搜档网
当前位置:搜档网 › Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input

Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input

Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input
Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input

Phosphorus (P) is one of the limiting nutrients for plant growth (Redel et al. 2007) and organic P may constitute 20–80% of the total P in the surface soil (Turner and Haygarth 2005). Phosphorus is available to plants after it is hydrolysed into or-thophosphate by phosphatases in the soils. Thus, the soil phosphatase activities greatly affect the bioavailability of organic P. The phosphatases in soils include not only phosphomonoesterases (for hydrolyzing organic phosphate monoesters) and phosphodiesterase (for hydrolyzing phos-phate diesters) but also pyrophosphatase (which transfers pyrophosphate into orthophosphate) (Tabatabai 1994).

The phosphatase activities in cultivated land are highly affected by the agricultural practices, such as tillage, cropping systems and crop residues managements (Deng and Tabatabai 1997, Zhang et al. 2010). Both no-till and straw mulching leave a large amount of crop residues on the surface soils. It increases total P of surface soil and the activity of phosphatases (Redel et al. 2007). Most researchers focused on the response of phosphomonoesterase to tillage and residue managements (Turner and Haygarth 2005), while little information is avail-able of their effects on phosphodiesterase and pyrophosphatase. Much of the organic phosphate in plant residues is in the form of phosphate di-esters (Turner and Newman 2005), and the crop residues which are added into the soil by tillage practices mainly increase phosphate diesters, such as phospholipids and nucleic acids. Little is known

Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts

J.B. Wang1,2, Z.H. Chen1, L.J. Chen1,3, A.N. Zhu4, Z.J. Wu1

1Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China

2Graduate University of the Chinese Academy of Sciences, Beijing, P.R. China

3State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China

4State Experimental Station for Agro-Ecology, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P.R. China

ABSTRACT

The effects of tillage and residue input amounts on soil phosphatase (alkaline phosphomonoesterase ALP, acid phosphomonoesterase ACP, phosphodiesterase PD, and inorganic pyrophosphatase IPP) activities and soil phos-phorus (P) forms (total P, organic P, and available P) were evaluated using soils collected from a three-year ex-periment. The results showed that no-till increased soil total and organic P, but not available P as compared to conventional tillage treatments. Total P was increased as inputs of crop residue increased for no-till treatment. There were higher ALP and IPP activities in no-till treatments, while higher PD activity was found in tillage treat-ments and tillage had no significant effect on ACP activity. Overall phosphatase activities increased with an in-crease of crop residue amounts. Soil total P was correlated negatively with PD activity and positively with other phosphatase activities. Organic P had a positive correlation with ACP activity, but a negative correlation with PD activity. Available P had no significant correlation with phosphatase activities. Our data suggests that no-till and residue input could increase soil P contents and enhance the activities of phosphatase.

Keywords: straw mulching and burying; wheat-maize rotation; soil nutrient; soil biochemical activities Supported by the National Basic Research Program of China, Project No. 2011CB100504.

about how tillage and different levels and sources of crop residues affect soil inorganic pyrophosphatase activity. Deng and Tabatabai (1997) reported that tillage could enhance inorganic pyrophosphatase activity of soil. However, more information is nec-essary to confirm the response of soil inorganic pyrophosphatase activity to tillage and residue managements. This study investigated the effects of tillage and residue managements on soil total P, organic P, and available P and on the activities of soil alkaline phosphomonoesterase (ALP), acid phosphomonoesterase (ACP), phosphodiesterase (PD) and inorganic pyrophosphatase (IPP) in the Huang-Huai-Hai plain, a major grain growing area in China.

MATERIALS AND METHODS

Site characteristics. A field experiment was conducted in September 2007 at Fengqiu State Experimental Station for Agro-Ecology, Chinese Academy of Sciences, located in Fengqiu town (35°01'N, 114°32'E), Henan province, China. It is located in the warm, temperate semi-humid mon-soon climatic zone, with mean annual precipitation of 605 mm and an average annual air temperature of 13.9°C. The experiment was established as a rotation of winter wheat (early-October to mid-May) and maize (early-June to mid-September). Initial soil chemical characteristics and further details of the site characteristics were described by Zhu et al. (2009).

Experimental design. The study was based on a wheat-maize rotation system which included till-age (T) and no-till (NT) as main plots and three subplots [no residue (R0), 50% residue (R50) and 100% residue (R100)]. The mean 100% residue treat-ment was 7.51 t/ha in wheat season and 8.12 t/ha in maize season. The chopped crop residues were ploughed into soil to a depth of 23 cm under tillage and mulched on the soil under no-till after wheat and maize harvest, respectively. Fertilisers were applied for all treatments. Two fertilisations were applied in wheat season or maize season. The first was carried out when sowing in June and October with the mount of 150 kg/ha (N:P:K = 17:9:5). The second was carried out in August in wheat season and in March in maize season with urea (120 kg N/ ha). Each treatment was arranged randomly and replicated six times with plot size of 4 m × 100 m. Soil sampling and analysis. Ten subsamples were collected from the surface soil layer (0–20 cm) in each plot and combined into soil samples (~500 g) after the winter wheat harvest on June 4, 2010. After plant materials and stones were removed, soil samples were sieved (2 mm). A portion of the sieved soils (~200 g) was kept at 4°C until analysis of soil phosphatase activities, while the rest was air-dried and stored at room temperature for the chemical analysis. The soil phosphatase activities and other soil properties were assayed within two weeks of sampling. Soil pH, total P (TP), organic P (OP), available P (AP), soil organic carbon (SOC) and total nitrogen (TN) were determined according to Ryan et al. (2001). Total P was determined by the molybdenum blue colorimetric method fol-lowing perchloric acid (HClO4) digestion. Organic P was calculated after igniting the soil at 550°C, and subtracting P in the unignited sample from P in the ignited sample. Available P was determined by molybdenum blue colorimetric method after extraction by sodium bicarbonate (NaHCO3). The activities of ALP, ACP, PD and IPP were analyzed with the field-moist soils as described by Tabatabai (1994). ALP and ACP were deter-mined by measuring the release of p-nitrophenol by incubating 1 g soil at 37°C for 1 h with 0.2 ml toluene, 4 ml universal buffer (pH 6.5 for ACP and pH 11.0 for ALP), and 1 ml 50 mmol p-nitrophenyl phosphate. Enzyme activity was expressed as mg p-nitrophenol/kg soil/h. PD was assayed by a simi-lar procedure but with bis-p-nitrophenyl phos-phate as the substrate and the buffer was adjusted to pH 8.0. Enzyme activity was expressed as mg p-nitrophenol/kg soil/h. IPP was determined by measuring the concentration of PO43–-P which was released by incubating 1 g soil with 3 ml 50 mmol sodium pyrophosphate at 37°C for 5 h. Enzyme activity was expressed as mg PO43–-P/kg soil/5 h. Statistical analysis. Soil data were calculated based on oven-dried (105°C) weight. The influence of tillage and residue managements on soil chemi-cal properties and soil phosphatase activities were estimated with a simple two-factorial ANOVA. Multiple comparisons (Student-Newman-Keuls) were analysed by one-way ANOVA. Correlation of soil parameters was based on the Pearson correla-tion coefficients. All statistical analyses were con-ducted with the software SPSS 16.0 for Windows.

