搜档网
当前位置:搜档网 › 电加热计算公式

电加热计算公式

电加热计算公式
电加热计算公式

电加热设计

P :加热总功率(KW )

P1 :介质升温所需功率(KW )

P2 :容器升温所需功率(KW )

P3: 容器表面热损失(需补偿功率KW )

M1: 介质重量(kg )

C1: 介质比热(kcal/kg℃)

m2: 容器重量(kg )

c2: 容器比热(kcal/kg℃)

Δ t: 温升(℃)=最终温度-初始温度

h: 加热时间(h )

λ : 保温材料导热系数(w/mk )

S :容器散热面积(m2 )

δ : 保温材料厚度(m )

m3: 每小时增加的介质重量或流量

c3: 介质比热(kcal/kg℃)

常用材料的性能

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

蒸汽水热量换算方法

蒸汽水热量换算方法 换热热量计算方法卡、千卡(千卡)、焦耳之间的换算关系卡、(千卡)、焦耳之间的换算关系和各自代表的物理意义在初中物理课本中已经讲的明明白白,“热功当量”这个名词难道大家没有印象卡(cal):把1g水的温度升高或降低1℃

所吸收或放出的热量规定为1卡(cal),这是计算热量的单千卡(kcal):千卡又叫大卡,大卡(kcal)=1000卡(cal),显然,这也是计算热量的单位。焦耳(J):功和能的计量单位。热量作为能量的一种表现形式,必然也可以用焦耳来计量,所以就有

了热功当量,即:1卡(cal)=焦耳(J),1大卡(kcal)=焦耳(J)同理,千卡/小时(kcal/h)可以视为功率的单位,才能与瓦特(w,1瓦特=1焦/秒)进行互相换算。[/quote]8楼的说得对,我在这里作个总结吧:

卡(calorie小写c)、千卡(Calorie大写C,或写作kcal,前一种写法在食品包装上经常出)、焦(J)和千焦(KJ)是能量单位, 单位换算公式为:1KJ=1000*1J 1kcal=1000*1cal 1cal=J 1kcal=J(一)....

大卡时(kcal/h)和瓦特(J/s也写作w)是功率单位,单位换算方式为: 1Kcal/h=w=J/s 可以发现,上式左右乘以3600s就可以得到能量单位换算公式 1kcal/h*3600s=1kcal s*3600s=J 即上面式(一)

计算举例 反应釜夹套使用循环冷冻盐水降温,已知冷冻盐水进水温度-15℃, 回水温度-12℃,管道内盐水流速选择为1米/秒,管道直径DN50,则流量为:Q=3600×V×管道的截面积 Q---单位为立方米/小时 V---单位为米/秒 管道的截面积---单位为平方米=×D2

关于电加热器的控制程序的编写参考

之前讨论过关于电加热器控制的一次回路的配置问题,使我有重新整理该加热控制的想法。该设备为西门子840D系统,实际应用时,加热器由于国内好几家电加热器生产厂家无法达到加热外形尺寸精度及单位空间功率的限制,境外订购时间周期长等原因,最后,只能被放弃使用该电加热控制单元,改电加热方式为天然气加热方式。 使用至今已经有10多年时间了。另外一个放弃的原因是由于模具事先需要掏空处理(均分在底模18个直径40*200mm的加热器安装孔),且需要分多层安装(主要是预埋连接铜排,高温导线层面,耐高温绝缘处理),其中还需要有隔热板处理与主轴的连接,模具总装后,对同心度±0.05mm的要求,在实际操作起来也具有一定的加工、安装难度。 为说明该控制原理,先上一张电加热一次侧控制图: 一次侧回路由电源总开关(断路器3RV1031-4FA10),及漏电保护器(5SM3846-8 63/1000mA)、交流接触器(3RT1036-1BB40)、加热驱动器单元组成对加热总功率18KW的温度控制,其中,温度反馈传感器采用PT100热电阻,需要事先预埋在模具内部并连接好端子。 加热工作原理: 当需要实现主轴设备模具加热或者保温时,先让主轴运行主轴定位步骤(NCK的spos(角度)指令完成定位),完成主轴定位后,加热器通过气动单元将三相加热电源插入到模具加热端子上,一种带弹性(紫铜结构件)的环氧材料连接器,同时,将热电阻PT100一起插入到对应的端子上进行模具的加热和保温,加热器分6组(3KW/组)中心点不接地方式连接。另外,加热控制单元由3个电流变送器检测三相工作电流,控制器的输入为模拟量控制方式。控制程序:图示部分程序段 三相输入电流检测: L 695 T #Korr_Faktor_Stromistwert //将常数695装入数据块DB106.DBD72中。 //Stromaufnahme Phase 1 L "Analogeing.Heizstrom Ph1" //A相输入电流值。

