搜档网
当前位置:搜档网 › Arbuscular mycorrhizal fungi and nitrogen uptake

Arbuscular mycorrhizal fungi and nitrogen uptake

Arbuscular mycorrhizal fungi and nitrogen uptake
Arbuscular mycorrhizal fungi and nitrogen uptake

Arch Microbiol (2011) 193:77–81

DOI 10.1007/s00203-010-0657-6

MINI-REVIEW

Arbuscular mycorrhizal fungi and nitrogen uptake

Mohammad Miransari

Received: 3 August 2010 / Revised: 19 November 2010 / Accepted: 22 November 2010 / Published online: 7 December 2010? Springer-Verlag 2010

Abstract Nitrogen (N) is among the most important macro-nutrients signi W cantly a V ecting plant growth and yield production. Accordingly, N must be supplied ade-quately so that optimum amounts of yield are resulted. There are di V erent ways of supplying N to the plant includ-ing the use of chemical and biological fertilization. The chemical properties of N make it very mobile, especially under humid conditions. Hence, N must not be overfertil-ized with respect to the economical and environmental points of view. N Biological fertilization includes the use of plant growth-promoting rhizobacteria (PGPR) including the N-W xing bacteria, rhizobium. There are also arbuscular mycorrhizal (AM) fungi in the soil, which are symbiotic to most terrestrial plants enhancing plant growth and yield production through increasing the uptake of water and nutrients by the host plant. Numerous experiments have indicated the important role of AM fungi in enhancing P uptake by plant. However, it is yet a matter of debate that how AM fungi may a V ect soil N dynamic and hence plant N uptake. Some of the most important and recent aspects regarding such e V ects by AM fungi are highlighted, which can be of signi W cance to health and productivity of the ecosystem.

Keywords AM fungi · Soil N dynamic · Plant N uptake · Tripartite symbiosis · Chemical and biological fertilization Introduction

Plant require a range of at least 16 macro- and micro-nutri-ents for their growth and yield production (Marschner 1995). Among such nutrients nitrogen (N) is of particular signi W cance because it is necessary for many di V erent plant functioning as it is incorporated in the structure of some important macro- and micro-organic compounds in the plant such as chlorophyll and proteins and amino acids (Marschner 1995). N is a mobile element in the soil and hence under humid conditions is subjected to leaching indi-cating the importance of appropriate N fertilization under such conditions. On the other hand, under arid and semi arid conditions, water de W ciency may limit the use of inor-ganic N by plant.

There are di V erent ways of supplying N to the plant including the use of chemical and biological fertilization. In the case of chemical fertilization, proper amounts of N must be supplied with respect to the economical and envi-ronmental aspects regarding N compounds (Miransari and Mackenzie 2010a, b, c). Biological fertilization can be per-formed by using soil microbes such as plant growth promoting rhizobacteria (PGPR) including the N-W xing bacteria, rhizobium (Arzanesh et al. 2010; Zabihi et al. 2010; Miransari 2010a, b, c, d).

In addition, Arbuscular mycorrhizal (AM) fungi can also be used a source of biological fertilization. AM fungi are soil fungi, developing symbiotic association with most ter-restrial plants. In this symbiosis, the fungi provide the host plant with water and nutrients in the exchange for carbon (Smith and Read 2008). The symbiosis between the fungi and host plant is not speci W c; however, some fungi-host plant associations may be more e Y cient under speci W c cir-cumstances (Daei et al. 2009). AM fungi are able to allevi-ate the e V ects of di V erent stresses on plant growth and yield

Communicated by Erko Stackebrandt.

M. Miransari (&)

Department of Soil Science, College of Agricultural Sciences, Shahed University, Tehran Qom Highway,

18151-159, Tehran, Iran

e-mail: Miransari1@https://www.sodocs.net/doc/5b4727577.html,; Miransari@shahed.ac.ir

production by signi W cantly increasing the uptake of water and nutrients including N by the host plant (Miransari et al. 2007, 2008, 2009a, b; Daei et al. 2009).

Di V erent research work has indicated that AM fungi can substantially enhance the uptake of di V erent nutrients, especially phosphorous (P) by the host plant through an extensive network of hypha and some other mechanisms including the production of enzymes such as phosphatases. However, it has also been indicated that AM fungi can also in X uence the uptake of other nutrients necessary for plant growth and yield production including N. McFarland et al. (2010) indicated that more than 50% of plant N require-ment was supplied by mycorrhizal association. As N is among the most important macro-nutrients signi W cantly a V ecting plant growth and yield production, it can be perti-nent to determine the contribution of AM fungi to N uptake by the host plant.

Using labeled N, it has been indicated that the hypha of AM fungi is able to utilize inorganic N e Y ciently (Ames et al. 1983; Frey and Schüepp 1992; Johansen et al. 1993, 1994; Subramanian and Charest 1999) and transfer it into the soil in a 10–30cm distance. This indicates that AM fungi enable the host plant to have access to the N inorganic sources, which are not accessible by non-mycorrhizal plants (Tobar et al. 1994a, b). According to Johansen et al. (1993), the external hypha of Glomus intraradices was able to absorb NO3 and NH4 and provide them to the host plant.

The mobility of inorganic P is much lower than inor-ganic N including NO3, indicating that the role of AM fungi in absorbing N may be of less signi W cance than P. In other words, plant roots are able to absorb their necessary inor-ganic N by di V usion and mass X ow. In addition, plants forming mycorrhizal symbiosis grow in environments with high rates of nitri W cation. These may all indicate that mycorrhizal symbiosis may not be considered important for the uptake of mineral N by the host plant.

However, there may be situations where plant growth is limited due to reasons such as N limitation. Hence, the growth of fungal hypha in organic patches may be an e V ec-tive way of supplying N for both the fungi and the host plant (Hodge et al. 2001a, b; Hodge and Fitter 2010). For example, in arid and semi arid climates, the mobility of NO3 in soil is signi W cantly reduced, and hence, AM fungi may behave more e V ectively under such conditions to absorb inorganic N (Tilman 1987; Hodge et al. 1999; Subramanian and Charest 1999; Hodge and Fitter 2010). Tobar et al. (1994a, b) indicated that under water stressed conditions AM fungi signi W cantly increased N uptake by the host plant in comparison with well water conditions.

Interestingly, recently a plant ammonium transporter, which is activated in the presence of AM fungi, has been identi W ed indicating that the way by which N is transferred in plant may be similar to P transfer (Guether et al. 2009).This may indicate that similar to P transporters, AM fungi may also be able to activate N transporters in plant suggest-ing the signi W cance of the uptake of both nutrients by mycorrhizal plants.

The enhanced activities of nitrate reductase, glutamine synthetase, and glutamine synthase in the roots and shoots of mycorrhizal corn (Zea mays L.) indicate that the absorbed NO3 by AM hypha can be directly transferred to the root cells for further utilization and incorporation into the organic structures. Such enzymatic alterations can also enhance plant resistance to drought stress (Cliquet and Stewart 1993; Subramanian and Charest 1999). This indi-cates that in addition to the direct e V ects of AM fungi on the alleviation of stresses such as drought (Auge 2001), their indirect e V ect such as absorbing inorganic N can also contribute to the alleviation of stress. AM fungi are able to alter plant physiological and morphological properties in a way by which plant can handle the stress (Miransari et al. 2008).