RESULTS

Soil chemical properties. Total N, pH, and C/N ratio were significantly affected by tillage (Table 1). Residue input amounts and their interactions with tillage had significant effects on SOC content, soil

Edited by Foxit Reader

Copyright(C) by Foxit Software Company,2005-2008 For Evaluation Only.

pH and C/N ratio (Table 1). Total N content was higher in no-till treatments than in conventional tillage. With the increasing residue input amounts, SOC content was increased in the no-till treat-ments and similar tendencies were found for total N content, soil pH and C/N ratio (Table 2). Soil phosphatase activities. Tillage significantly affected soil phosphatase activities except ALP. Residue managements also significantly affected soil IPP activity. The interaction of tillage and residue managements had significant effects on soil PD and IPP activities (Table 1).

Among treatments, ALP and IPP activities were higher in no-till treatments compared with con-ventional tillage. ALP and IPP activities in no-till treatments were significantly increased with an increase of residue amounts. ACP and PD activi-ties had the same tendency but had no significant differences (Figure 1).

Soil phosphorus. Soil total P ranged from 597 to 745 mg/kg. Of this total, 15.0 to 22.5% was in the organic P form (71.7 to 151 mg/kg). Available P was only 11.0 to 24.8 mg/kg (Figure 2). Tillage had significant effects on the content of total P, organic P and available P. Organic P was also significantly influenced by residue input amounts. The interaction of tillage and residue input amounts had significant effects on the con-tents of total P and available P (Table 1).

The total P and organic P under no-till treatments were significant higher than conventional tillage treatments. No significant difference of available

Table 1. F value of ANOVA of the effect of tillage, residue input amounts and their interaction on chemical properties of soil, soil phosphatase activities and the contents of soil P

Factors

Tillage (T) Residue input amounts (R)T × R

F value P value F value P value F value P value

ALP 2.320.139 3.090.061 2.080.144 ACP10.350.0030.390.679 2.800.077

PD37.350.000 1.530.236 5.040.014 IPP16.660.00014.690.00036.000.000

TP32.400.0000.790.464 5.300.011

OP98.970.0008.620.001 2.800.078

AP9.570.005 3.180.06013.190.000 SOC0.140.707 4.490.0209.210.001

TN27.030.000 1.520.238 1.130.338

pH17.440.000 4.460.02248.170.000

C/N ratio27.720.0009.750.00132.280.000 ALP – alkaline phosphomonoesterase activity; ACP – acid phosphomonoesterase activity; PD – phosphodiesterase activity; IPP – inorganic pyrophosphatase activity; TP – total P; OP – organic P; AP – available P; SOC – soil organic carbon; TN – total N

Table 2. Selected chemical properties of test soil as affected by tillage and residue input amounts treatments Treatments SOC (g/kg)Total N (g/kg)pH C/N ratio

TR012.7 (0.93)a0.88 (0.07)bc7.71 (0.08)a14.4 (0.80)a

TR508.85 (0.91)c0.83 (0.10)c7.46 (0.10)c10.7 (0.46)bc

TR10010.2 (1.34)bc0.87 (0.08)bc7.33 (0.04)c11.7 (1.05)b NTR09.71 (0.70)bc0.98 (0.09)abc7.26 (0.04)c9.92 (0.82)c NTR5010.3 (1.31)bc 1.01 (0.07)ab7.30 (0.07)c10.8 (1.01)bc NTR10011.2 (2.36)ab 1.10 (0.13)a7.58 (0.12)b11.7 (0.54)b Values are means with standard deviations in parenthesis. Different lower case letters indicate significant dif-ferences (P < 0.05). TR0, TR50, and TR100 are conventional tillage with 0, 50, and 100% residue input amounts. NTR0, NTR50, and NTR100 are no-till with 0, 50, and 100% residue input amounts, respectively

P content was observed among treatments except for TR0 which was higher than for the other treat-ments. Along with the increasing residue input amounts, total P content under no-till treatments increased, but the opposite was found for organic P, and no significant changes were observed in available P. No consistent trends were found in total P, organic P and available P under conven-tional tillage as the amount of residue returned to the soil was increased (Figure 2).