传热效率计算

传热效率计算 有一发热体发热峰值功率为4000W ,平均值为3000W 左右,需用水冷散热,可提供稳定的25度冷水,该发热体发热面积为127mm*137mm ,要求发热体表面(与水冷头接触面)温度能控制在50度以下,现需要计算如下内容: 1、 所提供的冷水的流量和流速 2、 水冷头底板厚度 3、 水冷头内部与水接触面积 4、 如果采用紫铜或铝合金加工,在同等条件下的散热效率差异。 5、 水管宜用多粗的? 解: 这里缺少条件,先假设发热体工作时间为 1 小时。 1..冷水的流量: Q=C*M*(T 2-T 1) )12(T T C Q M -==)2550(./42003600*4000℃℃℃kg J S W -=137.14 kg 2.流速:设计水管内径为:φ15mm Q=V*S S=秒 3600*0075.0*0075.0*14.3/1*1000/14.13723m m t t S Q ==0.216m/秒 3.水冷头底板厚度 取5mm. 4. 水冷头内部与水接触面积: 因为发热体发热面积为127mm*137mm ,所以取冷水头底内尺寸为127mm*137mm. 计算内高度为:

h= mm m g kg 137 * 127/ 1000 * 14 . 1373=7.88 mm 5.紫铜和铝合金的导热系数不同,紫铜的导热系数为λ =393W/(m·k),铝合金的导热系数为λ=123 W/(m·k)在同等条件下紫铜比铝合金的散热效率高。 根据导热的计算:Q=λ*A* δ? ?t公式可出在同等条件下紫铜比铝合金的散出的热量多。 6.水管宜用多粗的? 设计水管内径为:φ15mm

电加热器说明书范文

电加热器说明书

DRK型空气电加热器 DRK Electric Air Heater 使用说明书 Operating Instruction Manual 江苏国能环保设备有限公司 Jiangsu Guoneng Environment Protection Equipment Co., Ltd.

一、前言Preface DRK型空气电加热器是我厂近年来研制成功的专门供燃煤发电厂除灰系统使用的新型加热设备,该设备由空气电加热器和控制系统两个部分组成。发热元件采用1Cr18Ni9Ti不锈钢无缝管作保护套管,0Cr27A17MO2高温电阻合金丝、结晶氧化镁粉,经压缩工艺成型,使电加热元件的使用寿命得以保证。控制部分采用先进的数字电路、集成电路触发器、高反压可控硅等组成可调测温、恒温系统,保证了电加热器的正常运行。 DRK electric air heater, the new type heating equipment special for coal-fired power plant ash collection system, is successfully made by our company recent years. This equipment consists of electric air heater and control system. Heating unit adopts 1Cr18Ni9Ti seamless steel tube as the protective case. After compression craft formation, 0Cr27A17MO2 high temperature resistance alloy wire and crystal magnesia powder could make sure the life of electric heating element. Control part uses advanced digital circuit, IC trigger and high counter voltage SCR to compose adjustable thermometer and thermostat system, which insure the normal working of heater.

板式换热器的换热计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷

热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:

蒸汽水热量换算方法

蒸汽水热量换算方法蒸汽水热量换算方法 2010-09-1511:07:13|分类:|标签:|举报|字号大中小订阅 换热热量计算方法 卡、千卡(千卡)、焦耳之间的换算关系 卡、千卡(千卡)、焦耳之间的换算关系和各自代表的物理意义在初中物理课本中已经讲的明明白白,“热功当量”这个名词难道大家没有印象 卡(cal):把1g水的温度升高或降低1℃所吸收或放出的热量规定为1卡(cal),这是计算热量的单位。 千卡(kcal):千卡又叫大卡,1大卡(kcal)=1000卡(cal),显然,这也是计算热量的单位。 焦耳(J):功和能的计量单位。 热量作为能量的一种表现形式,必然也可以用焦耳来计量,所以就有了热功当量,即: 1卡(cal)=焦耳(J),1大卡(kcal)=焦耳(J) 同理,千卡/小时(kcal/h)可以视为功率的单位,才能与瓦特(w,1瓦特=1焦耳/秒)进行互相换算。 [/quote] 8楼的说得对,我在这里作个总结吧: 卡(calorie小写c)、千卡(Calorie大写C,或写作kcal,前一种写法在食品包装上经常出现)、焦(J)和千焦(KJ)是能量单位,单位换算公式为: 1KJ=1000*1J 1kcal=1000*1cal 1cal= 1kcal=(一) .... Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