Although there are indications regarding the contribu-tions of AM fungi to N uptake by plant, much more details must be elucidated related to such functionality by AM fungi (Atul-Nayyar et al. 2009). Di V erent research work has indicated that AM fungi can absorb N and transfer it to the host plant roots (Tanaka and Yano 2005; Jackson et al. 2008); however, the higher rate of N uptake by mass X ow may indicate that AM fungi may not be that important in the uptake of N by the host plant (Liu et al. 2007; Atul-Nayyar et al. 2009).

AM fungi can utilize the inorganic N released from organic sources (St. John et al. 1983; Hamel 2004) as well as amino acids (Hawkins et al. 2000). The presence of AM fungi on some plant tissues during the mineralization pro-cess indicated that AM fungi are able to enter the tissues through the vascular bundle and utilize the inorganic N released by soil microbes (Aristizábal et al. 2004). The abil-ity of AM fungi to use soil organic matter as a source of inorganic N has yet to be elucidated (Jin et al. 2005; Talbot et al. 2008), however, even if AM fungi is not e V ective in such a process, their in X uence on the activity of soil miner-alizing microbes may indirectly indicate their role in soil N dynamic and uptake by plant (Andrade et al. 1997; Marschner et al. 2001; Hodge 2003a, b; Aneja et al. 2006). Hodge et al. (2001a) indicated that the AM fungi, G.hoi, can enhance the mineralization process of soil organic matter while earning mineral N.

Atul-Nayyar et al. (2009) found that the C/N ratio of soil organic matter decreased from 17.8 to 13, resulting in higher amounts of mineralized N in the presence of AM fungi. This demonstrates that AM fungi may enhance the mineralization process (by 228%) of organic matter and hence absorbed N uptake by plant. They accordingly indi-cated that AM fungi may contribute to the enhanced plant

growth by increasing the mineralization process of soil organic N and subsequent N uptake by plant.

The rate of N mineralization by AM fungi may be a function of plant demand for mineral N as the high rates of N in soil can decrease the growth and development of AM hypha into organic patches (Liu et al. 2000), which has been attributed to plant N uptake (Hodge et al. 2001a; Hodge 2003b). Factors a V ecting the process of N minerali-zation in the presence of AM include (1) the extension of AM hypha, (2) the production of hydrolytic enzymes such as pectinase, xyloglucanase and cellulose, which are able to decompose soil organic matter, and (3) the AM fungal e V ects on the activities of other soil microbes. The e V ects of AM fungi on soil microbes can be through di V erent mechanisms including enhanced plant growth, induced plant resistance, and altered root exudates and hence sig-naling pathways (Lioussanne et al. 2008; Toljander et al. 2007). In addition, AM hypha is an important source of organic C for soil microbes (Schimel and Weintraub 2003).

N uptake by AM fungi is of signi W cance from the fol-lowing aspects: (1) the e V ects of AM fungi on the process of N cycling, (2) whether AM fungi can reduce the rate of NO3 leaching, which is an important concern under humid conditions (Miransari and Mackenzie 2010a, b, c), (3) AM fungi can be considered as a source of N for plant under conditions with limitations, for example under arid and semi arid conditions where nutrient uptake by plant is lim-ited, and (4) the proper use of chemical fertilization with respect to the use of biological fertilization.

N uptake in mycorrhizal plants

Ames et al. (1983) found that the mycorrhizal fungi Glo-mus mosseae increased N uptake by mycorrhizal celery. In their experiments Tobar et al. (1994a) and Azcón et al. (2001, 2008) tested the e V ects of mycorrhization and P fer-tilization on the growth of lettuce plants as well as on N assimilation and proline content under drought stress (?0.17MPa). They also tested the e V ects of AM fungi on the percentage of N uptake from N fertilization under di V erent levels of soil N. Compared with P fertilization, AM fungi enhanced plant N concentration, the activity of nitrate reductase and proline content in plant. At the medium level of N fertilization (6mmol N), AM fungi resulted in the higher N uptake from fertilization, relative to the lowest (3mmol N) and highest (9mmol N) N levels, which reduced N uptake from N fertilization. These results indicate that mycorrhizal plants can regulate plant N uptake with respect to the amounts of N in the soil. Accordingly, AM fungi can a V ect plant N uptake from soil and N fertil-ization, however, high amounts of N fertilization can signi W cantly decrease N uptake by mycorrhizal plants a V ecting the fertilization strategy.

The tripartite symbiosis between the host plant, AM fungi, and N-W xing bacteria rhizobium can a V ect the uptake of N by the host plant. In such a symbiosis, N and P are sup-plied by the micro-symbionts to the host plant. Accordingly, the association between each micro- symbiont is a V ected by the interaction e V ects between the host plant and the micro-symbionts as well as by the interactions e V ects between the micro-symbionts. Wang et al. (2010) examined the e V ects of di V erent parameters such as plant genotype and N and P levels on the tripartite symbiosis between soybean (Glycine max L.), AM fungi and Bradyrhizobium japonicum. They tested the idea that how the nutrient e Y ciency of soybean plans can be increased. The soybean genotypes di V ered in their root architecture including shallow and deep rooting genotypes. Co-inoculation of soybean plants with Brady-rhizobium japonicum and AM fungi may enhance the sym-biotic ability of the two microbes (Xie et al. 1995). In addition to the e V ects of plant genotype, there may also be some interactions e V ects between N and P in the W eld a V ect-ing root morphological properties as well as the process of mycorrhization and nodulation (Kuang et al. 2005; Miransari et al. 2007, 2008, 2009a, b).

Root architecture a V ected mycorrhizal symbiosis and deep rooting plants had a higher rate of symbiosis with AM fungi at low P levels, compared with shallow rooting plants; however, higher nodulation was resulted at high P levels. This may indicate that N and P levels may a V ect the tripartite symbiosis between the host plant and the micro-symbiont. Co-inoculation with the two micro-symbionts resulted in higher plant growth and nodulation at low N and P levels and elevating fertilization levels adversely a V ected the contribution of the two micro-symbionts to the growth of soybean plants (Wang et al. 2010). Such results can be used for proper N and P fertilization in the W eld with respect to the use of biological fertilization including AM fungi and rhizobium bacteria (Miransari 2010a, b, c, d).

Hodge et al. (2001a) indicated that the AM fungi G.hoi enhanced the degradation of organic residues and N uptake by the host plant. In the presence of organic matter, the growth of fungal hyphal increased whether the host plant was present or not. Hawkins et al. (2000) also tested the e V ects of G.mosseae on N absorption from organic and inorganic sources. Mycorrhizal wheat absorbed organic N in the form of N-glycine by 0.2 and 6% at low and high level of N-fertilization, respectively. The higher organic N uptake at the su Y cient N level fertilization was attributed to the more developed hyphal network. The fungi were also able to absorb inorganic N in the form of NO3 and NH4. The Ri-T-DNA transformed of mycorrhizal carrot roots was also able to absorb organic N from N-glycine and N-glutamine sources. However, the rate of N absorption in

the form of organic and inorganic was not high enough to in X uence plant N uptake signi W cantly.

Tian et al. (2010) also indicated that AM fungi is able to absorb both organic and inorganic N. Arginine is synthe-sized in the extra radical hypha and transferred to the intraradical hypha where it releases N to be absorbed by the host plant. Accordingly, 11 fungal genes related to the N absorption pathway were identi W ed and six of them were sequenced. Such a W nding indicated the role of fungal genes in N uptake and the subsequent extra- and intra-radical hypha gene expression as well as plant gene expression.