Correlations between soil chemical proper-ties and phosphatase activities . Phosphatase activities had significant positive correlations with total P except PD activity, which had a negative correlation with total P content (Table 3). Organic P had a significant positive correlation with ACP activity but a significant negative correlation with PD activity. No significant correlations between available P and the four phosphatase activities were found. SOC content had significant positive correlations with all properties except organic P content. Total N content had a negative correlation with PD activity and positive correlation with the other enzymes except for IPP activity and available P content. PD and IPP activities were positively correlated with soil pH. PD activity also positively correlated with C/N ratio (Table 3).DISCUSSIONS

Previous studies confirmed that no-till and residue application increased the accumulations of SOC and total N in surface soils (Halpern et al. 2010, Qin et al. 2010). However, our study showed that tillage systems had only a very lim-ited influence on SOC storage after three years of the experiment. The SOC contents under no-till treatments were higher than the corresponding tillage treatments after 50–100% residue inputs, but the opposite occurred for the treatments TR0 and NTR0 treatments. There are some possible reasons: one is the sampling method, for example, Baker et al. (2007) hypothesized that sampling methodology may affect C accumulation measured for conservation tillage, due to shallow sampling introducing a bias. Pretreatments of soil samples by removing all plant materials could be another reason for the phenomena. Our study also found that residue treatments increased nutrient con-

200 400 600 800

TR0TR50TR100NTR0NTR50NTR100

m g p -n i t r o p n o l /k g s o i l /h

Treatments

100 200 300 400 500 600 700 800

TR0TR50TR100NTR0NTR50NTR100

m g p -n i t r o p h e n o l /k g s o i l /h

Treatments

100 200 300 400 500 600 700 800 TR0

TR50TR100NTR0NTR50NTR100

m g p -n i t r o p h e n o l /k g s o i l /h Treatments

50 100 150 200 250 300 350 400 TR0

TR50

TR100

NTR0

NTR50NTR100

m g P O 43--P /k g s o i l /5h

Treatments

Figure 1. Soil phosphatase activities under no-tillage and tillage at different residue input amounts. Error bars represent standard deviation. TR0, TR50, and TR100 are conventional tillage with 0, 50, and 100% residue in-put amounts. NTR0, NTR50, and NTR100 are no-till with 0, 50, and 100% residue input amounts, respectively

m g p -n i t r o p h e o l /k g s o i l /h m g p -n i t r o p h e n o l /k g s o i l /h

m g p -n i t r o p h e n o l /k g s o i l /h m g P O 43–-P /k g s o i l /5 h

tents. Compared to conventional treatments, total N was higher under conservation treatments, and C/N ratio, total N and SOC content increased with an increased input of residues. Halpern et al. (2010) also reported that soil C and N concentrations were higher in higher residue inputs treatments in a long-term experiment of tillage and residue management.

Compared with conventional tillage treatments, higher total P was detected in NT treatments in our study. This was attributed to minimal soil disturbance and mulching of crop residues on the surface of soil. Our study also indicated that total P content was significantly affected by till-age treatments. Some studies reported a greater total P and available P accumulation under no-till

management (Redel et al. 2007, Mina et al. 2008). Available P did not increase in no-till treatments in our study. Similar results were reported by Roldán et al. (2005), who found that slightly al-kaline soil pH decreased solubility of P. High soil pH (~7.44) and low extractability of P suggested more stable P forms presented in soils when crop residues were added to soil (Zibilske et al. 2002). Available P precipitated with soil Fe, Al, and Ca and became unavailable to plants. Soil organic P, however, was an important potential source of available P for plants (Linquist et al. 1997). Compared with conventional tillage, organic P was in higher concentration in no-till treatments in our study. With the increase of residue amounts, the organic P content was decreased; one reason

100 200 300 400 500 600 700 800 900 TR0TR50TR100

NTR0NTR50NTR100

m g /k g

Treatments

Figure 2. Soil total P, organic P and available P under no-tillage and tillage at different residue input amounts. Error bars represent standard de-viation. TR0, TR50, and TR100 are conventional tillage with 0, 50, and 100% residue input amounts. NTR0, NTR50, and NTR100 are no-till with 0, 50, and 100% residue input amounts, respectively

Table 3. Correlations between soil chemical properties and soil phosphatase activities

ALP

ACP

PD

IPP

TP

OP

AP

SOC

TN

pH

C/N

ALP 1ACP 0.453**1PD –0.009–0.047

1

IPP 0.412*0.504**–0.0721TP 0.404*0.639**–0.383*0.712**1OP 0.0910.468**–0.546**0.214

0.524**1AP –0.068–0.0340.1790.1790.070–0.1641SOC 0.399**0.539**0.395*0.508**0.471**0.2120.448**1TN 0.595**0.655**–0.475**0.388

0.690**0.655**–0.062

0.509**1pH 0.1580.0640.374*

0.486*

0.182–0.3030.618**0.489**–0.0751C/N

–0.106

0.043

0.621**0.309

–0.064

–0.196

0.539**

0.580**

–0.301

0.672**

1

ALP – alkaline phosphomonoesterase activity; ACP – acid phosphomonoesterase activity; PD – phosphodiester-ase activity; IPP– inorganic pyrophosphatase activity; TP – total P; OP – organic P; AP – available P; SOC – soil organic carbon; TN – total N; *, **correlations are significant at the 0.05, and 0.01 level, respectively