大卡时(kcal/h)和瓦特(J/s也写作w)是功率单位,单位换算方式为: 1Kcal/h==s 可以发现,上式左右乘以3600s就可以得到能量单位换算公式 1kcal/h*3600s=1kcal s*3600s= 即上面式(一) 计算举例 反应釜夹套使用循环冷冻盐水降温,已知冷冻盐水进水温度-15℃,回水温度-12℃,管道内盐水流速选择为1米/秒,管道直径DN50,则流量为: Q=3600×V×管道的截面积 Q---单位为立方米/小时 V---单位为米/秒 管道的截面积---单位为平方米=×D2 D=管道的直径---单位为米 Q=3600×V×管道的截面积=3600×1××=立方米/小时 二、立方米/小时冷冻盐水提供的能量 Q=cm(T1-T2)=Kg.℃×7065×Kg×3℃=88595KJ=88595KJ÷=21195Kcal=2万大卡 已知: 1Kcal=1大卡 1卡(cal)=焦耳(J),1大卡(kcal)=焦耳(J) C=比容单位为---KJ/Kg.℃ m=质量单位为---Kg (T1-T2)=温度差单位为---℃ 1KJ=1000*1J 1kcal=1000*1cal 1cal= 1kcal= 1kcal/h*3600s=1kcal s*3600s= 热水锅炉的出力有三种表达方式,即大卡/小时(Kcal/h)、吨/小时(t/h)、兆瓦(MW)。 (1)大卡/小时是公制单位中的表达方式,它表示热水锅炉每小时供出的热量。 (2)"吨"或"蒸吨"是借用蒸汽锅炉的通俗说法,它表示热水锅炉每小时供出的热量相当于把一定质量(通常以吨表示)的水从20℃加热并全部汽化成蒸汽所吸收的热量。 (3)兆瓦(MW)是国际单位制中功率的单位,基本单位为W(1MW=106W)。正式文件中应采用这种表达方式。

电加热炉温度控制

基于单片机的电加热炉温度控制系统设计 王丽华1郑树展2 (1、天津职业大学,天津300402;2、天津航空机电有限公司,天津300123) 摘要:温度控制是工业对象中主要的控制参数之一,其控制系统本身的动态特性属于一阶纯滞后环节。以8051单片机为核心,采用温度变送器桥路和固态继电器控温电路,实现对电炉温度的自动控制。该控制系统具有硬件成本低、控温精度较高、可靠性好、抗干扰能力强等特点。 关键词:电加热炉控温固态继电器飞升曲线 0引言 传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1电加热炉温度控制系统的硬件设计 电加热炉温度控制系统的硬件由图1所示各部件组成,它以8051单片机为核心,外扩键盘输入和LED显示温度。电加热炉炉内的实际温度由热电偶测量并转换成毫伏级的电压信号,通过温度变送器桥路实现零点迁移和冷端补偿,经运算放大器7650放大到0~5V,再经过有源低通滤波器滤波后,由A/D转换成数字量。此数字量经数字滤波、标度转换后,一方面通过LED将炉温显示出来;另一方面,将该温度值与被控温度值进行比较,根据其偏差值的大小,采用PID控制,通过PWM脉冲调宽功率放大器控制SSR固态继电器来控制电加热炉炉丝的导通时间,就可以控制电炉丝的加热功率大小,从而控制电炉的温度及升温速度,使其逐渐趋于给定值且达到平衡。 1.1 热电偶的选取 热电偶是温度测量传感器,对它的选择将直接影响检测误差的大小。目前多选K型或S 型(镍铬-镍硅)热电偶。两者相比,K型有较好的温度—热电势的线性度,但它不适宜于长时间在高温区适用;S型有高的精度,但温度—热电势的线性度较差。 A/D转换器 图1中A/D转换芯片采用ADC0809,其转换精度是1/256。若电加热炉工作温度是256℃,这样在(0~256)℃范围A/D的转换精度为256℃/256=1℃/bit,即一个数字量表示1℃,这显然不能满足控制精度为±0.5℃要求。为了提高控制精度,可以选用更高位的A/D转换器,如10位、12位、16位A/D转换器,其控值精度均能满足要求。然而根据实际需要温度控制情况,也可以通过具有零点迁移和冷端补偿功能的温度变送桥路,缩小测温的范围,如

基于PID电加热炉温度控制系统设计

基于PID 电加热炉温度控制系统设计 1概述 电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、 机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地 位。对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的 控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法 很难达到好的控制效果。 单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在 工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。采用单片机进行炉温 控制,可以提高控制质量和自动化水平。 在本控制对象电阻加热炉功率为800W ,由220V 交流电供电,采用双向可 控硅进行控制。本设计针对一个温度区进行温度控制,要求控制温度范围 50~350C ,保温阶段温度控制精度为正负1度。选择合适的传感器,计算机输出 信号经转换后通过双向可控硅控制器控制加热电阻两端的电压。其对象问温控数 学模型为: 1 )(+=-s T e K s G d s d τ 其中:时间常数Td=350秒 放大系数Kd=50 滞后时间τ=10秒 控制算法选用改PID 控制