Hodge and Fitter (2010) tested and proved the hypothe-sis that organic matter is an important source of N for the fungi themselves. Hence, they grew the host plant both under light and shade so that less amounts of C were trans-ferred to the fungi. Under both conditions, the fungi absorbed substantial amounts of its necessary N from the organic patch in addition to the amounts of N, which was transferred to the host plant. Both G.hoi and G.mosseae indicated such abilities. Hence, AM fungi are an important component of ecosystem in N cycling.

Conclusion

Some of the most recent advancements regarding the e V ects of AM fungi on the process of N uptake by the fungi them-selves or by the host plant were reviewed. There are some interesting W ndings accordingly, which can indicate the sig-ni W cance of N uptake by AM fungi. N cycling, plant growth and ecosystem functioning can be a V ected by the in X uence of AM fungi on N dynamic in soil and plant N uptake. This indicates that there is a need for further research regarding the e V ects of AM fungi on the process of N uptake. References

Ames RN, Reid CPP, Porter KL, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396

Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of di V erent arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

Aneja M, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch J, Schloter M (2006) Microbial colonization of beech and spruce litter—in X uence of decomposition site and plant litter spe-cies on the diversity of microbial community. Microb Ecol 52:127–135

Aristizábal C, Rivera EL, Janos DP (2004) Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M.pu-bescens and Paepalanthus sp. Mycorrhiza 14:221–228 Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2010) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum spp. under drought stress. World J Microbiol Biotechnol (in press)Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand.

Mycorrhiza 19:239–246

Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

Azcón R, Ruiz-Lozano JM, Rodríguez R (2001) Di V erential contribu-tion of arbuscular mycorrhizal fungi to plant nitrate uptake (15N) under increasing N supply to the soil. Can J Bot 79:1175–1180 Azcón R, Rodríguez R, Amora-Lazcano E, Ambrosano E (2008) Uptake and metabolism of nitrate in mycorrhizal plants as a V ected by water availability and N concentration in soil. Eur J Soil Sci 59:131–138

Cliquet JB, Stewart GR (1993) Ammonia assimilation in maize infect-ed with the VAM fungus Glomus fasciculatum. Plant Physiol 101:65–871

Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Allevi-ation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under W eld conditions. J Plant Physiol 166:617–625

Frey B, Schüepp H (1992) Transfer of symbiotically W xed nitrogen from berseem (Trifolium alexandrium L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New Phytol 122:447–454 Guether M et al (2009) A mycorrhizal-speci W c ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395

Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi.

Plant Soil 226:275–285

Hodge A (2003a) N capture by Plantago lanceolata and Brassica napus from organis material: the in X uence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. J Exp Bot 57:401–411

Hodge A (2003b) Plant nitrogen capture from organic matter as a V ect-ed by spatial dispersion, interspeci W c competition and mycorrhi-zal colonization. New Phytol 157:303–314

Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbus-cular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA 107:13754–13759 Hodge A, Robinson D, Gri Y ths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820

Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organicmaterial. Nature 413

Hodge A, Campbell CD, Fitter AH (2001b) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

Jackson LE, Burger M, Cavagnaro TR (2008) Nitrogen transforma-tions and ecosystem services. Annu Rev Plant Biol 59:341–363 Jin H, Pfe V er PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

Johansen A, Jakobsen I, Jensen ES (1993) Hyphal transport by a vesic-ular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fertil Soils 16:66–70

Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucum-ber grown at three nitrogen levels. Plant Soil 160:1–9

Kuang R, Liao H, Yan X, Dong Y (2005) Phosphorus and nitrogen interactions in W eld-grown soybean as related to genetic attributes of root morphological and nodular traits. J Integr Plant Biol 47:549–559

Lioussanne L, Beauregard MS, Hamel C, Jolicoeur M, St-Arnaud M (2008) Interactions between arbuscular mycorrhiza and soil microorganisms. In: Khasa D, Piché Y, Coughlan A (eds) Advances in mycorrhizal science and technology. NRC, Ottawa Liu A, Hamel C, Hamilton R, Smith D (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as in X uenced by soil N and P levels. Plant Soil 221:157–166

Liu A, Plenchette C, Hamel C (2007) Soil nutrient and water providers: how arbuscular mycorrhizal mycelia support plant performance in

a resource-limited world. In: Hamel C, Plenchette C (eds) Mycor-

rhizae in crop production. Haworth, Binghamton, pp38–66 Marschner H (1995) Mineral nutrition of higher plants, 2nd edn.

Academic Press, London

Marschner P, Crowley D, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16 S rDNA community composi-tion in the rhizosphere of maize. Mycorrhiza 11:297–302 McFarland JW, Ruess RW, Kielland K, Pregitzer K, Hendrick R, Allen M (2010) Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4. Ecosystems 13:177–193

Miransari M (2010a) Contribution of arbuscular mycorrhizal symbiosis to plant growth under di V erent types of soil stresses. Review article. Plant Biol 12:563–569

Miransari M (2010b) Arbuscular Mycorrhiza and soil microbes. In: Thangadurai D, Busso CA, Hijri M (eds) Mycorrhizal biotechnol-ogy. Science, CRC and Taylor and Francis Publishers, USA, 226 p Miransari M (2010c) Biological fertilization. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Microbiology book series—2010 edition, Spain

Miransari M (2010d) Mycorrhizal fungi and ecosystem e Y ciency, In: Fulton SM (ed) Mycorrhizal fungi: soil, agriculture and environ-mental implications. Published by Nova Publishers, USA. ISBN: 978-1-61122-659-1

Miransari M, Mackenzie AF (2010a) Wheat (Triticum aestivum L.) grain N uptake as a V ected by soil total and mineral N, for the determination of optimum N fertilizer rates for wheat production.

Commun Soil Sci Plant Anal 41:1644–1653

Miransari M, Mackenzie AF (2010b) Development of a soil N-test for fertilizer requirements for corn (Zea mays L.) production in Quebec. Commun Soil Sci Plant Anal (in press)

Miransari M, Mackenzie AF (2010c) Development of a soil N test for fertilizer requirements for wheat. J Plant Nutr (in press) Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful e V ects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful e V ects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009a) E V ects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Till Res 103:282–290Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009b) E V ects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Till Res 104:48–55

Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a the-oretical model. Soil Biol Biochem 35:549–563

Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

St. John TV, Coleman DC, Reid CPP (1983) Association of vesicular–arbuscular mycorrhizal hyphae with soil organic particles. Ecol-ogy 64:957–959

Subramanian K, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiolog-ical responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75

Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963

Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

Tian C, Kasiborski B, Koul R, Lammers PJ, Bucking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen X ux. Plant Physiol 153:1175–1187

Tilman D (1987) Secondary succession and the pattern of plant domi-nance along experimental nitrogen gradients. Ecol Monogr 57:189–214

Tobar RM, Azcon R, Barea JM (1994a) The improvement of plant N acquisition from an ammonium-treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza 4:105–108

Tobar RM, Azcon R, Barea JM (1994b) improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscu-lar mycorrhiza under water-stressed conditions. New Phytol 126:119–122

Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) In X uence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

Wang X, Pan Q, Chen F, Yan X, Liao H (2010) E V ects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P.

