without notice. The products described in this document are not intended for use implantation or other life supports application where malfunction may result in injury or death to persons. The information contained in this document does not affect or change Innostor Technology Corporation product specification or warranties. Nothing in this document shall operate as an express or implied license or environments, and is presented as an illustration. The results obtained in other operating environments may vary. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASE. In no event will Innostor be liable for damages arising directly or indirectly from any use of the information contained in this document. Innostor Technology Corporation 2F, No.8, Lane 32, Xianzheng 5th St., Jhubei City, Hsinchu County 302, Taiwan

常用运放芯片实物和引脚功能图_TL081-082-084运放引脚功能及贴片封装形式

常用运放芯片实物和引脚功能图_TL081/082/084运放引 脚功能及贴片封装形式 (1)运放芯片的3种型号序列(部分器件有此序列) 如TL081、TL082、TL084,分别为8引脚单运放;8引脚双运放;14引脚四运放集成器件。封装型式一般为塑封双列直插和贴片双列,环列封装形式比较少见。 图1 TL081/082/084运放引脚功能及贴片封装形式 而常见常用,仅为下述两种器件。 世界上有几个人?有两个人,男人和女人,不失为一个智慧的回答。常用运放芯片有几片,只有两片,8脚和14脚的双运放和四运放集成器件(8脚封装单运放器件和环列式封装器件应用较少),把此两种芯片引脚功能记住,检修中就不需要随时去查资料了。

图2 常用运放芯片实物和引脚功能图 如上图。其封装一般为塑封双列直插DIP8/DIP14和塑封贴片工艺封装SO8/SO14两种形式,随着电子线路板小型化精密化要求的提高,贴片元件的应用占据主流,直插式器件逐渐淡出人们的视野。但无论何种封装模式,其引脚功能、次序都是一样的,所以仅需记准8脚(双运放)和14脚(四运放)两种运放的引脚功能就够了。 (2)运放芯片的3种温度序列 任何一种集成IC器件,按应用温度范围不同,都可细分为3种器件,如LM358,实际上有LM158、LM258、LM358三种型号的产品,其引脚功能、内部结构、工作原理、供电电压等等都无差别,仅仅是应用温度范围差异甚大。 LM158 适应工作温度-50℃~125℃,军工用品(1类); LM258 适应工作温度-25℃~85℃,工业用品(2类); LM358 适应工作温度0℃~70℃,农用品(3类)。 单看参数,似乎LM258适用于山东地区,若用于东北地区,其参数有些不足。而LM358仅能适用于江南地区。而事实上并非如此,如低于2类品规格参数被淘汰到3类品的器件,可能是-24℃~84℃温度范围

最新-常见U盘主控芯片比较 精品

常见U盘主控芯片比较 篇一:盘主控芯片对盘读写速度影响情况的对比测试!篇二:盘品牌型号与主控芯片方案索引盘品牌型号与主控芯片方案索引希望此帖也会成为的另一个实用帖。 。 。 。 。 。 转帖请注明出处,本帖会被不断更新配合此帖:盘修复工具全集?=4345大家补充的时候最好能说明盘的品牌、型号、主控、和根据英文首字母排列:爱国者贵宾王1主控:安国6981爱国者智慧棒201主控:161爱国者智慧棒行业特供2主控:163爱国者情侣盘8212\8221主控:321爱国者357主控:10奥美加24系列主控:我想奥美加1系列主控:安国方正晶灵射手2主控:163华矽普天256雷鸟盘主控:6201汉鑫科技超速王1主控:8-汉鑫科技超速王1主控:5128金邦2稳定王20主控:163江民杀毒盘1主控:芯邦2090金河田主控:安国9380金河田128主控:5062-金士顿2主控:1-5845()金士顿11主控:32_0824金士顿1主控:2136(10)金士顿2主控:20金士顿1主控:6677超棒主控:10备注:假金顿一般都是采用安国的6980、芯邦的2080、我想的5128等联想闪存盘2102主控:8-联想810(带蓝牙20)512主控:芯邦2090联想扬天盘128主控:芯邦1180联想710主控:10联想720主控:321联想160主控:10联想510主控:10联想5101主控:8--256主控:5062-美的欧盘512主控:2080朗科2102主控:2019朗科2102主控:321朗科208主控:2033朗科优盘-主控:201912主控:群联10清华紫光368256主控:1180清华紫光-81主控:5128清华紫光220主控:2080清华紫光2-300主控:2019清华时代迷你王128主控5128清华普天(型号未知)主控:2080清华同方8081主控:2090迪欧128主控:1180彪王缤纷1盘主控:321彪王1(壳印网址,铝壳软帖)主控:2080彪王天蓝系列主控:2091台电主控:163天朗211的主控:2090天朗20主控:1180跳鼠王128盘主控:群联雨瞻盘主控11台电用的是163主控。