2系统硬件的设计 本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、 热电偶传感器、温度变送器以及被控对象组成。 系统硬件结构框图如下: 图2-1 系统硬件结构框图 看门狗 报警提醒 通信接口 LED 显示 键盘 微 型 控 制 机 AT89S52 温度检测PT100 驱动执行机构 8路D/A 转换器DAC0832 测量变送 8路A/D 转换器ADC0809 加热电阻 温度

电加热器操作指导

电加热器操作指导书 控制原理 1、电加热器采用自动控制,操作人员只需在开机时设定好温度参数,按启动按钮之后,电加热器即可自动地进行温度控制,无需设专人值守。 2、有常规的电气保护,如短路保护、过载保护、超温保护等。 3、在控制柜面板带有电压电流显示,温度显示,指示灯,按钮等。 4、控制柜内部带有断路器,接触器,可控硅调功器,中间继电气等。 温度控制 1、本系统采用温控表ST1采集温度信号,经过PID计算,输出电压脉冲信号,由可控硅调节电加热器的功率输出(0-100%功率调节),保证了加热器的温度精度。同时将出口温度,变松给远程DCS。 2、温度报警由温控表ST2作为超温报警用,当实际温度高于报警设定值时,加热器报警并自锁,对应报警灯亮。报警条件消除后按复位按钮后才能重新启动。 3、温度开关也作为超温报警用,当实际温度高于报警设定值时,加热器报警并自锁,对应报警灯亮。报警条件消除后按复位按钮后才能重新启动。 功率控制 1、功率控制采用可控硅调功器进行整体控制,达到功率0-100%控制。 2、可控硅调功器接收出口问题控制仪表输出的电压脉冲信号,根据此信号去调节加热器的输出,实现0-100%功率无极调节,从而使介质温度得到精确控制。 3、可控硅采用周波模式,避免导通角模式所引起的电网污染。 信号往来 1、控制柜向用户的DCS系统提供加热系统处于运行、超温报警信号、同时可接受DCS到控制柜连锁停止操作命令。 运行操作说明 1、合闸断路器,电源指示灯亮,加热器处于待运行状态。 2、设定出口温度控制仪表及内部超温报警仪表温度。 3、PV为温度测量值,SV为温度设定值。

4、出口温度控制仪表可增大或减小温度设定值。内部超温报警仪表可增大或减小温度设定值,也可改变小数点的位置。 5、电加热器启动:按防爆柜面板上的停止按钮,运行指示灯灭,加热器停止。 6、加热器超温报警,如超温指示灯亮,则表示发生内部超温报警,此时加热器被切断,解除故障后按复位按钮复位,则超温指示灯灭,加热器可重新启动。 7、加热器不用时,请断开主断路器。 8、电加热器连锁停:按远程DCS的连锁停按钮,系统断电。

热量计算公式讲解

供热简单知识 1.供热系统:供热系统分一次和二次供热系统,一次由热源单位来提供热源,二次是经过换热站对用户采暖供热(蒸汽系统除外),我公司分东西部供热系统。 2.热量计算公式:Q=C*G(T2-T1)÷1000 二次网流量选择原则:G=KW*0.86*1.1/(T2-T1) (地热温差取10℃;分户改造取15℃;二次网直连取25℃)。 采暖期用热:Q*24*167*0.64 分户估算水量:一般情况下为3-3.5KG/㎡ 老式供暖水量:一般情况下为2-2.5KG/㎡ 地热供暖水量:一般情况下为3.5-5KG/㎡,根据外网负荷确定。 根据45W,50W,55W计算流量情况能得出调整水平关系。可以实际计算。 3.一、二次网的热量相等: Q1=Q2,C1*G1*(T22-T21)=C2*G2*(T22'-T21'),水C1=C2, 一次网温差一般取45℃,直连系统一般选用25℃。但要和设计联系在一起,高值也可取65℃。从公式看出温差和流量决定一、二次网热量计算。 4.板式换热器系统阻力正常范围应在5-7mH2O

5.民用建筑室内管道流速不大于1.2m/s。 6.压力与饱和水温度关系: 7.单位换算:W=1J/S 例子:45W/㎡的采暖期的耗热量 45*3600*24*167*0.64=425549440J 变成GJ: 425549440÷1000000000=0.41555GJ/㎡ 8.比摩阻:供热管路单位长度沿程阻力损失。若将大管径改为小一号管径,比摩阻增加1-2倍。 9.集中供热管网布置与敷设:管网主干线尽可能通过热负荷中心;管网力求线路短直;管网敷设应力求施工方便,工程量少;在满足安全运行、维修简便前提下,应节约用地;在管网改建、扩建过程中,应尽可能做到新设计的管线不影响原有管线正常运行;管线一般应沿路敷设,不应穿过仓库、堆场以及发展的预留地段;尽可能不通过铁路、公路及其他管线、管沟等,并适当注意整齐美观等,还有许多这里不做介绍。 管网布置有四种形式: A:枝装布置,B:环装布置,C:放射布置,D:网络布置。

