搜档网
当前位置:搜档网 › 八年级数学 利用轴对称解几何动点最值问题分类总结(将军饮马)

八年级数学 利用轴对称解几何动点最值问题分类总结(将军饮马)

八年级数学 利用轴对称解几何动点最值问题分类总结(将军饮马)
八年级数学 利用轴对称解几何动点最值问题分类总结(将军饮马)

利用轴对称解几何动点最值问题分类总结(将军饮马)轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。

利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;

(2)三角形两边之和大于第三边;

(3)垂线段最短。

初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。下面对三类线段和的最值问题进行分析、讨论。

(1)两点一线的最值问题:(两个定点+ 一个动点)

问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。

核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。

方法:1.定点过动点所在直线做对称。

2.连结对称点与另一个定点,则直线段长度就是我们所求。

变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。

1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。

(2)一点两线的最值问题:(两个动点+一个定点)

问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。

核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。

变异类型:

1.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。使△PAB的周长最小。

2.如图,点A是∠MON外的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最

小。

(3)两点两线的最值问题:(两个动点+两个定点)

问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。

核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。

变异类型:

1.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形PAQB的周长最小。

2.如图,已知A(1,3),B(5,1),长度为2的线段PQ在x轴上平行移动,当AP+PQ+QB

的值最小时,点P 的坐标为( )

(4) 两点两线的最值问题: (两个动点+两个定点)

问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。

核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。

变异类型:演变为多边形周长、折线段等最值问题。

1. 如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使PA 与点P 到射线OM 的距离之和最小。

二、常见题目

Part1、三角形

1.如图,在等边△ABC 中,AB=6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE=2

人教版八年级数学上册 轴对称解答题专题练习(解析版)

人教版八年级数学上册 轴对称解答题专题练习(解析版) 一、八年级数学 轴对称解答题压轴题(难) 1.在梯形ABCD 中,//AD BC ,90B ∠=?,45C ∠=?,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=?,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =. (1)求边AD 的长; (2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积. 【答案】(1)6;(2)y=-3x+10(1≤x < 103);(2)1769 或32 【解析】 【分析】 (1)如下图,利用等腰直角三角形DHC 可得到HC 的长度,从而得出HB 的长,进而得出AD 的长; (2)如下图,利用等腰直角三角形的性质,可得PQ 、PR 的长,然后利用EB=PQ+PR 得去x 、y 的函数关系,最后根据图形特点得出取值范围; (3)存在2种情况,一种是点P 在梯形内,一种是在梯形外,分别根y 的值求出x 的值,然后根据梯形面积求解即可. 【详解】 (1)如下图,过点D 作BC 的垂线,交BC 于点H ∵∠C=45°,DH ⊥BC ∴△DHC 是等腰直角三角形 ∵四边形ABCD 是梯形,∠B=90° ∴四边形ABHD 是矩形,∴DH=AB=8

∴HC=8 ∴BH=BC -HC=6 ∴AD=6 (2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G ∵EF ∥AD,∴EF ∥BC ∴∠EFP=∠C=45° ∵EP ⊥PF ∴△EPF 是等腰直角三角形 同理,还可得△NPM 和△DGF 也是等腰直角三角形 ∵AE=x ∴DG=x=GF,∴EF=AD+GF=6+x ∵PQ ⊥EF,∴PQ=QE=QF ∴PQ=()162 x + 同理,PR= 12y ∵AB=8,∴EB=8-x ∵EB=QR ∴8-x= ()11622 x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值 则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1 ∴1≤x <103 (3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x= 83=AE

人教版八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word版

人教版八年级上册数学【几何模型三角形轴对称】试卷专题练习(word版 一、八年级数学轴对称解答题压轴题(难) 1.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点. (1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形. (2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明. 【答案】(1)见解析;(2)见解析 【解析】 【分析】 (1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出 ∠EDF=90°,即△DEF是等腰直角三角形; (2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出 ∠EDF=90°,即可得出△DEF是等腰直角三角形. 【详解】 解:(1)连结AD , ∵AB=AC ,∠BAC=90° ,D为BC中点 , ∴AD⊥BC ,BD=AD , ∴∠B=∠BAD=∠DAC=45°, 又∵BE=AF , ∴△BDE≌△ADF(SAS), ∴ED=FD ,∠BDE=∠ADF, ∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°, ∴△DEF为等腰直角三角形. (2)连结AD