can be ascribed to higher amount of organic P hydrolysed by soil phosphatase. Higher soil phos-phatase (ALP, ACP and PD) activities was detected in no-till treatments with the increase of residue input amounts (Figure 1), and another reason could be attributed to the sampling method or pretreatment which was conducted by removing all plant material from test soils. Phosphomonoesterase activity was higher in no-till treatments (Omidi et al. 2008), and increased along with the amount of residue application (Deng and Tabatabai 1997). Similar results were found in this study, our data also showed that ALP and ACP activities were higher in no-till treatments and increased along with the amount of residue inputs. Soil pH can limit enzyme-mediated reaction rates by affecting the maximum activities of enzymes, and the solubility of substrates and cofactors (Dick et al. 1988). The activities of both alkaline and acid phosphatase are closely related to soil pH, with acid phosphatase dominating in acid soils, and alkaline phosphatase in alkaline soils (Eivazi and Tabatabai 1977). In our study, ALP activity was more than twice as high as ACP activity, mainly because soil pH was in the range of 7.2–7.7 (Table 2). Sparling et al. (1986) found that PD activity was only 50–80% of the phosphomonoesterase activity. In our study, PD activity was as high as ACP activity, but was only half of the ALP activity. Turner and Haygarth (2005) report that phosphate diesters in soils are quickly hydrolysed into phosphate monoesters, which stimulates more production of phosphomonoesterases. PD activity was lower in no-till treatments, compared with conventional treatments. This result contradicted previous findings by Deng and Tabatabai (1997), who dem-onstrated that PD activity in no-till or mulching was generally greater than those in tillage treat-ments. The substrates of PD are phospholipids, nucleic acids, etc. Most of them enter the soil in the form of crop residues (Turner and Newman 2005). Conventional practice had more crop residue being buried in soil, and more phosphate diesters were brought into soil, so higher PD activity was detected in tillage treatments. The findings in different studies on the effect of tillage and resi-due input amounts on phosphodiesterase activity and phosphomonoesterase activities may differ due to the differences in the origin, states and/ or persistence of the different groups of enzymes (Deng and Tabatabai 1997).

The activity of IPP was higher in no-till treat-ments except the NTR0, compared with conven-tional tillage, and was increased with the increase of residue amounts. This result confirmed the conclusion of Deng and Tabatabai (1997), whose results indicated that IPP activity was higher in no-till treatments compared with tillage treat-ments, and was increasing with the increase of mulch in no-till treatments.

Soil P was presumably related closely to soil phosphatase activity. Soil microorganisms and plants produce extracellular phosphatase which mineralises organically bound phosphorus. When available phosphorus is deficient in soil, soil bi-ota can increase the production of extracellular phosphatases to enhance the supply of inorganic P in soil. Higher concentrations of soil available P tend to inhibit biota to produce phosphatase. Relationships between soil P supply and phos-phatase activities were regulated by the negative feedback mechanism (Olander and Vitousek 2000). Gianfreda et al. (2005) reported a significant and positive correlation between phosphatase activ-ity and total P content in agricultural soils but a negative correlation was found between phospha-tase and the labile P content in non-cultivated soils. Margesin and Schinner (1994) showed that low content of available P induced high phos-phomonoesterase activity. Tarafdar and Jungk (1987) found a significant correlation between phosphatase activity and organic P in wheat and clover rhizosphere soil. In our study, the activity of PD was significantly and negatively correlated with organic P, indicating that higher PD activity played a part in the process of organic P hydrolysis to some extent. ACP activity was significantly and positively correlated with soil organic P. The corre-lations between phosphatase activities and organic P suggest that the bioavailability of phosphate diesters was higher than phosphate monoesters in this test soil.

Acknowledgments

The authors acknowledge Prof. Yuncong Li, University of Florida, for providing valuable edits on the manuscript. The authors thank the com-ments and helpful remarks from two anonymous reviewers and editors of this paper.

REFERENCES

Baker J.M., Ochsner T.E., Venterea R.T., Griffis T.J. (2007): Till-age and soil carbon sequestration-what do we really know? Agriculture, Ecosystems and Environment, 118: 1–5.

Deng S.P., Tabatabai M.A. (1997): Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase. Biology and Fertility of Soils, 24: 141–146. Dick R.P., Rasmussen P.E., Kerle E.A. (1988): Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biology and Fertility of Soils, 6: 159–164.

Eivazi F., Tabatabai M.A. (1977): Phosphatases in soils. Soil Biology and Biochemistry, 9: 167–172.

Gianfreda L., Antonietta R.M., Piotrowska A., Palumbo G., Co-lombo C. (2005): Soil enzyme activities as affected by anthrob pogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment, 341: 265–279. Halpern M.T., Whalen J.K., Madramootoo C.A. (2010): Long-term tillage and residue management influences soil carbon and nitrogen dynamics. Soil Science Society of America Journal, 74: 1211–1217.

Linquist B.A., Singleton P.W., Cassman K.G. (1997): Inorganic and organic phosphorus dynamics during a build-up and decline of available phosphorus in an Ultisol. Soil Science, 162: 254–264. Margesin R., Schinner F. (1994): Phosphomonoesterase, phos-phodiesterase, phosphotriesterase, and inorganic pyrophos-phatase activities in forest soils in an alpine area: effect of pH on enzyme activity and extractability. Biology and Fertility of Soils, 18: 320–326.

Mina B.L., Saha S., Kumar N., Srivastva A.K., Gupta H.S. (2008): Changes in soil nutrient content and enzymatic activity under conventional and zero-tillage practices in an Indian sandy clay loam soil. Nutrient Cycling in Agroecosystems, 82: 273–281. Olander L.P., Vitousek P.M. (2000): Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49: 175–190.

Omidi H., Tahmasebi Z., Torabi H., Miransari M. (2008): Soil enzymatic activities and available P and Zn as affected by till-age practices, canola (Brassica napus L.) cultivars and planting dates. European Journal of Soil Biology, 44: 443–450.

Qin S.P., He X.H., Hu C.S., Zhang Y.M., Dong W.X. (2010): Re-sponses of soil chemical and microbial indicators to conserva-tional tillage versus traditional tillage in the North China Plain. European Journal of Soil Biology, 46: 243–247.Redel Y.D., Rubio R., Rouanet J.L., Borie F. (2007): Phosphorus bioavailability affected by tillage and crop rotation on a Chilean volcanic derived Ultisol. Geoderma, 139: 388–396.

Roldán A., Salinas-García J.R., Alguacil M.M., Caravaca F. (2005): Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Applied Soil Ecology, 30: 11–20. Ryan J., Estefan G., Rashid A. (eds) (2001): Soil and Plant Ana-lysis Laboratory Manual. International Centre for Agricultural Research in the Dry Areas. Aleppo, Syria.