复位电路的作用

复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

图1 图2 2、上电复位 AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1μF。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。 2、积分型上电复位 常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。 图3中:C:=1uF,Rl=lk,R2=10k 图3 积分型上电复位电路 专用芯片复位电路:

51单片机常用芯片引脚图

常用芯片引脚图 一、 单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O 接口引脚、4条控制引脚、2条电源引 脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时 的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O 接口无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为 通用I/O 接口,第二功能作为为单片机的控 制信号。 ALE/ PROG :地址锁存允许/编程脉冲输入信号线(输出信号) PSEN :片外程序存储器开发信号引脚(输出信号) EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD :复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc :主电源引脚(+5V ) Vss :数字电路地引脚(0V ) Vpd :部RAM 备用电源引脚(+5V ) V REF :A/D 转换器基准电源引脚(+5V ) AGND :A/D 转换器参考地引脚 12345678910111213141516171819204039383736353433323130292827262524232221P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS V CC P0.0/AD 0P0.1/AD 1 P0.2/AD 2P0.3/AD 3P0.4/AD 4P0.5/AD 5P0.6/AD 6P0.7/AD 7 EA/V PP ALE/PROG PSEN P2.7/A 15P2.6/A 14P2.5/A 13 P2.4/A 12P2.3/A 11P2.2/A 10P2.1/A 9P2.0/A 8803180518751

单片机各种复位电路原理

单片机各种复位电路原理 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是 一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁 兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设 计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可 靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始 工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST 端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒, 所以,完全能够满足复位的时间要求。

图1 图2 2 、上电复位 AT89C51 的上电复位电路如图 2 所示,只要在RST 复位输入引脚上接一电容至Vcc 端,下接一个电阻到地即可。对于CMOS 型单片机,由于在RST 端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1μF。上电复位的工作过程是在加电时,复位电路通 过电容加给RST 端一个短暂的高电平信号,此高电平信号随着Vcc 对电容的充电过程而 逐渐回落,即RST 端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地 复位,RST 端的高电平信号必须维持足够长的时间。上电时,Vcc 的上升时间约为10ms ,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz ,起振时间为1ms ;晶振频率为1MHz ,起振时间则为10ms 。在图 2 的复位电路中,当Vcc 掉电时,必然会使RST 端电压迅速下降到0V 以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生 损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l态”。如果系统在上电时得不到有效的复位,则程序计数器PC 将得不到一个合适的初值,因此,CPU 可能会从一个未被定义的位置开始执行程序。 2 、积分型上电复位 常用的上电或开关复位电路如图 3 所示。上电后,由于电容C3 的充电和反相门的作用,使RST 持续一段时间的高电平。当单片机已在运行当中时,按下复位键K 后松开,也能使RST 为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。 图3 中:C:=1uF ,Rl=lk ,R2=10k