∵AB=AC ,∠BAC=90° ,D为BC中点 , ∴AD=BD ,AD⊥BC , ∴∠DAC=∠ABD=45° , ∴∠DAF=∠DBE=135°, 又∵AF=BE , ∴△DAF≌△DBE(SAS), ∴FD=ED ,∠FDA=∠EDB, ∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°. ∴△DEF为等腰直角三角形. 【点睛】 本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定. 2.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且 AD=AE,连接DE. ⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数; ⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数; ⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由. 【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析. 【解析】 【分析】 (1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设 ∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图

中考数学必会几何模型:将军饮马模型

将军饮马模型 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现. 模型1:直线与两定点 模型 作法 结论 l B A 当两定点A 、B 在直线l 异侧时,在直线 l 上找一点P ,使P A +PB 最小. l P A B 连接AB 交直线l 于点P ,点P 即为所求作的点. P A +PB 的最小值为AB l A B 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得P A +PB 最小. l P B' A B 作点B 关于直线l 的对称点B ', 连接AB '交直线l 于点P ,点P 即为所求作的点. P A +PB 的最小值为AB ' l A B 当两定点A 、B 在直线l 同侧时,在直线 l 上找一点P ,使得PA PB -最大. l P A B 连接AB 并延长交直线l 于点 P ,点P 即为所求作的点. PA PB -的最大值为 AB l A B 当两定点A 、B 在直线l 异侧时,在直线 l 上找一点P ,使得PA PB -最大. l B' A B P 作点B 关于直线I 的对称点B ',连接AB '并延长交直线l 于点 P ,点P 即为所求作的点. PA PB -的最大值为 AB '

l A B 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最小. l P A B 连接AB ,作AB 的垂直平分线 交直线l 于点P ,点P 即为所求作的点. PA PB -的最小值为0 模型实例 例1:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,则PD +PE 最小值是 . E B C A D P 解答:如图所示,∵点B 与点D 关于AC 对称, ∴当点P 为BE 与AC 的交点时,PD +PE 最小,且线段BE 的长. ∵正方形ABCD 的面积为12,∴其边长为23∵△ABE 为等边三角形,∴BE =AB =23PD +PE 的最小值为3 例2:如图,已知△ABC 为等腰直角三角形,AC =BC =4,∠BCD =15°,P 为CD 上的动 点,则PA PB - 的最大值是多少? D P P A' B 解答:

将军饮马

将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小。 2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。 3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。使△PAB的周长最小 4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形PAQB的 周长最小。 5.如图,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小 6. .如图,点A是∠MON内的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小

D B C A A N 二、常见题目 Part1、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值 2.如图,在锐角△ABC 中,AB = 42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____. 3.如图,△ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值

M B D A D A Part2、正方形 1.如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。 即在直线AC 上求一点N ,使DN+MN 最小 2.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23 B .2 6 C .3 D . 6 3.在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值). 4.如图,四边形ABCD 是正方形, AB = 10cm ,E 为边BC 的中点,P 为BD 上的一个动点,求PC+PE 的最小值;

八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word版

八年级上册数学【几何模型三角形轴对称】试卷专题练习(word版 一、八年级数学全等三角形解答题压轴题(难) 1.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE. (1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由); (2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由; (3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由. 【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析 【解析】 【分析】 (1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF; (2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此 CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了; (3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出 EM=PN=1 2 AD,EC=MF= 1 2 AB,我们只要再证得两对应边的夹角相等即可得出全等的结