Mycorrhiza (in press)

Xie Z, Staehelin C, Vierheili H, Wiemken A, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T, Xie ZP (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of undulating and non-nodulating soybeans. Plant Physiol 108:1519–1525

Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2010) Pseudomonas bacteria and phosphorous fertilization, a V ecting wheat (Triticum aestivum L.) yield and P uptake under green-house and W eld conditions. Acta Physiol Plant (in press)

课程设计说明书--箱体机械加工工艺及夹具设计

( 二 〇 一 六 年 七 月 机械制造技术 课程设计说明书 设计课题: 箱体机械加工工艺及夹具设计 学 生: 韩孝彬 学 号: 2134022503 专 业: 农业机械化及其自动化 班 级: 2013级 指导教师: 赵德金

目录 课程设计任务书 (3) 设计条件: (3) 设计要求: (3) 摘要 (4) 设计说明 (5) 一、零件的分析 (8) 1、零件的特点分析 (8) 2、零件的作用 (8) 二、零件的工艺分析 (9) 三、确定毛胚、绘制毛胚简图 (11) 1、选着毛坯 (11) 2、确定毛坯的尺寸公差和机械加工余量 (11) 3、绘制零件的毛坯简图 (12) 四、拟定箱体的工艺路线 (13) 1、定位基准的选择 (13) 2、零件表面方法的确定 (13) 3、加工阶段的安排 (15) 4、工序的集中与分散 (15) 5、工顺序的安排 (16) 6、确定工艺路线 (16) 五、加工余量、工序尺寸和公差的确定 (18) 1、工序3与工序4----加工底脚面与凸端面的加工余量、工序尺寸和公差的 确定 (18) 2、工序5---粗铣和半精铣上端面加工余量、工序尺寸和公差的确定 (18) 3、工序6,7的---粗铣和半精铣前后端面加工余量、工序尺寸和公差的确定 (19) 4、工序8、9、10、11----粗镗-半精镗-精镗各圆的加工余量、工序尺寸和公 差的确定 (19) 5、工序12、13、15、16----钻各孔的加工余量、工序尺寸和公差的确定 . 20 六、切削用量、时间定额的精算 (21) 1、切削用量的确定 (21) 2、时间定额的预算 (23) 七、夹具总体方案设计 (26) 1、工件装夹方案的确定 (26) 2、其它元件的选择 (26) 3、镗床夹具总图的绘制 (31) 八、总结与体会 (32) 九、致谢 (33) 十、参考文献 (34) 附录:夹具的三维实体图 (36)

蛋白纯化离子交换层析

蛋白纯化离子交换层析 离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静电荷为0,当溶液pH值大于蛋白质等电点时,羧基电离,蛋白质带负电荷,蛋白质能够被阴离子交换剂所吸附,相反,当溶液的pH值小于蛋白质等电点时,则氨基电离,蛋白质带正电荷,被阳离子交换剂所吸附,溶液的pH值距蛋白质等电点越远,蛋白质带电荷越多,与交换剂的结合程度也越强,反之则越弱。 当溶液的pH值发生改变时,蛋白质与交换剂的吸附作用也发生变化,因此可以通过改变洗脱液的pH值来改变蛋白对交换剂的吸附能力,从而把不同的蛋白质逐个分离,当pH值增高时,抑制蛋白质阳离子化,随之对阳离子交换剂的吸附力减弱,当pH值降低时,抑制蛋白质阴离子化,随之降低蛋白质对阴离子交换剂的吸附。 另外,无机盐离子(如NaCl)对交换剂也具有交换吸附的能力,当洗脱液中的离子强度增加时,无机盐离子和蛋白质竞争吸附交换剂。当Cl-的浓度大时,蛋白质不容易被吸附,吸附后也易于被洗脱,当Cl-浓度小时,蛋白质易被吸附,吸附后也不容易被洗脱。 因此,洗脱阴离子交换剂结合的蛋白时,则降低pH值,增加盐离子浓度;洗脱阳离子交换剂结合蛋白时,则升高溶液pH值,增加盐离子浓度,能够洗脱交换剂上的结合蛋白。

机械加工工艺设计说明书

北华航天工业学院 机械制造技术基础课程设计说明书 题目:拨叉零件的机械加工工艺设计及专用夹具设计 学生姓名: ******* 学号:************ 班级: ****** 系别: *********** 专业:机械设计制造及其自动化 指导教师: *************8 成绩:

目录 (一)机械加工工艺设计 1.拨叉零件的工艺分析及生产类型的确定 (1) 1.1拨叉零件的作用 (1) 1.2 拨叉零件的技术要求 (1) 1.3 拨叉零件的生产类型 (1) 2 确定毛坯,绘制毛坯简图 (1) 2.1确定毛坯生产类型 (1) 2.2继续加工余量,工序尺寸及毛坯尺寸的确定 (1) 2.3绘制拨叉铸造毛坯见图 (2) 3、拟定拨叉工艺路线 (2) 3.1定位基准的选择 (2) 3.1.1粗基准的选择 (2) 3.1.2精基准的选择 (2) 3.2 、表面加工方法的确定 (3) 3.3、加工阶段的划分 (3) 3.4、工序的集中与分散 (3) 3.5、工序顺序的安排 (3) 3.6 、工艺路线确定 (4) 4、机床设备及工艺装备的选用 (4) 4.1 、机床设备选用 (4) 4.2 工艺装备的选用 (4) 5、机械加工余量,工序尺寸及公差的确定 (4) 6、切削用量、时间定额的计算 (6) 6.1.工序三:粗-精铣左端面 (6) 6.1.1粗铣左端面至81mm (6) 6.1.2 精铣左端面至80mm,表面粗糙度Ra=3.2um (7) 6.2工序四:钻-扩φ22H12孔 (8) 6.2.1钻φ20孔 (8) 6.2.2扩孔Φ22H12 (10) 6.3工序五:拉内花键孔 (11) 6.4工序六:粗-精铣底槽内侧面和底面 (11) 6.4.1粗铣底槽 (11) 6.4.2精铣底槽 (12)

蛋白纯化层析柱

蛋白纯化层析 从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是凝胶过滤层析技术(gel filtration,GF),离子交换层析技术(ion exchange,IEX),羟基磷灰石层析(hydroxyapatite,HAP)和疏水作用层析(hydrophobic interaction,HI),以及亲和层析和高效液相色谱方法(high-performance liquid chromatography,HPLC)。 对于一个初接触蛋白纯化的新手而言,从哪儿下手也许是令人头疼的一件事,但是幸运的是目前这些流程都已经逐步系统化了。GE Healthcare(原Amersham Biosciences)的技术顾问Andrew Mitchell 解释道,通常利用液相色谱技术进行蛋白纯化有三步: 捕获——从细胞其它成份,比如DNA和RNA中分离需要的蛋白; 区分——从与目的蛋白具有相近的大小,或者相似的物理/化学特征的污染物中分离蛋白; 修饰——使分离得到的样品处于可使用状态。 这每一个纯化的步骤都有特定的色谱层析技术和最佳的beads大小。第一步捕获步骤,也就是从细胞裂解物粗成份中分离蛋白,这需要一个具有高容量和高流量(flow rate)的填料。bead大小比较大,范围比较宽(比较于bead大小平均值)的“fast flow”填料比较理想,

这种填料也有利于防止目标蛋白被水解——因为速度比较快。 第二步则对分辨率要求更高,需要更好的从混合物中分离需要的成份。通常bead的大小与分辨率成反比,因此在这一部中比较小的bead 比较合适。吸附性的技术,比如离子交换IEX和疏水作用HI通常被用在纯化的这前两个步骤,而凝胶过滤则会留到了最后的修饰那一步,用于小体积,高浓度的样品。另外要注意,进行凝胶过滤层析时,样品的体积应该保持在柱床体积的1%到4%。 选择柱料的时候有两个因素要考虑到,针对目的蛋白的选择性和有效性——这些可以由洗脱峰的宽度来说明。其中选择性主要是指填料与目的蛋白相互作用以及结合的能力,IEX和HI层析方法就是指目标分子与筛分介质之间的相互作用,而GF的选择性依赖于填料的分馏范围(fractionation range)。 柱料的有效性则是指层析介质洗脱样品得到显著层析峰的能力,Mitchell表示,“如果你的峰值不集中,比较宽,那么即使是选择性很好,分辨率仍然会被消弱”。bead越大,洗脱峰就越不集中,柱子的有效性就越低。纯化洗脱相近的蛋白需要高效性,高选择性和高效性的结合就会得到高分辨率。 凝胶过滤层析(gel filtration chromatography) 凝胶过滤法(gel filtration)也称为排阻层析(exclusion chromatography)、凝胶层析(gel chromatography)或分子筛层析(molecular sieve chromatofraphy),它是在1960年后发展出来的技术。