电机加热器逻辑控制中文版

仪表信号及电机加热器逻辑控制 一、控制柜送电前的必备条件 1、仪表开关按照仪表清单上的设计值校验准确。 2、所有连接电缆按照图纸连接完毕。 3、主回路和控制回路按照设计的电压AC380V AC220V 送到控制柜的开关 QF和QF4的上端并合上所有的QF。 二、控制柜主回路部分 1、主回路部分分为:电机部分和加热器部分,是由空气开关QF接触器KM 和热继电器FR电机M加热器R组成。 2、电机和加热器的工作是由接触器KM的吸合与分开来实现它们的工作与 停止的,电机的保护是由FR遇到异常发出信号使接触器KM分开来实 现电机的保护。 三、加热器逻辑控制部分为手动和自动由转换开关SA3来决定

1、加热器自动:将转换开关SA3转换到标牌自动位置,当温度开关TS2(温度 开关是双刀双掷)温度降低到≤20℃低温触点闭合,继电器KA9线圈得电常开触点闭合常闭触点断开,继电器KA9得电并自锁,接触器KM3得电吸合电加热器工作给油箱润滑油加热,当温度达到≥30℃时正常油温开关TS2闭合,继电器KA1线圈得电,常闭触点KA1断开,KA9线圈失电解除自锁KM3失电加热器停止工作。 2、加热器手动:将转换开关SA3转换到标牌手动位置,按加热器的启动按钮, KM3线圈得电自锁开始工作,当温度达到≥30℃正常油温开关TS2闭合,继电器KA1线圈得电,常闭触点KA1断开,KM3线圈失电解除自锁加热器停止工作。 四、仪表开关信号 时PS308压力开关常开点闭合<0.1MPa时断开,当泵开启后压力如果达不到

0.1MPa继电器KA2失电,压力指示灯HL4会报警同时不会输出主机允许起 动信号。 2、液位开关LS1在油箱里面,如果油位<470mm时,液位开关LS1常闭触点 闭合,继电器KA4得电,液位低HL5指示灯亮,并把信号送到远方。 3、供油温度开关TS1,当供油温度高于≥60℃时,TS1常开触点闭合继电器KA7 线圈得电,供油温度高指示灯HL7报警,并把信号送到远方。 4、差压开关DPS1,当滤油器差压≥0.1MPa时,DPS1常开触点闭合继电器KA13 线圈得电,差压大指示灯HL10报警,并把信号送到远方。 5、继电器KA10,如果备用泵有连锁启动,KA10就会得电发出备用泵启动信号, 并送到远方。检修人员分析原因后按SB6进行复位。 6、继电器KA11,是备用泵联锁的联锁条件,只有启动信号KA8和第一次压力 PS308≥0.1MPa正常后才参与逻辑控制。 7、继电器KA17,是泵过载后发出的信号,送到远方。 五、双泵逻辑控制 1、泵启动分本控和集控,由SA1来选择,当为本控时在就地控制柜上SB1启动 SB2停止;当为集控时由远方DO1启动DO2停止,当启动时继电器KA8得电常开触点闭合。 2、泵的联锁分为:单独启动一号泵和二号泵或一主二备,二主一备。 ○1单独启动一号泵:转换开关SA2转换到0位,启动泵信号KM1得电一号泵工作。 ○2单独启动二号泵:转换开关SA2转换到2位,启动泵信号KM2得电二号泵工作。 ○3一主二备:转换开关SA2转换到1位,发出启动信号,KA8触点闭合,KM1接触器得电吸合,一号泵开始工作,压力开始上升当油压≥0.1MPa时PS308压力开关常开点闭合,KA2得电常开触点闭合,常闭触点断开发出信号,KA11得电常开触点闭合,常闭触点断开。当压力PS308<0.1MPa时,PS308断开KA2失电二号泵运转。当压力≥0.1MPa时一号泵停止二号泵工作。 ○4二主一备:转换开关SA2转换到3位,发出启动信号,KA8触点闭合,