初中数学解题模型专题讲解10---“将军饮马”模型详解与拓展

初中数学解题模型专题讲解 专题10 “将军饮马”模型详解与拓展 平面几何中涉及最值问题的相关定理或公理有:① 线段公理:两点之间,线段最短. 并由此得到三角形三边关系; ② 垂线段的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短. 在一些“线段和最值”的问题中,通过翻折运动,把一些线段进行转化即可应用 ①、② 的基本图形,并求得最值,这类问题一般被称之为“将军饮马”问题。 问题提出: 唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交 河.”诗中隐含着一个有趣的数学问题. 如图所示,诗中将军在观望烽火之后从山脚下的A 点出发,走到河边饮马后再到B 点宿营.请问怎样走才能使总的路程最短? 模型提炼: 模型模型【【1】一定直线、异侧两定点 直线l 和l 的异侧两点A、B,在直线l 上求作一点P,使PA+PB 最小

解答:根据“两点之间,线段距离最短”,所以联结AB 交直线l 于点P,点P 即为所求点 模型模型【【2】一定直线、同侧两定点 直线l 和l 的同侧两点A、B,在直线l 上求作一点P,使PA+PB 最小 解答: 第一步:画点A 关于直线l 的对称点A'(根据“翻折运 动”的相关性质,点A、A'到对称轴上任意点距离相等, 如图所示,AP=A'P,即把一定直线同侧两定点问题转化为 一定直线异侧两定点问题) 第二步:联结A'B 交直线l 于点Q,根据“两点之间,线段距离最短”,此时“A'Q+QB”最短即“AQ+QB”最短 模型模型【【3】一定直线、一定点一动点 已知直线l 和定点A,在直线k 上找一点B (点A、B 在直线l 同侧), 在直线l 上找点P,使得AP+PB 最小 解答: 第一步:画点A 关于直线l 的对称点A' 第二步:过点A'做A'B⊥k 于点B 且交直线l 于点P,根据“从直线 外一点到这条直线上各点所连的线段中,垂线段最短”,可知A'P+PB 最小即AP+PB 最小

初二八年级数学轴对称图形课后练习题(含答案)

《轴对称图形》课后练习 1.如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是() ①②③④ A.①②③B.②③④ C.③④① D.④①② 2.下列图形中,不是轴对称图形的是( ) A.有两个角相等的三角形 B.有一个角为45o的直角三角形 C.有一个内角为30o,一个内角为120o的三角形 D.有一个内角为30o的直角三角形 3.等腰三角形是轴对称图形,它的对称轴是( ) A.过顶点的直线 B.顶角的平分线 C.底边的垂直平分线 D.腰上的高 4.下列图形中,不是轴对称图形的是( ) A.角B.等边三角形 C.线段 D.不等边三角形 5.正五角星的对称轴的条数是( ) A.1条B.2条C.5条 D.10条

6.下列图形中有4条对称轴的是( ) A.平行四边形B.矩形 C.正方形D.菱形 7.下列说法中,正确的是( ) A.两个全等三角形组成一个轴对称图形 B.直角三角形一定是轴对称图形 C.轴对称图形是由两个图形组成的 D.等边三角形是有三条对称轴的轴对称图形 8.如图,ΔABC和ΔA’B’C’关于直线对称,下列 结论中: ①ΔABC≌ΔA’B’C’; ②∠BAC’≌∠B’AC; ③l垂直平分CC’; ④直线BC和B’C’的交点不一定在l上,正确的有( ) A.4个B.3个 C.2个D.1个 9.如图,∠AOB内一点P,P1、P2分别是P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2 = 5cm,则ΔPMN的周长是( ) A. 3cm B. 4cm C. 5cm D. 6cm 10.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()

初中数学之将军饮马的6种模型(培优)

初中数学之将军饮马的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使P A+PB最小。 2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使P A+PB最小。 3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。使△P AB的周长最小 4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形P AQB的周长最小。