A蛋白亲和层析法纯化单克隆抗体

摘要:世界首个单克隆抗体(monoclonal antibody,简称单抗)于1986 年,获得美国食品与药品监督管理局的上市批准,拉开了单抗药物发展的序幕,成为生物医药领域中最耀眼的明珠。单克隆抗体纯化过程中a蛋白(protein a)层析介质的选择尤为重要,可以影响抗体的纯度。本文主要阐述单抗纯化过程中a蛋白亲和层析的相关内容。 关键词:a蛋白;耐碱性;动态载量 全球医药行业走向趋势是精准医疗时代,单抗是其中较为成熟的领域,引领了生物制药产业发展最为重要的驱动力。单抗药物主要是由中国仓鼠卵巢细胞(chinese hamster ovary cell,简称 cho 细胞)表达产生,由 cho 细胞分泌的外源蛋白分子,通过纯化过程实现由细胞培养液中回收。随着单抗生产上游改造、培养参数的优化,其产量已达5-10g/l,同时也增加了下游蛋白回收中去除各种宿主杂质的负担。宿主蛋白残留的组成随着培养条件的改变显现出显著的变化,单抗药物杂质主要包括与产品相关的污染物和工艺相关的污染物。 根据终产品纯度、杂质含量的严格要求,单抗目前采用三步纯化策略:粗纯(样品捕获)、中度纯化和精细纯化,该策略工艺复杂、对操作要求严格,导致纯化成本一般占总生产成本的 50%-80%。用a蛋白亲和层析凝胶捕获抗体是大规模单抗纯化的首要步骤,一步纯化可使蛋白纯度达 95%以上。但a蛋白树脂价格昂贵,在大规模生产中,a蛋白纯化步骤的成本占整个抗体纯化成本的 35%以上。因此,蛋白 a 纯化效率的提高是进一步提高产品质量、降低生产成本的关键[1]。 1 a蛋白的性质金黄色葡萄球菌 a蛋白(staphylococal protein a,spa)是一种从金黄色葡萄球菌细胞壁分离的蛋白质。能特异性地与人或哺乳动物抗体(主要是igg)的fc区域结合。天然的a蛋白是十种氨基酸组成。由于不含有胱氨酸及半胱氨酸,所以无二硫键。紫外光谱和吸收系数为 a275nm %=1.65,等电点为ph5.1。spa十分稳定,用4mol/l尿素、硫氰盐酸、6mol/l的盐酸胍和ph2.5的酸性条件,以及加热煮沸均不影响其活性。分子量:全长的spa 54kd,去掉与细胞壁结合部分的spa 42kd。spa与igg结合的亚类主要是igg1、igg2和igg4。近几年来基因工程的spa出现,解决了天然a蛋白的耐碱性问题,mabselect sure是基因工程的spa,去掉了天然spa的dace 区域,对于b区域进行了修饰,将不耐受naoh的氨基酸去掉。使修饰后的spa可以耐受0.1-0.5m的naoh;这就很好的解决了层析介质cip的问题,同时修饰后的spa也耐受蛋白酶。减少在纯化过程中蛋白酶对spa的作用,使洗脱收集液中spa的脱落更低。 2 结合单抗的a蛋白层析介质的选择 在a蛋白捕获步骤中主要去除的杂质大部分是hcp和基因组dna;由于a蛋白层析介质对聚体没有去除作用,所以在此捕获步骤中应采取尽量减少聚体的形成策略,例如:提高洗脱ph,加入添加剂等;在此捕获步骤中会有a蛋白(配基)的脱落。在a蛋白捕获过程中,培养上清中的蛋白酶会降解层析介质的配基a蛋白,以及a蛋白与介质骨架的偶联方式,这些都是protein a的脱落原因,所以选择a蛋白脱落较低的层析介质是非常必要的[2]。 2.1 a蛋白层析介质相关指标 耐碱性:药物gmp生产最基本的要求是无菌、无热源。naoh 是最好的除菌、出热源的试剂。同时naoh也是公认的cip试剂,使用naoh 可以很好的除去残留在层析介质上的杂质,以确保工艺的稳定性以及层析介质的寿命;?郧?naoh的成本低。naoh是公认的cip试剂,实验表明,naoh的清洗效果高于其他试剂,适合琼脂糖基架的填料。而对照的可控玻璃基架(cpg)填料的清洗结果表明,盐酸胍比磷酸更为有效。cpg填料在高ph下不稳定,不适合用naoh 清洗。传统的a蛋白的清洗试剂,如:尿素,盐酸胍等的清洗试剂效果不理想,?郧以谂渲檬

数控加工工艺课程设计说明书(DOC 22页)

数控加工工艺课程设计说明书(DOC 22页)

《数控加工工艺》课程设计说明书 班级: 学号: 姓名】 指导老师:】

1.设计任务 本次课程设计是通过分析零件图,合理选择零件的数控加工工艺过程,对零件进行数控加工工艺路线进行设计,从而完成零件的数控加工程序的编写。使零件能在数控机床上顺利加工,并且符合零件的设计要求。 2.设计目的。 《数控加工工艺课程设计》是一个重要的实践性教学环节,要求学生运用所学的理论知识,独立进行的设计训练,主要目的有: 1 通过本设计,使学生全面地、系统地了解和掌握数控加工工艺和数控编程的基本内容和基本知识,学习总体方案的拟定、分析与比较的方法。 2 通过对夹具的设计,掌握数控夹具的设计原则以及如何保证零件的工艺尺寸。 3 通过工艺分析,掌握零件的毛坯选择方式以及相关的基准的确定,确定加工顺序。 4 通过对零件图纸的分析,掌握如何根据零件的加工区域选择机床以及加工刀具,并根据刀具和工件的材料确定加工参数。 5 锻炼学生实际数控加工工艺的设计方法,运用手册、标准等技术资料以及撰写论文的能力。同时培养学生的创新意识、工程意识和动手能力。 3.设计要求: 1、要求所设计的工艺能够达到图纸所设计的精度要求。 2、要求所设计的夹具能够安全、可靠、精度等级合格,所加工面充分暴露出来。 3、所编制的加工程序需进行仿真实验,以验证其正确

4.设计内容 4.1分析零件图纸 零件图如下: 1.该零件为滑台工作台,是一个方块形的零件。图中加工轮廓数据充分,尺寸 清晰,无尺寸封闭等缺陷。 2.其中有多个孔有明确的尺寸公差要求和位置公差要求,而无特殊的表面粗糙 度要求,如70+0.1、102+0.1、80+0.1、100+0.1、13.5+0.05、26+0.05.