Sparling G.P., Speir T.W., Whale Karina N. (1986): Changes in microbial biomass, ATP content, soil phosphomonoesterase and phosphodiesterase activity following air-drying of soils. Soil Biology and Biochemistry, 18: 363–370.

Tabatabai M.A. (1994): Soil enzymes. In: Weaver R.W., Angle J.S., Bottomley P.S. (eds.): Methods of Soil Analysis, Part 2: Micro-biological and Biochemical Properties, Soil Science Society of America, Madison, 775–833.

Tarafdar J.C., Jungk A. (1987): Phosphatase activity in the rhizo-sphere and its relation to the depletion of soil organic phos-phorus. Biology and Fertility of Soils, 3: 199–204.

Turner B.L., Haygarth P.M. (2005): Phosphatase activity in tem-perate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Science of the Total Environment, 344: 27–36.

Turner B.L., Newman S. (2005): Phosphorus cycling in wetland soils: The importance of phosphate diesters. Journal of Envi-ronmental Quality, 34: 1921–1929.

Zhang Y.L., Chen L.J., Sun C.X., Wu Z.J., Chen Z.H., Dong G.H. (2010): Soil hydrolase activities and kinetic properties as af-fected by wheat cropping systems of Northeastern China. Plant, Soil and Environment, 56: 526–532.

Zhu Q.G., Zhu A.N., Zhang J.B., Zhang H.C., Zhang C.Z. (2009): Effect of conservation tillage on soil fauna in wheat field of Huang-huai-hai Plain. Journal of Agro-Environment Science, 28: 1766–1772. (In Chinese)

Zibilske L.M., Bradford J.M., Smart J.R. (2002): Conservation tillage induced changes in organic carbon, total nitrogen and available phosphorus in a semi-arid alkaline subtropical soil. Soil and Tillage Research, 66: 153–163.

Received on December 21, 2010

Corresponding author:

Prof. Dr. Lijun Chen, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China phone: +86 24 8397 0355, fax: +86 24 8397 0300, e-mail: ljchenchina@https://www.sodocs.net/doc/5c7002234.html,

-

数据备份与恢复系统哪个品牌好

在互联网普及的时代,数据显得尤为重要。数据备份是对数据进行再存储,是一个数据导出动作,以防数据丢失。而数据恢复则与数据备份是两个相反方向的行为,是将不小心丢失的数据重新导回电脑端。数据备份与恢复系统哪个品牌好呢? 铱迅数据备份备份与恢复系统,是业界针对大数据量环境的应急接管平台,其利用磁盘级CDP技术,可实现IO级别的细颗粒度实时备份,将备份窗口、数据丢失降到较低。并且可以实现任意时间点的数据挂载与演练,能够快速响应业务系统的接管需求,对应用实现连续保护。 软硬件一体化配置 数据备份与恢复系统集备份服务器,操作系统、备份软件、磁盘阵列融于一体;并可加载铱迅容灾平台的虚拟化软件模块,备份容灾一机实现。 多方位的数据备份支持

备份存储服务器 软件模块 软件部分的服务器端内置在硬件中,采用Web界面提供设备、客户端、备份数据及管理员的管理;客户端由多个功能模块构成,安装在需要备份的服务器或PC上,依据数据保护的对象和等级不同,客户端授权划分为多个类型;更有扩展功能软件包,支持异地数据灾备等功能。

铱迅数据备份与恢复系统采用软硬件一体化配置,以持续数据保护技术(CDP)为核心,具备实时备份、定时备份等功能,整合了USB Key、密码口令等多因子安全身份验证安全模块,可以为数据库、文件、应用、操作系统提供安全、有效、完整的数据保护。 多方位备份 跨平台支持各类桌面电脑、服务器及小型机;支持Windows、Linux、Unix等操作系统及VMware ESX(i)、Hyper-V等虚拟化系统;支持Oracle/SQL Server/My SQL/DB2/Sybase及国产数据库等多种数据库;支持双机、虚拟机等服务器架构;支持LAN-Base、LAN-Free等备份方式;提供手动备份、定时备份、实时备份等备份策略设置;提供数据库、文件、应用及操作系统的多方位保护。 简易化操作 数据自动集中备份到黑方的存储空间中。基于Web界面统一管理平台,提供备份设备、备份客户端、备份数据的集中管理,将IT 技术人员的专业性数据备份恢复工作简化为普通工作人员即可轻松掌握并自动完成的简单工作。 CDP实时备份和恢复 创新性CDP持续数据保护技术,数据备份与恢复准确到秒,连续实时捕获所需备份文件的数据变化,并自动保存变化的数据和时间戳(即表示数据变化的时间节点),在此基础上可以实现过去任意时间点的数据恢复。有效解决定时备份、准CDP备份的时间窗口问题。 功能简介 核心技术 铱迅数据备份与恢复系统以持续数据保护(CDP)为核心技术精髓,并结合升级加密、数据压缩、数据同步等诸多先进技术,来实现可靠、安全、多面、有效的数据备份与恢复。

数据备份及恢复标准流程

数据备份及恢复标准流程

索引 一Outlook Express篇 (3) 二Foxmail篇 (5) 三Office Outlook篇 (7) 四操作系统篇 (8) 五数据库篇 (9) 六数据灾难恢复篇 (10)