5.如图,点A是∠MON外的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小 6. .如图,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小 二、常见题目 类型一、三角形 1.如图,在等边△ABC中,AB= 6,AD⊥BC,E是AC上的一点,M是AD上的一点,AE=2,求EM+EC 的最小值 解:∵点C关于直线AD的对称点是点B, ∴连接BE,交AD于点M,则ME+MD最小, 过点B作BH⊥AC于点H, 则EH = AH–AE = 3–2 = 1, BH= 在直角△BHE中,BE

2.如图,在锐角△ABC中,AB =BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____. 解:作点B关于AD的对称点B',过点B'作B'E⊥AB于点E,交AD于点F,则线段B'E长就是BM+MN的最小值在等腰Rt△AEB'中,根据勾股定理得到,B'E = 4 3.如图,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、N,使BM+MN的值最小,则这个最小值 解:作AB关于AC的对称线段AB',过点B'作B'N⊥AB,垂足为N,交AC于点M,则B'N= MB'+MN = MB+MN. B'N的长就是MB+MN的最小值,则∠B'AN = 2∠BAC= 60°,AB' = AB = 2, ∠ANB'= 90°,∠B' = 30°。∴AN = 1,在直角△AB'N中,根据勾股定理B'N 类型二、正方形 1.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为_________。 即在直线AC上求一点N,使DN+MN最小。 解:故作点D关于AC的对称点B,连接BM,交AC于点N。则DN+MN=BN+MN=BM。线段BM的长就是DN+MN的最小值。在直角△BCM中,CM=6,BC=8,则BM=10。故DN+MN的最小值是10

轴对称将军饮马问题

将军饮马问题教案 教学设计 【教材分析】 本节内容的地位与作用 最短路径问题是中考热点问题之一,本课是在初二上学期,学生学完了轴对称、勾股定理、位置与坐标、一次函数等章节后以课本上数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题.主要是运用数形结合和思想,综合轴对称、线段的性质和勾股定理以及一些常见的轴对称图形的性质解决线段之和最短问题,该问题的解决为我们提供了一种解题的思路和线索,触类旁通,由此产生了一系列问题的解题思路。使学生在操作活动的过程中感受知识的自然呈现,体验数学的神秘与乐趣。 【学情分析】从我平时教学反映出学生不重视学习方法,不注意归纳总结,不会思考,更不善于思考,只懂得机械的重复做题,浪费的大量的时间和精力,再加上来自社会、家长和老师的压力较大,学生学的辛苦,毫无快乐可言.而家长对我们教学的质量的要求较高,不但要学习成绩好,还要孩子学的轻松,玩的高兴.所以想通过本节课引导学生学会学习,学会思考,从而使其感受到学习的快乐,提高学习的兴趣,避免死做题,读死书,以达到“教”是为可不教的目的.我班为平行班,代表了年级的平均水平,学生基础尚可,自觉性较强,学习努力,所以本节课设计为一堂学法研究课,旨在让学生学会思考,感受学习的快乐,体验成功. 教学目标: 【知识技能】 1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感 悟转化思想. 2.能利用轴对称变换解决日常生活中的实际问题。 【过程与方法】.培养学生的探究、归纳、分析、解决问题的能力。 【情感与态度】进一步培养好奇心和探究心理,更进一步体会到数学知识在生活中 重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 难点:在实际题目中会运用最短路径模型灵活解决问题。 【教学关键】 运用好数形结合的思想,特别是从轴对称和线段的性质入手,获得求线段之和最短问题的直观形象,以便准确理解本节课的内容。 【教学策略】利用教学资源,通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

八年级数学轴对称画图题专题难点训练

八年级数学轴对称画图题专题难点训练学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.如图,点P是线段AB上的一点,请在图中完成下列操作. (1)过点P画BC的垂线,垂足为H; (2)过点P画AB的垂线,交BC于Q; (3)线段的长度是点P到直线BC的距离. 2.作图题: (1)过点A画高AD; (2)过点B画中线BE; (3)过点C画角平分线CF. 3.在下面的方格纸中, (1)先画△A1B1C1,使它与△ABC关于直线l1对称;再画△A2B2C2,使它与△A1B1C1关于直线l2对称; (2)若△ABC向右平移2格,则△A2B2C2向平移格. 4.如图,在正方形网格上有一个△DEF.