重组蛋白和多肽的分离纯化

重组蛋白和多肽的分离纯化 1.概述 分离纯化组成了基因工程的下游处理(downstream processing)阶段,这一过程又和上游过程紧密相联系,上游过程的诸方面影响到下游的分离纯化,所以在进行目标蛋白质表达纯化时要统一考虑和整体设计,并充分考虑上游因素对下游的影响,如是否带有亲和标签,是否进行分泌表达。目前应用最广泛的表达系统有三大类,分别是大肠杆菌表达系统、酵母表达系统和CHO细胞表达系统,不同的表达系统和培养方法显著影响下游的处理过程,目标蛋白表达是否形成包涵体,目标蛋白表达的定位(胞内、细胞内膜、周质空间和胞外),蛋白表达的量都依赖于所选择的表达系统。选择将所表达的蛋白分泌到细胞外或周质空间可以避免破碎细胞的步骤,并且由于蛋白质种类少,目标蛋白容易纯化;而在细胞质内表达蛋白,可能是可溶性表达,可能形成包涵体,可溶性的蛋白往往需要复杂的纯化步骤,而包涵体易于分离,纯度较高,但回收具有生物活性的蛋白却变的相当困难,需要对聚集的蛋白进行变复性,通常活性蛋白的得率比较低,表1列出了不同策略对表达、纯化的影响,对于其中的有些缺点可以通过一定的方法进行克服和避免,如利用DNA重组技术给外源蛋白加上一个亲和纯化的标签,有助于可溶性外源蛋白的选择性纯化,并能保护目标蛋白不被降解(96)。 表 1 重组蛋白不同表达策略的优点和缺点 表达策略优点缺点 分泌表达至细胞外增强正确二硫键的形成 降低蛋白酶对表达蛋白的降解 可获得确定的N末端 显著减少杂蛋白水平,简化纯化 不需要细胞破碎表达水平低 多数蛋白不能进行分泌表达表达蛋白需要进行浓缩 细胞周质空间表达增强正确二硫键的形成 可获得确定的N末端 显著减少杂蛋白水平,简化纯化好些蛋白不能分泌进入周质空间 没有大规模选择性的释放周质空间蛋白的技术 周质蛋白酶可引起重组蛋白酶解 胞内包涵体表达包涵体易于分离 保护蛋白质不被降解 蛋白质不具有活性对宿主细胞生长 没有大的影响,通常可获得高的表 达水平需要体外的折叠和溶解,得率较低具有不确定N末端 胞内可溶性蛋白表达不需要体外溶解和折叠 一般具有正确的结构和功能高水平的表达常难以得到需要复杂的纯化 可发生蛋白质的酶解 具有不确定的N末端 在细胞的提取物中,除了目标蛋白外,还含有其它各种性质的蛋白、核酸、多糖等。在这样一个混合体系中,蛋白质纯化要求将目标蛋白与其它的成分分离,得到一定的量,达到一定的纯度,同时要尽可能保留蛋白的生物活性,并使蛋白保持完整。所以蛋白质的分离纯化可以看作是一系列的分部收集过程,总是希望目标蛋白富集于其中的一个收集部位,而大量的杂蛋白存在于其它的收集部位。当然对目标蛋白纯度的要求要根据纯化蛋白的用途而定,对于治疗性的蛋白要求有大于99%的纯度,并对处方有活性和稳定性的要求,对于某些酶的纯度则要求较低,需要在纯度和得率之间进行一个平衡,所以下游的工艺流程取决于最终对目标蛋白的要求。 蛋白质的功能依赖于蛋白质的结构,对于有生物活性的蛋白质,在分离纯化过程中必须根据目标蛋白的特点,采用合适的操作条件和方法,保证目标蛋白的活性尽量不损失。除了在分离纯化的初期,要采用快速的方法除去影响目标蛋白稳定性的杂质,还要严格控制涉及蛋白质变性的各种因素,来避免蛋白质失去活性。蛋白质的构象稳定性可以通过测定蛋白质变性反应时折叠(f)和去折叠(u)间自由能的变化(ΔG f→u)来衡量,ΔG f→u越大蛋白质就越稳定。根据报导蛋白质的ΔG f→u在5—20kcal/molX围之间,单个氢键可造成0.5—2kcal/mol自由能的变化,一个离子对可造成0.4—1.0kcal/mol自由能的变化,因此ΔG f→u相对比较小,这样天然状态仅仅比去折叠状态稳定一点,所以必须克服蛋

Protocol蛋白质纯化步骤

Protocol 蛋白质纯化方法(镍柱) 柱前操作 1.IPTG诱导后,收菌,8000rpm/min(r/m)离心10min; 2.用Binding Buffer(BB)溶解(每100ml原菌液加BB 20ml),超声裂解30min(工作:5s,停止:5s),1500r/m离心10min,去除杂质; 3.取上清,12000r/m离心20min, 得包涵体; 4.用含2M尿素的BB洗包涵体,12000r/m离心20min,(上清做电泳);??? 5.用含6M尿素的BB溶解包涵体,12000r/m离心20min,(上清做电泳); 6.对照电泳结果,将上清或包涵体溶解液上柱; 平衡柱子(柱体积:V) 7. 3V(3倍柱体积)ddH2O(洗乙醇); 8. 5V Charge Buffer(CB); ??? 9. 3V BB; 柱层析 10.上样; 11. 10V Washing Buffer(WB); 12. 6V Elute Buffer(EB); 13.分管收集,每管1~2ml. 各种缓冲液配方 1. 8×BB: 4M NaCl, 160mM Tris-HCl, 40mM imidazole(咪唑),pH=7.9 1000ml NaCl: 58.44×4=233.76g Tris-HCl: 121.14×160×10-3=19.3824g Imidazole: 68.08×40×10-3=2.7232g 2. 8×CB: 400mM NiSO4 1000ml NiSO4: 262.8×400×10-3=105.12g 3. 8×WB: 4M NaCl, 160mM Tris-HCl, 480mM imidazole, pH=7.9 1000ml NaCl: 233.76g, Tris-HCl:19.3824g, Imidazole: 32.6784g 4. 4×EB: 2M NaCl, 80mM Tris-HCl, 4M imidazole, pH=7.9 1000ml NaCl: 118.688g, Tris-HCl:9.6912g, Imidazole: 272.32g 5. 6M 尿素 1000ml 尿素:60.06×6=360.36g

蛋白质纯化的一般原则及方法选择

随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易lIl。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1 蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨常用的离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性指树脂与目的蛋白结合的特异性,柱效则是指蛋白的各成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2.各种蛋白纯化方法及优缺点 2.1蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸。在蛋白质的等电点处若溶液的离子强度特别高或特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白质最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保护蛋白的活性。硫酸

机械制造工艺设计说明书

湘潭医卫职业技术学院 课 程 设 计 班级: 姓名: 指导教师:刘中华 年月日

课程设计 项目说明书 设计题目:******批量生产机械加工工艺设计专业:*********** 班级:******* 学号:******* 设计者:****** 指导教师:刘中华 完成时间:****** 湘潭医卫职业技术学院医电学院

目录 前言 一、零件的分析 (5) 1、零件的作用 (5) 2、零件的工艺分析 (5) 二、工艺分析 (6) 1、确定生产类型 (6) 2、选择毛坯制造形式 (6) 3、选择定位基准 (6) 4、零件表面加工方法选择 (7) 5、制造工艺路线 (8) 6、确定机械加工余量与毛坯尺寸 (8) 7、加工设备与工艺装备的选择 (10) 8、确定切削用量及基本工时 (11) 总结 参考文献 致谢