纯正弦波单相逆变电源主控芯片 U3988剖析

U3988是数字化的、功能完善的正弦波单相逆变电源 / UPS 主控 芯片,它不仅可以输出高精度的SPWM正弦波脉冲序列,还可以实现稳压、保护、市电/逆变自动切换、充电控制等功能,并且具备LED指示灯驱动、蜂鸣器控制、逆变桥控制引脚,从而可以利用该芯片组成一个完整的逆变电源/UPS系统,用该芯片控制的逆变桥输出,既可以是传统的工频变压器结构,也可以是高频升压后的直接逆变结构。为方便生产过程中的调试,该芯片还具备测试模式,在该模式下,所有的保护功能、市电切换、充电控制均不起作用,仅工作在可以稳压的逆变状态,为最基本的调试和测试提供了方便。 U3988 的内部构成主要有:正弦波发生器、双极性调制脉冲产生逻辑、50Hz(或 60Hz)时基、电压反馈/短路检测、正弦波峰值调压稳压单元、外部扩展的保护响应逻辑、市电过零脉冲过滤、市电电压测量、电池电压测量、逆变控制、充电控制、指示灯控制、蜂鸣器控制、抗干扰自恢复单元构成。整个电路封装成一个18引脚IC(DIP18),其内部结构框图如图一所示: 图二是U3988的引脚图。 VDD是芯片的电源引脚,接单一+5V;GND是地; OSC1、OSC2是时钟引脚,接20MHz晶振; OUTA、OUTB是正弦波SPWM脉冲序列的输出引脚,这两个引脚输出的信号一般要通过死

区控制电路才能送到逆变桥; OUTG是逆变桥使能控制输出,该引脚输出低电平时允许逆变桥工作,输出高电平时则禁止逆变桥工作; AV_CK是逆变输出电压反馈引脚,该引脚接受的是模拟量输入,逆变桥最终输出的正弦波交流电压通过反馈电路送到该引脚,由芯片对逆变输出电压实现稳压、调压和短路检测; BT_CK是电池电压测量引脚,是模拟量输入引脚,电池电压经过电阻降压送到该引脚,由芯片对电池实现欠压保护、充电检测,若不需要使用该引脚,可以直接接+5V; AC_CK是市电电压测量引脚,这也是模拟量输入引脚,市电电压经过降压、整流、滤波、电阻分压后,送到该引脚,芯片会根据该引脚电压的变化,判断市电是否异常,并决定是否进行市电/逆变切换;若不需要使用该引脚,也可以直接接+5V; ACPLUS引脚是市电检测输入,芯片由此引脚的高低电平判断市电的有无;有市电时要将该引脚拉成低电平,对于检测市电的电路,如果为了提高响应速度而不采用滤波电容,也是允许的,虽然在该引脚的低电平信号中含有过零脉冲,但并不会使U3988频繁地进入逆变状态,因为在芯片的内部有过零脉过滤逻辑; AC/DC引脚是市电/逆变控制输出,输出高电平时为市电,输出低电平时为逆变; CHARG引脚是充电控制输出,高电平有效; LED_L引脚是逆变/欠压指示输出,低电平时表示逆变状态,闪烁时表示欠压; LED_P引脚是保护指示输出,当检测到短路或者外部的扩展保护时,芯片停止逆变,进入保护状态,此时指示灯闪烁; PROT引脚是扩展保护输入引脚,高电平有效,用户可以通过外部的或门逻辑实现过流、过温等保护输入,该引脚在逆变和市电状态都可以响应外部的保护请求; BEEP/TEST是双向引脚,正常工作时是蜂鸣器控制输出引脚,通过三极管驱动电磁式蜂鸣器,当在芯片加电的瞬间,该引脚是输入引脚,用来检测外部TEST跳线的状态;关于该引脚的详

单片机复位电路理图解

单片机复位电路原理图解 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一

般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。 图1 图2 2、上电复位 AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电

容减至1µF。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc 掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。 2、积分型上电复位 常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。图3中:C:=1uF,Rl=lk,R2=10k