(1)画出△DEF关于直线HG的轴对称图形(不写画法); (2)画EF边上的高(不写画法); (3)若网格上的最小正方形边长为1,则△DEF的面积为. 5.如图,在每个小正方形的边长均为1 个单位长度的方格纸中,有线段AB 和直线MN,点A、B、M、N 均在小正方形的顶点上,在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为对称轴的轴对称图形, 点A 的对称点为点D,点B 的对称点为点C. 6.已知:如图,已知△ABC (1)点A关于x轴对称的点A1的坐标是,点A关于y轴对称的点A2的坐标是; (2)画出与△ABC关于x轴对称的△A1B1C1; (3)画出与△ABC关于y轴对称的△A2B2C2. 7.如图所示的点A、B、C、D、E.

(1)点和点关于x轴对称; (2)点和点关于y轴对称; (3)点A和点D关于直线l成轴对称,请画出直线l.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程) 8.如图,根据要求回答下列问题: (1)点A关于y轴对称点A’的坐标是;点B关于y轴对称点B’的坐标是; (2)作出△ABC关于y轴对称的图形△A’B’C’(不要求写作法) (3)求△ABC的面积是 9.如图,根据要求回答下列问题: (1)点A关于y轴对称点A′的坐标是;点B关于y轴对称点B′的坐标是(2)作出△ABC关于y轴对称的图形△A′B′C′(不要求写作法) (3)求△ABC的面积. 10.如图,利用关于坐标轴对称的点的坐标特点,分别作出△ABC关于x轴和y轴对称

初中数学:将军饮马问题习题

l A l l B A l l B A l P l l A 将军饮马 “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。 模型1 定直线与两定点 模型 作法 结论 当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使PA+PB 最小。 连接AB 交直线l 于点P ,点P 即为所求作的点。 PA+ PB 的最小。 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使 PA+PB 最小。 作点B 关于直线l 的对称点 B ′,连接AB ′交直线于点P ,点P 即为所求作的点。 PA+PB 的最小值为AB ′。 当两定点A 、B 在直线l 同侧 时,在直线l 上找一点P ,使 PA PB -最大。 连接AB 并延长交直线l 于点P ,点P 即为所求作的点。 PA PB -的最大值为AB 。 当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使PA PB -最大。 作点B 关于直线l 的对称点B ′,连接AB ′并延长交直线于点P ,点P 即为所求作的点。 PA PB -的 最大值为AB ′。

P E D C B A P D C B A E D C B A 模型实例 例1.如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,则PD+PE 的最小值为 。 例2.如图,已知△ABC 为等腰直角三角形,AC=BC=4,∠BCD=15°,P 为CD 上的动点,则PA PB -的最大值是多少? 热搜精练 1.如图,在△ABC 中,AC=BC=2,∠ACB-90°,D 是BC 边的中点,E 是AB 边 上一动点,则EC+ED 的最小值是 。

将军饮马模型(终稿)教学提纲

将军饮马模型(终稿)

将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小. 作法:连接AB,与直线l的交点Q, Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接AB,与直线l的交点Q,P为直线l上任意一点, 在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC. 原理:两点之间,线段最短 证明:连接AC,与直线l的交点Q,P为直线l上任意一点, 在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦) 2.两动一定型 例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短. 作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求. 原理:两点之间,线段最短