前言 本次课程设计是进给箱齿轮轴的设计,这是机械制造工程这门课程的一个阶段总结,是对课堂中学习的基本理论和在生产实习中学到的实践知识的一个实际应用过程。我们在完成课程设计的同时,也培养了我们正确使用技术资料、国家标准、有关手册、图册等工具书,进行设计计算、数据处理、编写技术文件等方面的工作能力,也为我们以后的工作打下了坚实的基础。由于知识和经验所限,设计会有许多不足之处,所以恳请老师给予指导。

设计题目:进给箱齿轮轴零件的机械加工工艺规程 零件的分析 1.零件的作用 题目给定的零件是进给箱齿轮轴,其主要作用是支撑传动零部件,实现回转运动,并传递扭矩和动力,以及承受一定的载荷。齿轮轴零件是将齿轮部分和轴做成一体无需键配合的一种常见机械零件。齿轮轴具备传动效率高、结构紧凑和使用寿命长等一系列优点,是通用机械特别是工程机械传动中的重要零件之一。轴Φ26圆柱面处有圆弧形的键槽和圆孔,主要是通过键和其他部件相连。轴的左端部位为齿轮部分,主要传递运动和动力。 2.零件的工艺分析 从零件图上看,该零件是典型的零件,结构简单,属于阶梯轴类零件,由圆柱面、轴肩、键槽、齿轮等不同形式的几何表面及几何实体组成。其主要加工的表面有以齿轮轴左右端面为中心的Φ60、Φ45、Φ30、Φ29、Φ26、Φ24的外圆柱面,以Φ26的外圆柱面和左右台阶面为中心的加工30×8×4的键槽、Φ8的孔,左右两端的端面,以及齿轮轴左端的齿轮加工。其多数表面的尺寸精度等级在7~11之间,表面粗糙度值为1.6μm~12.5μm,齿轮的精度等级为8。其中位置要求较严格的,主要是保证加工Φ60的外圆柱面与整个齿轮轴的中心轴线的同轴度在Φ0.25范围内,以及保证Φ30的外圆柱面与整个齿轮轴的中心轴线的同轴度在Φ0.02范围内。 通过分析,该零件布局合理,方便加工,我们通过径向夹紧可保证其加工要求,整个图面清晰,尺寸完整合理,能够完整表达物体的形状和大小,符合要求。经过对以上加工表面的分析,对于这几组加工表面而言,我们可先选定粗基准,加工出精基准所在的加工表面,然后借助专用夹具对其他加工表面进行加工,并且保证它们的位置精度。

法兰盘加工工艺设计说明书

目录 序言............................................................ 错误!未定义书签。 1 零件的分析 (1) 零件的作用 (1) 零件的工艺分析 (1) 2 工艺规程设计 (1) 确定毛坯的制造形式 (1) 基面的选择 (2) 制定工艺路线 (2) 机械加工余量,工序尺寸及毛坯尺寸的确定 (2) 3 夹具设计 (5) 问题的提出 (5) 夹具设计 (5) 参考文献 (8)

1 零 件 的 分 析 零件的作用 题目所给定的零件是CA6140车床上的法兰盘(见附图1), 法兰盘起联接作用是车床上的重要零件。 零件的工艺分析 法兰盘是一回转体零件,有一组加工表面,这一组加工表面以Φ20045 .00+为中心 ,包括:两个Φ12.034.0100--mm 的端面, 尺寸为Φ0017.045-mm 的圆柱面,两个Φ90mm 的端面及上面的4个Φ9mm 的透 孔. Φ06.045-mm 的外圆柱面及上面的Φ6mm 的销孔, Φ90mm 端面上距离中心线分别为34mm 和24mm 的两个平面. 这组加工表面是以Φ20045.00+mm 为中心,其余加工面都与它有位置关系,可以先加工它的一个端 面,再借助专用夹具以这个端面为定位基准加工另一端面,然后再加工其它加工表面. 2 工 艺 规 程 设 计 确定毛坯的制造形式 零件材料为HT200,由于零件年产量为1000件,已达到中批生产的水平,而且零件轮廓尺寸不大,故采用金属模铸造,法兰盘因毛坯比较简单,采用铸造毛坯时一般是成队铸造,再进行机械加工。这从提高生产率,保证加工精度上考虑也是应该的。

蛋白纯化层析柱

蛋白纯化层析柱 2011-06-15 15:19:14 易生物仪器浏览次数:1164 网友评论 0 条 从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是... 关键词:蛋白离子交换分离分子物质树脂从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是凝胶过滤层析技术(gel filtration,GF),离子交换层析技术(ion exchange,IEX),羟基磷灰石层析(hydroxyapatite,HAP)和疏水作用层析(hydrophobic interaction,HI),以及亲和层析和高效液相色谱方法(high-performance liquid chromatography,HPLC)。 对于一个初接触蛋白纯化的新手而言,从哪儿下手也许是令人头疼的一件事,但是幸运的是目前这些流程都已经逐步系统化了。GE Healthcare(原Amersham Biosciences)的技术顾问Andrew Mitchell解释道,通常利用液相色谱技术进行蛋白纯化有三步: 捕获——从细胞其它成份,比如DNA和RNA中分离需要的蛋白; 区分——从与目的蛋白具有相近的大小,或者相似的物理/化学特征的污染物中分离蛋白; 修饰——使分离得到的样品处于可使用状态。 这每一个纯化的步骤都有特定的色谱层析技术和最佳的beads大小。

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

加工工艺规程及工艺装备设计说明书

机械制造工艺学课程设计实例 机械制造工艺学 课程设计说明书 设计题目设计“推动架”零件的机械加工工艺规程及工艺装备。 生产纲领为中小批量生产。 设计者:_____ 指导老师: XXX XX师范大学 教研室 2009年1月4日

XX师范大学 机械制造工艺学课程设计任务书 题目:设计“推动架”零件的机械加工工艺规程及工艺装备。生产纲领为中小批量生产。 内容:1. 零件图 1张 2. 毛坯图 1张 3. 机械加工工艺过程综合卡片 1套 4. 工艺装备(夹具)主要零件图及画总装图 1套 5. 课程设计说明书 1份 班级:0 5机自国内 学生:_____ 指导老师:XXX 教研室主任:XXXX ___年___月

目录 序言 (4) 一.零件的分析 1零件的作用 (4) 2零件的工艺分析 (4) 二.毛坯制造 1确定毛坯的制造形式 (5) 二.工艺规程设计 1基面的选择 (5) 2制定机械加工工艺路线 (5) 四.机械加工余量、工序尺寸及毛坯尺寸的确定 1.面的加工(所有面) (7) 2.孔的加工 (7) 五.确定切削用量及基本工时 1.工序Ⅰ切削用量及基本时间的确定 (9) 2.工序Ⅱ切削用量及基本时间的确定 (10) 3.工序Ⅲ切削用量及基本时间的确定 (11) 4 .工序Ⅳ切削用量及基本时间的确定 (12) 5.Ⅴ切削用量及基本时间的确定 (13) 6. 工序Ⅵ的切削用量及基本时间的确定 (14) 7.工序Ⅷ的切削用量及基本时间的确定 (15) 8 .工序Ⅸ的切削用量及基本时间的确定 (16) 9. 工序Ⅹ的切削用量及基本时间的确定 (16) 六.夹具的选择与设计 (16) 1.夹具的选择 (17) 2.夹具的设计 (17) 七.选择加工设备 1.选择机床,根据不同的工序选择机床 (18) 八.选择刀具 1. 选择刀具,根据不同的工序选择刀具 (18) 九.选择量具