热量计算公式

供热简单知识 1. 供热系统:供热系统分一次和二次供热系统,一次由热源单位来提供热源,二次是经过换热站对用户采暖供热 (蒸汽系统除外) ,我公司分东西部供热系统。 2. 热量计算公式:Q=C*G(T2-T1) "000 二次网流量选择原则: G=KW*0.86*1.1/ (T2-T1 ) (地热温差取10 C;分户改造取15 C;二次网直连取 25 C )。 采暖期用热:Q*24*167*0.64 分户估算水量:一般情况下为3-3.5KG/ m2 老式供暖水量:一般情况下为2-2.5KG/ m 地热供暖水量:一般情况下为 3.5-5KG/ m,根据外网负 荷确定。 根据45W,50W,55W 计算流量情况能得出调整水平关系。可以实际计算。 3. 一、二次网的热量相等: Q1=Q2 ,C1*G1*(T22-T21)=C2*G2*(T22 '-T21'), 水 C1=C2 , 一次网温差一般取45 C,直连系统一般选用25 C。但要和设计联系在一起,高值也可取65 C。从公式看出温差和流量决定一、二次网热量计算。 4?板式换热器系统阻力正常范围应在5-7 m H2O 5. 民用建筑室内管道流速不大于 1.2m/s 6. 压力与饱和水温度关系:

单位换算: 例子:45W/川的采暖期的耗热量 45*3600*24*167*0.64=0J 变成GJ: 0 P0=0.41555GJ/ m2 8?比摩阻:供热管路单位长度沿程阻力损失。若将大管径改为小一号管径,比摩阻增加1-2倍。 9?集中供热管网布置与敷设:管网主干线尽可能通过热负荷中心;管网力求线路短直;管网敷设应力求施工方便,工程量少;在满足安全运行、维修简便前提下,应节约用地; 在管网改建、扩建过程中,应尽可能做到新设计的管线不影响原有管线正常运行;管线一般应沿路敷设,不应穿过仓库、堆场以及发展的预留地段;尽可能不通过铁路、公路及其他管线、管沟等,并适当注意整齐美观等,还有许多这里不做介绍。 管网布置有四种形式: A:枝装布置,B :环装布置,C :放射布置,D:网络布置。 10.采暖热指标推荐值(W/ m2)

电加热炉温度自动控制系统

电加热炉温度自动控制系统 一、任务 设计并制作一个温度自动控制系统,控制电加热炉的温度在某一温度范围。 系统的示意图如图1所示。电加热炉顶部置入深度不一的两温度传感器,用于检测加热炉内的温度,炉内温度取其平均值;单片机通过键盘对加热炉的温度进行设定。根据炉内温度与设定温度值的差别程度,有不同的提示信号。炉内的温度和当前设定温度通过显示设备实时显示。 图1 温度自动控制系统示意图 二、要求 ⒈基本要求 (1)温度可调节范围为60℃~200℃,最小设定分度为1℃。 (2)温度显示功能,分辨率为0.1℃。 (3)当温度达到某一设定值并稳定后,炉内温度的波动控制在±2℃以内。 要求温度调控未达到和达到稳定状态,均给出声或光提示信号。 (4)当设定的调节温差为15℃时, 要求达到稳定状态的调节时间小于等于2分钟,稳定状态下的温度波动在±2℃以内。 ⒉发挥部分 (1)当温度达到某一设定值并稳定后,、炉内温度的波动控制在±1℃以内。 (2)当设定的调节温差为15℃时, 尽量减少达到稳定状态的调节时间,并要求超调量不超过3℃,稳定状态下的温度波动在±1℃以内。 (3)能记录并实时显示温度调节过程的曲线, 显示的误差绝对值小于2℃。 (4)其他。 三、说明 (1)炉内温度检测采用具有温度测量功能的数字万用表(测评时自带)。 (2)当温度达到稳定状态的提示信号出现后立即检测调控的温度值,每次检测时间延续60s,以记录温度波动的最大值。 (3)设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结果。完整的电路原理图、重要的源程序用附件给出。

(C3)智能窗系统 一、任务 对下雨等情况进行自我监测,并自动控制窗户关闭。当室内烟雾、可燃性气体超过指标时可自动开启窗户,通风换气。 二、要求 ⒈基本要求 1)防盗报警功能 如果有人要强行从窗户进入室内,智能窗便会用喇叭播放“捉贼啦,在*单元*号”,连续播放5分钟。 2)防毒报警功能 室内的煤气、天然气等可燃气体或烟雾的浓度超标时,智能窗便会报警,并开启窗户,启动排风扇,让有毒气体散发到室外,可有效防止中毒或火灾事故的发生,确保室内空气清新,身体不受伤害。 3)防雨功能 下雨了,窗户会自动关闭。不让雨水淋到屋里来。 ⒉发挥部分 (1)窗的设计可以任意发挥,但是提倡简洁、成本低。 (2)关于其他功能的设计。 三、说明 (1)采用的传感器尽量稳定和廉价。类型不限定。 (2)设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结果。完整的电路原理图、重要的源程序用附件给出。

电加热炉温度控制系统(DOC)