(完整版)八年级数学《轴对称》练习及答案

E D C A B M N F 八年级数学《轴对称》同步练习题 【基础达标】 1.选择题: ⑴下列说法错误.. 的是( ) A.关于某条直线对称的两个三角形一定全等 B.轴对称图形至少有一条对称轴 C.全等三角形一定能关于某条直线对称 D.角是关于它的平分线对称的图形 ⑵下列图形中,是. 轴对称图形的为 ( ) ⑶下图所示的图案中,是轴对称图形且有两条对称轴的是( ) 2.填空题: ⑴观察右上图中的两个图案,是轴对称图形的为________,它有_____条对称轴. ⑵如右下图,△ABC 与△AED 关于直线l 对称,若AB=2cm ,∠C=95°,则AE= ,∠D= 度. ⑶坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x?轴的距离是__________. 3.下图中的图形都是轴对称图形,请你试着画出它们的对称轴. 4.如图,△ABC 与△ADE 关于直线MN 对称.BC 与DE 的交点F 在直线MN 上. ⑴指出两个三角形中的对称点; ⑵指出图中相等的线段和角; ⑶图中还有对称的三角形吗? 5.如图,把一张纸片对折后,用笔尖在纸上扎出图⑶所示的图案,将纸打开后铺平,观察你所得的图案.位于折痕两侧的部分有什么关系?与同伴交流你的想法.

D C A B E D C A B E D C A B 【能力巩固】 6.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形。 ◇同步训练2◇ 【基础达标】 1.选择题: ⑴在锐角△ABC 内一点P 满足PA=PB=PC ,则点P 是△ABC( ) A.三条角平分线的交点 B.三条中线的交点 C.三条高的交点 D.三边垂直平分线的交点 ⑵△ABC 中,AC >BC ,边AB 的垂直平分线与AC 交于点D ,已知AC=5,BC=4,则△BCD 的周长是( ) A.9 B.8 C.7 D.6 ⑶平面内到不在同一条直线的三个点A 、B 、C 的距离相等的点有 ( ) A.0个 B.1个 C.2个 D.3个 2.填空题: ⑴如右图,△ABC 中,AB=AC=14cm ,D 是AB 的中点,DE ⊥AB 于D 交AC 于E ,△EBC 的周长是24cm ,则BC=_________. ⑵互不平行的两条线段AB 、B A ''关于直线l 对称,AB 和B A ''所在直线交于点P ,下面结论:①AB=B A '';②点P 在直线l 上;③若点A 、A '是对称点,则l 垂直平分线段A A ';④若点B 、B '是对称点,则PB=B P ',其中正确的有 (只填序号). 3.△ABC 中,边AB 、AC 的垂直平分线交于点P.求证:点P 在BC 的垂直平分线上. 4.如图,直线AD 是线段BC 的垂直平分线,求证:∠ABD=∠ACD. 5.如图,△ABC 中∠ACB=90°,AD 平分∠BAC ,DE ⊥AB 于E ,求证:直线AD 是CE 的垂 直平分线.

初中数学将军饮马问题的六种常见题型汇总

第 6 页 共 10 页 初中数学将军饮马问题的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1. 如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 3.如图,点P 是∠ MON 内的一点,分别在OM ,ON 上作点A ,B 。使△P AB 的周长最小 4.如图,点P , Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。使四边形P AQB 的 周长最小。 5.如图,点A 是∠MON 外的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小

第 6 页 共 10 页 6. .如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小 二、常见题目 【1】、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,AE =2,求EM +EC 的最小值 解: ∵点C 关于直线AD 的对称点是点B , ∴连接BE ,交AD 于点M ,则ME +MD 最小, 过点B 作BH ⊥AC 于点H , 则EH = AH – AE = 3 – 2 = 1, BH =22BC CH -=2263-=33 在直角△BHE 中,BE =22BH EH - =22(33)1+=27 2.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点, 则BM +MN 的最小值是____. 解:作点B 关于AD 的对称点B ',过点B '作B 'E ⊥AB 于点E ,交AD 于点F ,则线段B 'E 长就是BM +MN的最小值在等腰Rt △AEB '中,根据勾股定理得到,B 'E = 4