重组蛋白纯化基本策略

捕获阶段:目标是澄清、浓缩和稳定目标蛋白。中度纯化阶段:目标是除去大多数大量杂质,如其它蛋白、核酸、内毒素和病毒等。精制阶段:除去残余的痕量杂质和必须去除的杂质。分离方法的选择根据蛋白质的特殊性质采用不同的分离方法:蛋白质的性质方法电荷(等电点)离子交换(IEX)分子量凝胶过滤(GF)疏水性疏水(HIC)反相(RPC)特异性结合亲和(AC)每一种方法都有分辨率、处理量、速度和回收率之间的平衡。分辨率:由选择的方法和层析介质生成窄峰的能力来实现。总的来说,当杂质和目标蛋白性质相似时,在纯化的最后阶段分辨率是重要因素。处理量:一般指在纯化过程中目标蛋白的上样量。如上样体积、浓度等。速度:在初纯化中是重要因素,此时杂质如蛋白酶必须尽快除去。回收率:随着纯化的进行渐趋重要,因为纯化产物的价值在增加。在三阶段纯化策略中每一种方法的适用性见下表:技术主要特点捕获中度纯化精制样品起始状态样品最终状态IEX高分辨率高容量高速度低离子强度样品体积不限高离子强度或pH改变。样品浓缩HIC 分辨率好容量好高速度高离子强度样品体积不限低离子强度样品浓缩AC高分辨率高容量高速度结合条件特殊样品体积不限洗脱条件特殊样品浓缩GF高分辨率(使用Supedex)样品体积(<总柱体积的5%)和流速范围有限制缓冲液更换(如果需要)样品稀释RPC高分辨率需要有机溶剂在有机溶剂中,有损失生物活性的风险提示:1、通过组和各种方法使纯化步骤之间的样品处理减至最少,以避免需要调节样品。第一个步骤的产物的洗脱条件应适宜于下一个步骤的起始条件。2、硫酸铵沉淀是常用的样品澄清和浓缩方法,所以HIC是捕获阶段的理想方法。3、 GF很适宜在由浓缩效应的方法(IEX、 HIC、 AC)后使用,凝胶过滤对上样体积有限制,但不受缓冲液条件的影响。4、在捕获阶段选择对目标蛋白具有最高选择性或/和处理量的方法5、如果对目标蛋白的性质了解甚少的情况下,可采用IEX-HIC-GF的方法组合作为标准方案。6、只要目标蛋白耐受的情况下,可以考虑采用RPC 方法用于精制阶段。注:应该指出,三阶段纯化策略不是说所有的策略都必须是三个纯化步骤。所用的步骤数目取决于纯度要求和蛋白的最终用途。 蛋白质的蛋白质特性与分离纯化技术的选择 摘要:蛋白质的一级、二级、三级和四级结构决定了它的物理、化学、生物化学、物理化学和生物学性质,综述了不同蛋白质之间的性质存在差异或者改变条件是使之具有差异,利用一种同时多种性质差异,在兼顾收率和纯度的情况下,选择蛋白质提纯的方法。 关键词:蛋白质分离纯化 前言: 蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有成千种不同的蛋白质。蛋白质的分离和提纯工作是一项艰巨而繁重的任务,到目前为止,还没有一个单独的或一套现成的方法能把任何一种蛋白质从复杂的混合物中提取出来,但对任何一种蛋白质都有可能选择一套适当的分离提纯程序来获取高纯度的制品。

数控加工工艺设计说明书范本

一、数控车床的刀具夹具及量具 1.数控车床的刀具 在数控机床加工中,产品质量和劳动生产率在相当大的程度上是受到刀具的制约。虽大多数车刀和铣刀等与普通加工所采用的刀具基本相同,但对一些工艺难度较大的零件,其刀具特别是刀具切削部分的几何参数,尚需作特殊处理,才能满足加工要求。 1.1 数控加工对刀具的要求 1.1.1对刀具性能的要求 (1)强度高为适应刀具在粗加工或对高硬度材料的零件加工时,能大切深和快走刀,要求刀具必须具有很高的强度;对于刀杆细长的刀具(如深孔车刀),还应具有较好的抗震性能。 (2)精度高为适应数控加工的高精度和自动换刀等要求,刀具及其刀夹都必须具有较高的精度。如有的整体式立铣刀的径向尺寸精度高达0.005mm等。 (3)切削速度和进给速度高为提高生产效率并适应一些特殊加工的需要,刀具应能满足高切削速度或进给速度的要求。如采用聚晶金刚石复合车刀加工玻璃或碳纤维复合材料时,其切削速度高达100m/min以上;日本UHSl0型数控铣床的主轴转速高达100000r/min,进给速度高达15m/min。 (4)可靠性好要保证数控加工中不会因发生刀具意外损坏及潜在缺陷而影响到加工的顺利进行,要求刀具及与之组合的附件必须具有很好的可靠性和较强的适应性。 (5)耐用度高刀具在切削过程中的不断磨损,会造成加工尺寸的变化,伴随刀具的磨损,还会因刀刃(或刀尖)变钝,使切削阻力增大,既会使被加工零件的表面精度大大下降,同时还会加剧刀具磨损,形成恶性循环。因此,数控加工中的刀具,不论在粗加工、精加工或特殊加工中,都应具有比普通机床加工所用刀具更高的耐用度,以尽量减少更换或修磨刀具及对刀的次数,从而保证零件的加工质量,提高生产效率。 耐用度高的刀具,至少应完成l一2个大型零件的加工,能完成l一2个班次以上的加工则更好。 (6)断屑及排屑性能好有效地进行断屑及排屑的性能,对保证数控机床顺利、安全地运行具有非常重要的意义。 以车削加工为例,如果车刀的断屑性能不好,车出的螺旋形切屑就会缠绕在刀头、工件或刀架上,既可能损坏车刀(特别是刀尖),还可能割伤已加工好的表面,甚至会发生伤人和设备事故。因此,数控车削加工所用的硬质合金刀片上,常常采用三维断屑槽,以增大断屑范围,改善断屑性能。另外,车刀的排屑性能不好,会使切屑在前刀面或断屑槽内堆积,加大切削刃(刀尖)与零件间的摩擦,加快其磨损,降低零件的表面质量,还可能产生积屑瘤,影响车刀的切削性能。因此,应常对车刀采取减小前刀面(或断屑槽)的摩擦系数等措施(如特殊涂层处理及改善刃磨效果等)。对于内孔车刀,需要时还可考虑从刀体或刀杆的里面引入冷却液,并能从刀头附近喷出的冲排结构。 1.1.2对刀具材料要求 这里所讲的刀具材料,主要是指刀具切削部分的材料,较多的指刀片材料。刀具材料必须具备的主要性能:(1)较高的硬度和耐磨性较高的硬度和耐磨性是对切削刀具的一项基本要求。一般情况下,刀具材料的硬度越高,其耐磨性也越好,其常温硬度应在62HRC以上。 (2)较高的耐热性耐热性又称为红硬性,是衡量刀具材料切削性能的主要标志。该性能是指刀具材料在高温工作状态下,仍具有正常切削所必需的硬度、耐磨性、强度和韧性等综合性能。 (3)足够的强度和韧性刀具材料具有足够的强度和韧性,以承受切削过程中很大压力(如重切)、冲击和震动,而不崩刃和折断。 (4)较好的导热性对金属类刀具材料,其导热系数越大,由刀具传出和散发的热量也就越多,使切削温度降低得快,有利于提高刀具的耐用度。 (5)良好的工艺性在刀具的制造过程中,需对刀具材料进行锻造、焊接、粘接、切削、烧结、压力成

相关主题