大部分U盘采用的主控芯片列表

大部分U盘采用的主控芯片列表 平时做U盘数据恢复,拆了很多U盘,见过各种各样主控,虽然不是绝对正确,但大部分还是可信的,省得大家拆机之苦。因假U盘太多,而且因为各U盘厂家生产备料状况的不同,在其同型号的产品不同批次生产是所采用的部件可能会有所不同,特别是ISO9000认证的厂家,ISO9000要求外部采购件至少必须具备主备选两家供应商以规避风险,所以这些仅供参考。具体的还要用CHIP GENIUS检测一下比较精确。 aigo爱国者贵宾王 1G主控:安国AU6981 aigo爱国者pqi智慧棒2.0 1G主控:UT161 aigo爱国者智慧棒行业特供 2G 主控:UT163 aigo爱国者情侣U盘L8212\L8221 主控:SM321BB aigo爱国者E357 主控:UP10 aigo爱国者经典型L8206 主控:SM321BB aigo爱国者迷你王(蝙蝠型)64M 主控:东芝J13441 奥美加OMJ/AFS/TFS/TFF/T2/A4系列主控:我想iGreate 奥美加KFC/KFM/T1/KTA系列主控:安国ALCOR Founder方正晶灵射手CS 2G 主控:UT163 华矽普天256M雷鸟U盘主控:SK6201 汉鑫科技超速王 1G 主控:UP8-R 汉鑫科技超速王 1G 主控:i5128 金邦2G 稳定王2.0 主控:UT163 江民杀毒u盘1G 主控:芯邦CBM2090

金河田KDT 主控:安国AU9380 金河田 128M 主控:i5062-ZD 金士顿Kingsoft DataTraveler Smart 2G主控:S1-58A45L(BGA) 金士顿Kingsoft DataTraveler DT1 1G 主控:SM32x_E0824 金士顿KINGSTON DataTraveler Mini 1G 主控:PS2136(UP10) 金士顿Kingston DataTraveler 2GB 主控:U20TWGOJ 金士顿Kingsoft DataTraveler 1G 主控:SSS 6677 金士顿Kingsoft DataTraveler DT1 1G 主控:SM32x_E0824 金士顿Kingsoft 逸盘2G 主控:超科威MW6208 假金士顿一般都是采用安国的AU6980、芯邦的CBM2080、我想的i5128等KingMAX超棒主控:UP10 金邦2G 稳定王2.0 主控UT163 金邦稳定王联群ps2153 宇瞻U盘主控PH11 联想闪存盘B210i2G主控:phison UP8-Y 联想YT810(带蓝牙2.0)512M主控:芯邦CBM2090 联想扬天Safe Key U盘128M主控:芯邦CBM1180 联想B710 主控:UP10 联想B720 主控:SM321 联想T160 主控:UP10 联想C510 主控:UP10 联想C510 1G 主控:phison UP8-Y 联想T108 主控:SM321

RC复位电路的原理

RC复位电路的原理 下面图片里的电路,请问哪一个为高电平有效,为什么? 高电平复位低电平复位 最佳答案 看高电平有效还是低电平有效很简单啦。你看按键按下去之后RST是高还是低。左图按下去是高就是高有效,右边按下去是低就是低有效。 顺带说下原理(左图为例): 先不管按键,看上电复位的情况:通电瞬间电容可以当短路(别问我为什么)所以RST脚为高电平。随着时间的飞逝(电容充电),稳定后VCC的电压实际上是加在电容上的。电容下极板也就是RST脚最终为0V。这样RST持续一段时间高电平后最终稳定在低电平,高电平持续时间由RC时间常数决定。这就是上电高电平复位 在说按键。按键按下去就相当于上电那一瞬,让电容短路。后面的事都一样了。再顺便说下,大电容旁边那个小电容一般是稳定电源电压滤波用的 回答时间:2008-9-26 10:34

为什么不使用RC复位电路? 在网上看到有人说RC复位电路不稳定,一直没想到是怎么回事,今天翻自己电脑里以前下载的电路图时,看到一个RC电路,突然想到。RC复位电路的工作原理是,上电前电容里的电荷放光,上电瞬间,电源通过电阻向电容充电,在充电过程中,RESET的电压慢慢上升,对外部电路进行复位,当RESET上升到复位高电平时,外部系统开始工作。这里存在两个问题,一个是必须合理选择电阻和电容的值,否则复位时间过长或过短都不能满足要求,第二个问题是当系统正常复位后在工作状态下,电源突然有一个较短时间的大幅度抖动,例如在保持了1ms的低电平,此时外部系统已经紊乱了,但可能电容里的电荷还没有放干尽,故这时RESET输出仍然是高电平,没能对外部系统进行复位,这种情况比较容易发生在电源合闸瞬间(机械接触存在抖动)。我想到的就这两个原因,希望看到的大侠能补充和斧正。 低电平复位