初二数学轴对称练习题

初二数学轴对称练习题 1.在平面直角坐标系中,点P(2,3),Q(3,2),请在x轴和y轴上分别找到M点和N点,使四边形PQMN周长最小. (1)作出M点和N点. (2)求出M点和N点的坐标. 2.如图2,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线, 求证:BQ+AQ=AB+BP. 图2 3.已知:如图3,AD是∠BAC的平分线,∠B=∠EAC,EF⊥AD于F. 求证:EF平分∠AEB. 图3 4.已知:如图4,在ΔABC中,CE是角平分线,EG∥BC,交AC边于F,交∠ACB的外角(∠ACD)的平分线于G,探究线段EF与FG的数量关系并证明你的结论. 图4 5.如图5,过线段AB的两个端点作射线AM,BN,使AM∥BN,请按以下步骤画图并回答.(1)画∠MAB、∠NBA的平分线交于点E,∠AEB是什么角 (2)过点E任作一线段交AM于点D,交BN于点C.观察线段DE、CE,有什么发现请证明你的猜想. (3)试猜想AD,BC与AB有什么数量关系

图5 6.已知:如图7-11,ΔABC中,AB=AC,∠A=100°,BE平分∠B交AC于E.(1)求证:BC=AE+BE; (2)探究:若∠A=108°,那么BC等于哪两条线段长的和呢试证明之. 图5 7.如图6,已知ΔABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE 并延长至点F,使EF=AE,连接AF、BE和CF. (1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明; (2)求证:AF=BD. 图6 8.已知:如图7,四边形ABCD中,AC平分∠BAD,CD∥AB,BC=6cm,∠BAD=30°,∠B=90°.求CD的长______. 图7 9.(1)如图8,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC,求∠AEB的大小; 图8 (2)如图9,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小. 图9

将军饮马的六种模型

第 1 页 共 10 页 将军饮马的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1.如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 3.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 。使△P AB 的周长最小 4.如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。使四边形P AQB 的 周长最小。 5.如图,点A 是∠MON 外的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小

6. .如图,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小 二、常见题目 Part1、三角形 1.如图,在等边△ABC中,AB= 6,AD⊥BC,E是AC上的一点,M是AD上的一点,AE=2,求EM+EC 的最小值 解:∵点C关于直线AD的对称点是点B, ∴连接BE,交AD于点M,则ME+MD最小, 过点B作BH⊥AC于点H, 则EH = AH–AE = 3–2 = 1, BH = 22 BC CH -=22 63 -=33 在直角△BHE中,BE = 22 BH EH - =22 (33)1 +=27 2.如图,在锐角△ABC中,AB =42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____. 解:作点B关于AD的对称点B',过点B'作B'E⊥AB于点E,交AD于点F,则线段B'E长就是BM +MN的最小值在等腰Rt△AEB'中,根据勾股定理得到,B'E = 4 第 2 页共10 页

八年级上册数学轴对称测试题精选

轴对称专题练习 一、填空:(20%)1、到三角形的三个顶点距离相等的点是这个三角形的交点 2、等腰三角形是图形,对称轴是 3、角是图形,对称轴是 4、等边三角形有条对称轴。 5、圆有条对称轴,对称轴是 6、有一个角为60度的等腰三角形是三角形。 7、有两个角为60度的三角形是三角形。 8、若等腰三角形的一个内角为40Ο,则其余两角分别为 9、写出一个有三条对称轴的轴对称图形 10、到三角形三边距离相等的点是这个三角形的交点。 二、选择:(12%)1、下列图形中,是轴对称图形的有() (1)长方形(2)正方形(3)直角三角形(4)扇形(5)等腰三角形(6)等边三角形(7)角(8)圆(9)线段(10)正五角星。(A)6个(B)7个(C)8个(D)9个2、从镜子中看到这样一串数,那么这串数字应为() (A)8271 (B)1728(C)1875(D)1758 3、从平面镜里看到镜子对面电子钟示数为,这时的实际时刻应该是()(A)53:10(B)10:23(C)10:53(D)32:01 4、若等腰三角形一边为5,另一边为3,那么它的周长为() (A)11(B)13(C)8或者13(D)11或者13 三、1、已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=10cm, ∠A=49о14′54〞,求ΔBCD的周长和∠DBC的度数。 A E D B C 2、在ΔABC中,BC的垂直平分线交AC于E,垂足是D,ΔABE的周长是15cm,BD=6cm,求ΔABC的周长 A E A B D C 3、在ΔABC中,AB=AC,BC=BD,AD=DE=EB,求∠A的度数 E D B C 4、∠BAC=130о,若MP和NQ分别垂直平分AB和AC,求∠PAQ的度数 A M N B P Q C