设计说明书 设计题目电加热炉温度控制系统 完成日期2013 年7 月12 日 专业班级自动化12本 设计者 指导教师

课程设计成绩评定

目录 前言 (1) 第一章设计方案概述 (2) 1.1设计内容 (2) 1.2设计方案 (2) 第二章硬件部分设计 (2) 2.1温度检测电路 (2) 2.2单片机连接电路 (3) 2.3 LCD显示部分 (4) 2.4按键与报警电路 (5) 2.5加热控制电路部分 (5) 第三章软件部分设计 (6) 3.1周期采样程序 (6) 3.2数字滤波程序 (6) 3.3 PID程序 (7) 3.4总程序 (9) 心得与体会 (10) 参考文献 (11)

前言 温度是工业对象中一种重要的参数,特别在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉和反应炉等。由于炉子的种类不同,因此所采用的加热方法及燃料也不同,如煤气、天然气、油和电等。但是就其控制系统本身的动态特性来说,基本上属于一阶纯滞后环节,因而在控制算法上亦基本相同。 本次设计是电加热炉温度自动控制系统。该系统利用单片机可以方便地实现对PID参数的选择与设定;实现工业过程中PID控制。它采用温度传感器热电偶将检测到的实际炉温进行A/D转换,送入计算机中,与设定值比较出偏差。对偏差按PID规律进行调整,得出对应的控制量来控制固态续电器、调节电炉的加热功率,从而实现对炉温的控制。利用单片机实现温度智能控制,能自动完成数据采集、处理、转换、并进行PID控制。在设计中应该注意,采样周期不能太短,否则会使调节过程过于频繁,这样,不但执行机构不能反应,而且计算机的利用率也大为降低;采样周期不能太长,否则会使干扰无法及时消除,使调节品质下降。

换热量计算公式

换热量计算公式 ?摘要:焦化工序计算公式(一)冶金焦抗碎强度(M40转鼓指数)冶金焦抗碎强度是反映焦炭的抗碎性能的指标,以百分比表示。其计算公式为:逐日(月)(试验后块度大于 40毫米所占的冶金焦抗碎强度(M40)(%)=百分比( ... 焦化工序计算公式 (一)冶金焦抗碎强度(M40转鼓指数) 冶金焦抗碎强度是反映焦炭的抗碎性能的指标,以百分比表示。其计算公式为: 逐日(月)(试验后块度大于 40毫米所占的 冶金焦抗碎强度(M40)(%)=百分比(%)×冶金焦产量(吨))之和 ×100% 冶金焦总产量(吨) 计算说明:按规定水分(水量)计算。采用国外转鼓试验的,按实际情况计算,并加以说明。 (二)冶金焦抗碎强度(M25转鼓指数) 冶金焦抗碎强度是反映焦炭的抗碎性能的指标,以百分比表示。其计算公式为: 冶逐日(月)(试验后块度大(ye3 zhu2 ri4 _yue4 __shi4 yan4 hou4 kuai4 du4 da4)于25毫米所占 金焦抗碎强度(M25)(%)=的百分比(%(de bai fen bi __))×冶金焦产量(吨)之和 ×100% 冶金焦总产量(吨) (三)冶金焦耐磨强度(M10转鼓指数) 冶金焦耐磨强度是反映焦炭的耐磨性能的指标,以百分比表示,其计算公式为: 逐日(月)(试验后块度小于10毫米所占的 冶金焦耐磨强度(M10)(%) = 百分比(%)×冶金焦产量(吨))之和 ×100%

冶金焦总产量(吨) 计算说明:按规定水分(水量)计算,采用国外转鼓试验的,按实际情况计算,并加以说明,该指标实质上是磨损率,指标值越小越好。 聚氨酯信息网 (四)冶金焦灰分 冶金焦灰分是指冶金焦炭中含灰量所占的百分比。其计算公式为: 冶金焦灰分(%)=冶金焦中所含灰分总量(吨) ×100% 冶金焦总产量(干基)(吨) (五)冶金焦硫分 冶金焦硫分是指冶金焦中含硫量所占的百分比。其计算公式为: 冶金焦硫分(%)=冶金焦中所含硫分总量(吨) ×100% 冶金焦总产量(干基)(吨) (六)冶金焦合格率 冶金焦合格率是指检验合格的冶(ye3 jin1 jiao1 he2 ge2 lv4 shi4 zhi3 jian3 yan4 he2 ge2 de0 ye3)金焦占冶金焦检验总量的百分比。冶金焦各种质量指标中,只要有一项不符合国家规定标准的,即视为不合格品。冶金焦合格率的计算公式为: 冶金焦合格率(%) = 冶金焦检验合格量(吨) ×100% 冶金焦检验总量(吨) (七)全焦率 全焦率(成焦率)是指入炉煤干馏后所获得的焦炭数量占入炉煤量的百分比。其计算公式为: 全焦率(%)= 全部焦炭产量(干基)(吨) ×100%

热量计算(传热)