一、Outlook Express篇 Outlook Express是WIN9X自带的邮件收发软件,它拥有相当多的用户,但由于其是随系统安装而来的,再加上WIN9X的极不稳定,重装系统后将丢失OE中的很多个性设置,甚至于收发的邮件,因此,在系统正常时备份相关的信息是必要的。本文以OE5.0以上版本为例介绍。 1.存储文件夹的改变 在OE的工具-选项-维护-存储文件夹中可以改变邮件的存放位置,这里必须把邮件存放在其它分区中如E:\MAIL中,或改变HKEY_CURRENT_USER\Software\Microsoft\OutlookExpress中的Store Root,可以导出这个注册表分支,存放在E:\MAIL中。 2.邮件规则的备份 OE的一个强大功能就是其邮件规则,这样可以有选择性的收取邮件,将不用的邮件直接在服务器上删除,这些规则可以在脱机状态下设定,而不象FOXMAIL的远程邮箱管理必须在线执行,这样并没有节省在线的时间。 在OE中设置了邮件规则(在工具-邮件规则-邮件中进行设置)后,在注册表中的HKEY-CURRENT-USER\Identities\{9ACEA700-E70A-11D3-9796-A034DB516564}\Software\Microsoft\Outlook Express\5.0\Rules\Mail保存你的该项设置,当然各人{}中的内容可能不同;你的机子上OE中有多个标识,这里将会有几个{}。 3.个性化的签名 在工具-选项-签名中可以设定自已个性化的签名,而且对不同帐号自动添加不同的签名,如用于投稿的帐号,要添加自己的通信地址,这样可以收到稿费。在新闻中发帖子,要

系统运维管理-备份与恢复管理(Ⅰ)

系统运维管理备份与恢复管理(Ⅰ) 版本历史 编制人: 审批人:

目录 目录 (2) 一、要求容 (3) 二、实施建议 (3) 三、常见问题 (4) 四、实施难点 (4) 五、测评方法 (4) 六、参考资料 (5)

一、要求容 a)应识别需要定期备份的重要业务信息、系统数据及软件系统等; b)应建立备份与恢复管理相关的安全管理制度,对备份信息的备份方式、备份频度、存储介质和保存期等进行规定; c)应根据数据的重要性和数据对系统运行的影响,制定数据的备份策略和恢复策略,备份策略须指明备份数据的放置场所、文件命名规则、介质替换频率和将数据离站运输的方法; d)应建立控制数据备份和恢复过程的程序,记录备份过程,对需要采取加密或数据隐藏处理的备份数据,进行备份和加密操作时要求两名工作人员在场,所有文件和记录应妥善保存; e)应定期执行恢复程序,检查和测试备份介质的有效性,确保可以在恢复程序规定的时间完成备份的恢复; f)应根据信息系统的备份技术要求,制定相应的灾难恢复计划,并对其进行测试以确保各个恢复规程的正确性和计划整体的有效性,测试容包括运行系统恢复、人员协调、备用系统性能测试、通信连接等,根据测试结果,对不适用的规定进行修改或更新。 二、实施建议 制定数据备份的规定,包括备份的策略、计划和容等信息,备份策略的制定要结合本身数据量多少、数据更新时间等要求进行制定,对备份的数据要进行定期的恢复性测试,保证该备份的可用性。数据的恢复管理不仅仅是灾难恢复的计划,应当针对不同的数据恢复要求和恢复的容制定多种适当的恢复策略,并定期对策略的有效性进行测试。

三、常见问题 多数公司没有对备份的数据进行恢复性测试。 四、实施难点 数据的恢复性测试需要建立测试的环境,投入较大;如果在原有系统上进行测试,应当不影响系统的正常运行,并确保原有系统能够快速的恢复。 五、测评方法 形式访谈,检查。对象系统运维负责人,系统管理员,数据库管理员,网络管理员,备份和恢复管理制度文档,备份和恢复策略文档,备份和恢复程序文档,备份过程记录文档,检查灾难恢复计划文档。 实施 a)应访谈系统管理员、数据库管理员和网络管理员,询问是否识别出需要定期备份的业务信息、系统数据及软件系统,主要有哪些;对其的备份工作是否以文档形式规了备份方式、频度、介质、保存期等容,数据备份和恢复策略是否文档化,备份和恢复过程是否文档化,对特殊备份数据(如数据)的操作是否要求人员数量,过程是否记录备案; b)应访谈系统管理员、数据库管理员和网络管理员,询问是否定期执行恢复程序,周期多长,系统是否按照恢复程序完成恢复,如有问题,是否针对问题进行恢复程序的改进或调整其他因素; c)应访谈系统运维负责人,询问是否根据信息系统的备份技术措施制定相应的灾难恢复计划,是否对灾难恢复计划进行测试并修改,是否对灾难恢复计划定期进行审查并更新,目前的灾难恢复计划文档为第几版; d)应检查备份和恢复管理制度文档,查看是否对备份方式、频度、介质、保存期等容进行规定; e)应检查数据备份和恢复策略文档,查看其容是否覆盖数据的存放场所、文