常用芯片引脚图[1]

您的数字ID 是:463099 您的密码是:1.8667 附录三 常用芯片引脚图 一、单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O 接口引脚、4条控制引脚、2条电源引脚、2条时钟引脚。引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时的地址/数据复用口。P1.0~P1.7:P1口8位口线,通用I/O 接口无第二功能。P2.0~P2.7:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为通用I/O 接口,第二功能作为为单片机的控制信号。 ALE/PROG :地址锁存允许/编程脉冲输入信号线(输出信号) PSEN :片外程序存储器开发信号引脚(输出信号) EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD :复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc :主电源引脚(+5V ) Vss :数字电路地引脚(0V ) Vpd :内部RAM 备用电源引脚(+5V ) V REF :A/D 转换器基准电源引脚(+5V ) AGND :A/D 转换器参考地引脚 XTAL1、XTAL2:内部振荡器反相器输 P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS

MP4主流主控芯片介绍

MP4主流主控芯片介绍 下面对mp4的芯片进行介绍 我们都知道,一台电脑总会有一个中央处理器,就是那个叫CPU的帅哥。实际上,电脑上不止有一个处理器,但只有Intel和AMD还有VIA等厂商生产的那种负责主要运算的处理器才称之为“中央处理器”,NVIDIA生产的G200就只是一个图形处理器,简称为GPU,而创新的EMU10KII因为功能更加专一,所以叫它音效处理芯片。对于MP4,它也需要一个处理器来识别按键的响应、从闪存中读取数据并解码成图像并输出给液晶屏,这兄弟大包大揽,所以我们就叫它“主控芯片”。 主控芯片的不同构架和频率决定了解码能力和功能,并且在功耗方面也会有一定差异。主控芯片一般采用SOC 设计,片内集成一个或者多个ARM处理器以及一个DSP,甚至有些产品采用双CPU核心+硬件3D加速GPU。不同公司的主控在电气性能方面当然也有很大差别,画质和音质的好坏,对电路板布线要求的高低,存储芯片支持的种类、OTG、附加功能等方面都有差别,更重要的是售价也不同。基本上,主控决定了MP4播放能力和音质画质的“上限”,下限则是由固件也就是UI的功能决定。让我们来看看目前主流的几种主控吧。 一、德州仪器TI的“达芬奇”方案 德州仪器是老牌的芯片设计厂商,产品用途广泛,比如1394视频采集卡上常用TSB43AB23就是TI的杰作。TI的MP4主控称之为“达芬奇”方案,芯片编号TMS320DM644X。这是一颗双核单芯片设计的产品,以TMS320DM6445为例,集成了主频600MHz的TMS320C64+DSP和一颗主频为300MHz的ARM926处理器,所以它的视频解码能力还是不错的。“达芬奇”支持回放720P的H.264、MPEG2&4、Divx5等编码视频,并且具有较低的功耗,唯一的“缺点”,就是有点贵,这感觉就像你只买得起奔腾120时,却偏有人推荐个多能奔腾MMX166给你。蓝魔T11就是一款采用TI的“达芬奇”方案的高清MP4,而T11 RK则换为Rockwell RK2806。 这是达芬奇TMS320DM644 二、福建瑞芯微RK280X 穷人开不起奔驰?没关系,芯片制造业我们国家是很强悍的,“奔奔”还是有的,足够上班代步。不过福建瑞芯微并不简单,它的高清MP4主控RK2806具有非常好的性能,同样是双核单芯片SoC设计,集成了一个频率600MHz 的ARM926EJS和一个频率约为450MHz的芯原微电子ZSP800 DSP。RK2806还是一颗采用65nm制程生产的主控芯片,功耗控制不错。解码能力方面同样支持720P的H.264,最大码率约20M。而RK2808更为彪悍,DSP的频率提升为550MHz,现在很多采用Android系统的MID都是用这款主控。本次横评中,蓝魔T11 RK和OPPO S39就是采用这款芯片。

相关主题