传热过程的热量衡算 热量衡算是重要的化工基本计算,不仅化工设计必须进行热量衡算,而且日常生产操作也经常要计算各个工序、设备的热量消耗和载热体的用量,目的是准确掌握能耗现状,考核各车间、班组的耗能水平,挖掘生产中的节能潜力,制定有效的节能措施。 1.热负荷Q的计算方法 生产工艺上要求换热器具有的换热能力,称为换热器的热负荷。一台能满足工艺要求的换热器,应使其传热速率等于或略大于热负荷。所以知道了换热器的热负荷,便可确定其他的传热速率。要注意,热负荷与传热速率,其数值相同或相近,但含义并不一样。 热负荷是指生产上要求换热器应具有的换热能力,传热速率则是换热器本身具有换热能力。 针对传热过程中有无相变,热负荷的计算方法有以下三种。 (1)温差法当流体在换热过程中无相变而只有温度的变化时,则热负荷计算用温差法,公式是 Q=M*C*(T2-T1) 式中M――流体的质量,kg Q――在换热中的热量,kJ C――比热容,kJ/kg.K T2、T1――流体换热前后的温度,K (2)潜热法当流体在换热过程中公有相变化时,热负荷计算用潜热法。这种情况所传递的热量是潜热,沸腾汽化吸收的热量为汽化潜热,冷凝放出的热 量为液化潜热(即冷凝潜热)。汽化潜热的符号为R,其物理意义是质量1kg 的某物质,在一定压力下,由液体完全转变为同温度的蒸气所吸收的热量, 单位为kJ/kg;反之,则为该物质的冷凝潜热。同一种物质的冷凝潜热和汽 化潜热数值是相等。潜热法计算公式是 Q=M*R 式中Q――同温相变时所需的热量,kJ M――流体的质量,kg R――物质的汽化潜热或冷凝潜,kJ/kg (3)焓差法焓,也称热焓,物质在某一状态下焓值,就是使物质由基准状态变为现状态时所需的热量。在热量计算中,物质在某温度下热焓的数值, 一般就是指1 kg流体由273K加热至某一指定温度(包括相变)时所需的 热量。热焓的符号为H,单位为kJ/kg。在热负荷的计算过程中,不论有无 相变都可采用焓差法。特别是在既有相变又有温度变化时,用焓差法计算 很方便。公式是 Q=M*(H2-H1) 式中Q――换热的热量kJ M――物质的质量kg H2、H1――物质在最初、最终的热焓,kJ/kg 2.传热过程的热量计算的步骤 (1)弄清题意明确衡算的目的要求,有哪些已知的条件,根据冷、热流体有无相变,确定采用哪种方法计算Q值。 (2)画示意图把所有数据都要标在图上,用箭头表示流体进、出方向,哪些数据属于进方或出方。

电加热锅炉的自动控制解析

电加热锅炉的自动控制 姓名: 学号:B11040120 日期:2014.5.20

摘要 (1) 第1章绪论 (2) 第2章控制要求 (3) 2.1 设计要求 (3) 第3章系统总体设计方案 (4) 3.1 总体设计方案 (4) 3.2 器件的选取 (4) 3.2.1 控制器的选取 (4) 3.2.2 电源选取 (6) 3.2.3 温度传感器选取 (6) 第4章硬件设计 (7) 4.1 时钟电路 (7) 4.2 复位电路 (7) 4.3 键盘电路 (8) 4.4 显示电路 (8) 4.5 温度检测电路 (9) 4.6 加热电路 (10) 第5章软件设计 (12) 5.1 系统主函数设计流程图 (12) 5.2 系统中断处理函数设计流程图 (13) 第6章系统调试与分析 (14) 6.1硬件调试 (14) 6.2软件调试 (14) 6.2.1软件电路故障及解决方法 (14) 6.2.2软件调试方法 (15) 参考文献 (17) 附录1 程序 (18)

近年来随着计算机在社会领域的渗透,单片机的应用正在不断地走向深,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及具体应用对象特点的软件结合,以作完善。 本文从硬件和软件两方面来讲述电加热锅炉自动控制过程,在控制过程中主要应用AT89C51、ADC0809、LED显示器,而主要是通过DS18B20温度传感器采集环境温度,以单片机为核心控制部件,并通过数码管显示实时温度的一种数字温度计。软件方面采用汇编语言来进行程序设计,使指令的执行速度快,节省存储空间。为了便于扩展和更改,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了,使硬件在软件的控制下协调运作。而系统的过程则是:首先,通过设置按键,设定恒温运行时的温度值,并且用数码管显示这个温度值.然后,在运行过程中将采样的温度模拟量送入A/D 转换器中进行模拟/数字转换,再将转换后的数字量用数码管进行显示,最后用单片机来控制加热器,进行加热或停止加热,直到能在规定的温度下恒温加热。 关键词:单片机系统;传感器;模数转换器 1

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

相关主题