几何最值之将军饮马(知识点总结)

几何最值之将军饮马 一、将军饮马问题背景 诗中隐含着一个有趣的数学问题,如图所示,诗中将军在观望烽火之后从山脚下的A点出 1.两点之间线段最短 2.垂线段最短 通常在求最值的时候我们会借助于几何三大变化,轴对称、平移、旋转变换进行线段的转移,从而转化成两大核心原理进行最值求解。

二、 将军饮马问题题型 1. 将军饮马--单动点求最值 问题1:如图,在直线l 上找一点P ,使得PA PB +的值最小? 问题解决:如下图,由两点之间线段最短可知,当点A P B 、、三点共线时,PA PB +最小,即线段AB 的长度。 问题2:如图,A B 、两点在直线l 上方,在直线l 上找一点P ,使得PA PB +的值最小? 问题解决:当A B 、两点在直线l 同侧时,PA PB +的长度是一条折线,要求PA PB +的最小值必须通过一定方法化折为直。如下图,作点B 关于直线l 的对称点'B 。PA PB +的长度转化为'PA PB +的长度。

故点'A P B 、、三点共线时,PA PB +最小,即线段'AB 的长度。 问题3:如图,A B 、两点在直线l 上方,在直线l 上找一点P ,使得||PA PB -的值最大? 问题解决:||PA PB -的值最大如何求,可以联想到三角形三边关系。利用两边之差小于第三边可知,||PA PB AB -≤。如下图,故点A B P 、、三点共线时,||PA PB AB -=,此时取到最大值,即线段AB 的长度。 问题4:如图,A B 、两点在直线l 的异侧,在直线l 上找一点P ,使得||PA PB -的值最大? 问题解决:这种情况||PA PB -的最大值和之前的解决方案是一样的,如下图,通过作点B 关于直线l 的对称点'B ,将||PA PB -转化成|'|PA PB -。

将军饮马模型(终稿)

将军饮马模型 将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营 A 出发,先到河边饮马,然后再去河岸同侧的军营 B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“ 将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点 P,使动点 P 到两个定点 A 与 B 的距离之和最小,即 PA+PB 最小 . 作法:连接 AB ,与直线l 的交点Q, Q 即为所要寻找的点,即当动点P 跑到了点 Q 处, PA+PB 最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接 AB ,与直线l 的交点Q,P为直线 l 上任意一点, 在⊿ PAB 中,由三角形三边关系可知:AP+PB ≧ AB( 当且仅当 PQ 重合时取﹦ )

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 的和最小 . 关键:找对称点 作法:作定点 B 关于定直线l的对称点 C,连接 AC ,与直线 l 的交点 Q 即为所要寻找的点,即 当动点 P 跑到了点 Q 处, PA+PB 和最小,且最小值等于 AC. 原理:两点之间,线段最短 证明:连接 AC ,与直线l 的交点Q,P为直线 l 上任意一点, 在⊿ PAC 中,由三角形三边关系可知:AP+PC≧ AC( 当且仅当 PQ 重合时取﹦ ) 2.两动一定型 例3:在∠ MON 的内部有一点 A ,在 OM 上找一点 B ,在 ON 上找一点 C,使得△ BAC 周长最短. 作法:作点 A 关于 OM 的对称点 A’,作点 A 关于 ON 的对称点 A’’,连接 A’ A ’’,与 OM 交于点 B,与 ON 交于点 C,连接 AB , AC ,△ ABC 即为所求. 原理:两点之间,线段最短

相关主题