系统备份及恢复

系统备份及恢复 推荐的系统备份策略。系统需要备份的内容: ERDB ( 系统的控制组态内 容): c:\Program files\Honeywell\Experion PKS\Engineering Tools\System\Er Server 实时数据 库 (操作组态内容): C:\ Program files\Honeywell\ Experion PKS\Server\Data 操作流程图(包括子图): 用户自定 Station 设置文 件: C:\ Program files \Honeywell\ Experion PKS\Client\Station\*.stn \system\R**\*.stb QB 设置文件: 用户自定义目录 报表文件(自由格式报表或Excel报表) : 用户自定义目录 事件或历史数据文件及归档文件 (可选择备份或不 备): C: \Program files \honeywell\ Experion PKS\Server\Archive 用户自定义文件: 用户自定义目录 1系统备份介质建议: 移动硬盘 / 刻录光盘 / 磁带 / 远程网络计算机硬盘 1.1 ERDB备份(主Server:ServerB) Upload and Update Dbadmin – Backup Database 生成主*.bak 文件 Control Builder—File-Export生成project 备份文件. Snapshot/Checkpoint files — C:\Honeywell\Engineering Tools\System\ER\CPM***.snapshot 将以上生成的三类文件拷贝到备份目标盘er目录下 1.2 Server 数据库 (Server同步情况下, 只需备份一个 Server) C:\Program files\Honeywell\Experion PKS\Server\Data 目录到备份目标 盘。(不一定能直接copy, 与后台Service有关)。 bckbld –out filename –tag cda / backup function.(使用pntbld filename恢 复组态内容) 1.3 操作流程图(包括子图) 操作流程图(包括子图)备份到目标盘. 1.5 Station 设置文件(两台Server分别备份,并作标记) C:\Honeywell\Client\Station\*.stn 拷贝到备份目标盘station目录下 1.6QB 设置文件 (备份正式使用的那份文件) 用户自定义目录下*.qdb 文件拷贝到备份目标盘qckbld目录下 . 1.7 报表文件(自由格式报表或Excel报表) : C:\Honeywell\Server\Report 下自由格式报表或用户Excel 报表文件拷贝到备份目标盘Report目录下 1.8事件及历史数据文件和归档文件 (可选择备份或不备): C:\honeywell\Server\data ,Archive 和evtarchive目录拷贝到备份目标盘Archive目录下. 1.9 用户自定义文件备份到目标盘 2 使用备份恢复系统(适用于冗余Server) 2.1 ServerA 系统恢复(ServerB 工作正常情况下) ServerA 重新安装操作系统和PKS软 件 设置Servera与Serverb冗余 使ServerA 处于Backup 状态 在Station中(非ServerA station)作Server同步, 恢复Server实时数据库 在ServerB 中 Dbadmin--Recover Secondary Database ServerB中的流程图拷贝到ServerA响应目录下 备份盘中ServerA的Station目录下*.stn文件拷贝回ServerA 中: C:\Honeywell\Client\Station 目录覆盖同名文件. 备份盘中ServerA的qckbld目录中*.qdb文件恢复到ServerA相应目录中 报表文件文件恢复到ServerA相应目录中 历史数据文件从ServerB C:\honeywell\Server\Archive 目录拷贝到ServerA相应Archive目

FANUC系统数据备份与恢复教学内容

F A N U C系统数据备份 与恢复

一、FANUC系统数据备份与恢复 (一)概述 FANUC数控系统中加工程序、参数、螺距误差补偿、宏程序、PMC程序、PMC数据,在机床不使用是是依靠控制单元上的电池进行保存的。如果发生电池时效或其他以外,会导致这些数据的丢失。因此,有必要做好重要数据的备份工作,一旦发生数据丢失,可以通过恢复这些数据的办法,保证机床的正常运行。 FANUC数控系统数据备份的方法有两种常见的方法: 1、使用存储卡,在引导系统画面进行数据备份和恢复; 2、通过RS232口使用PC进行数据备份和恢复。 (二)使用存储卡进行数据备份和恢复 数控系统的启动和计算机的启动一样,会有一个引导过程。在通常情况下,使用者是不会看到这个引导系统。但是使用存储卡进行备份时,必须要在引导系统画面进行操作。在使用这个方法进行数据备份时,首先必须要准备一张符合FANUC系统要求的存储卡(工作电压为5V)。具体操作步骤如下: 1、数据备份: (1)、将存储卡插入存储卡接口上(NC单元上,或者是显示器旁边); (2)、进入引导系统画面;(按下显示器下端最右面两个键,给系统上电); (3)、调出系统引导画面;下面所示为系统引导画面: (4)、在系统引导画面选择所要的操作项第4项,进入系统数据备份画面;(用UP或DOWN键)

(5)、在系统数据备份画面有很多项,选择所要备份的数据项,按下YES键,数据就会备份到存储卡中; (6)、按下SELECT键,退出备份过程; 2、数据恢复: (1)、如果要进行数据的恢复,按照相同的步骤进入到系统引导画面; (2)、在系统引导画面选择第一项SYSTEM DATA LOADING; (3)、选择存储卡上所要恢复的文件; (4)、按下YES键,所选择的数据回到系统中; (5)、按下SELECT键退出恢复过程; (三)使用外接PC进行数据的备份与恢复 使用外接PC进行数据备份与恢复,是一种非常普遍的做法。这种方法比前面一种方法用的更多,在操作上也更为方便。操作步骤如下: 1、数据备份: (1)、准备外接PC和RS232传输电缆; (2)、连接PC与数控系统; (3)、在数控系统中,按下SYSTEM功能键,进入ALLIO菜单,设定传输参数(和外部PC匹配); (4)、在外部PC设置传输参数(和系统传输参数相匹配); (5)、在PC机上打开传输软件,选定存储路径和文件名,进入接收数据状态; (6)、在数控系统中,进入到ALLIO画面,选择所要备份的文件(有程序、参数、间距、伺服参数、主轴参数等等可供选择)。按下“操作”菜单,进入到操作画面,再按下“PUNCH”软键,数据传输到计算机中; 2、数据恢复: (1)、外数据恢复与数据备份的操作前面四个步骤是一样的操作;

信息安全系统备份与恢复管理办法

信息安全系统备份与恢复管理办法 1.总则 第一条为保障公司信息系统的安全,使得在计算机系统失效或数据丢失时,能依靠备份尽快地恢复系统和数据,保护关键应用和数据的安全,保证数据不丢失,特制定本办法。第二条对于信息系统涉及到的网络设备、网络线路、加密设备、计算机设备、应用系统、数据库、维护人员,采取备份措施,确保在需要时有备用资源可供调配和恢复。 第三条本管理办法中涉及到的设备主要指运行在信息技术部主机房中的网络设备、加密设备及计算机设备。 第四条信息系统备份手段根据不同信息的重要程度及恢复时间要求分为实时热备份和冷备份等。同一平台的系统应尽量使用同样的备份手段,便于管理和使用。信息技术部负责信息系统的备份与恢复管理,并制定数据备份计划,对数据备份的时间、内容、级别、人员、保管期限、异地存取和销毁手续等进行明确规定。 第五条信息技术部应根据各系统的重要程度、恢复要求及有关规定要求制定系统配置、操作系统、各应用系统及数据库和数据文件的备份周期和保存期限。 第六条对于重要系统和数据的备份周期及备份保存期限应遵循以下原则:

(一) 至少要保留一份全系统备份。 (二) 每日运行中发生变更的文件,都应进行备份。 (三) 生产系统程序库要定期做备份,每月至少做一次。 (四) 生产系统有变更时,须对变更前后的程序库进行备份。 (五) 批加工若有对主文件的更新操作,则应进行批加工前备份。 (六) 每天批加工结束后都要对数据文件进行批后备份,对核心数据须进行第二备份。 (七) 对批加工生成的报表也要有相应的备份手段,并按规定的保留期限进行保留。 (八) 用于制作给用户数据盘的文件应有备份。 (九) 各重要业务系统的月末、半年末、年末以及计息日等特殊日的数据备份须永久保留。 (十) 定期将生产系统的数据进行删减压缩,并将删减的数据备份上磁带,永久保留。 (十一) 以上未明确保存期限的各项备份的保存至少应保存一周。 2.设备备份 第七条信息系统电源设备应尽量保证有两套电源来源。 第八条对关键通讯线路和网点通讯线路必须采用双通讯线路;网络的运行线路和备份线路必须选用不同的网络服务供

论工控生产系统的数据备份及系统灾难恢复方法

论工控生产系统的数据备份及系统灾难恢复方法

目录 一、初识工控生产系统 (3) 1.应用架构与部署方式 (3) 2.硬件组成 (5) 3.操作系统 (8) 4.应用程序 (8) 二、工控机数据与系统保护分析 (9) 1.数据重要 VS 系统重要 (9) 2.硬件容易损坏 (9) 3.工控机应用程序复杂 (10) 4.昂贵的费用 (10) 三、对工控机的保护方案有哪些 (10) 1.冷备机 (10) 2.Ghost方案 (11) 3.磁盘克隆 (11) 四、理想的工控机保护方案 (12) 1.工控机需要备份什么 (12) 2.在线热备份 (12) 3.多种备份机制 (12) 4.灾难发生后的系统快速恢复 (13) 5.异机还原与系统迁移 (13) 五、Acronis到底能对工控干点啥 (13) 1.在线热备份,无停机时间 (17) 2.在线热备份,无停机时间生产快速恢复 (18) 3.更经济、更有效 (18)

一、初识工控生产系统 工控机(Industrial Personal Computer,IPC)即工业控制计算机,与传统的办公用计算机不同,工控机采用专用的硬件设备,使用特殊的制造工艺而成。在控制现场、路桥控制收费系统、医疗仪器、环境保护监测、通讯保障、智能交通管控系统、楼宇监控安防、语音呼叫中心、排队机、POS柜台收银机、数控机床、加油机、金融信息处理、石化数据采集处理、物探、野外便携作业、环保、军工、电力、铁路、高速公路、航天、地铁、智能楼宇、户外广告等诸多领域得到广泛的应用。我们将从多个方面来认识工控机,以下将进行基础知识的介绍。 1.应用架构与部署方式 工控机从应用架构与部署方式来分,可分为单节点工控设备、集中管控型工控系统、混合型工控系统。 单节点工控设备只负责对单个生产环节进行控制,不与其它生产设备产生必然的数据联系。例如,某机械生产机床设备配置一台工控机,并在前端配置LED按键式控制面板,生产工人通过前端LED面板的操作对生产设备进行参数的配置与调整,最后生产出预期的产品。如下图所示(本文中图片或来自网络,以达到读者对所讲述内容深入理解,仅供参考):

系统数据备份与恢复规程

密级:内部 系统数据备份与恢复规程 ***有限公司 202 年月

目录 第一章引言 (1) 1.1编写目的 (1) 1.2预期读者 (1) 1.3编写背景 (1) 1.3.1使用者 (1) 1.4文档结构 (2) 第二章数据备份功能要求详述 (3) 2.1备份环境 (3) 2.1.1备份环境 (3) 2.1.2存储网络环境 (4) 2.1.3备份方式及备份空间 (4) 2.2备份需求 (5) 2.2.1系统级备份 (5) 2.2.2应用级备份 (5) 2.2.3文件级备份 (5) 2.2.4数据库备份 (5) 2.3备份策略 (5) 2.3.1备份策略定义 (5) 2.3.2系统级备份策略 (6) 2.3.3应用级备份策略 (6) 2.3.4文件级备份策略 (6) 2.3.5数据库备份策略 (7) 第三章故障与恢复策略 (8) 3.1故障与恢复介绍 (8) 3.2设计原则 (9) 3.3故障与恢复策略 (9) 第四章备份与恢复步骤 (10) 4.1备份步骤 (10) 4.1.1系统级备份步骤 (10) 4.1.2应用软件备份步骤 (10) 4.1.3脱机应用文件备份步骤 (11) 4.1.4数据库备份步骤 (13) 4.2恢复步骤 (16) 4.2.1系统级故障恢复步骤 (16) 4.2.2应用软件故障恢复步骤 (16) 4.2.3脱机应用文件故障恢复步骤 (17) 4.2.4数据库故障恢复步骤 (18)

第一章引言 1.1 编写目的 本文档主要描述江西中磊支付平台的数据备份与恢复的需求、策略要求以及相应的步骤,为后期实施和维护管理过程中提供数据库备份与恢复的规范。 1.2 预期读者 江西中磊支付平台项目组项目经理、集成经理、开发经理、系统管理员。 1.3 编写背景 在江西中磊支付平台的软件实施过程中,数据的安全至关重要,一方面数据的丢失或者数据库系统无法正常运行影响江西中磊支付平台业务应用系统的正常运作,另一方面如果系统在崩溃后不能够按照预期的要求恢复到指定状态也将影响到江西中磊支付平台业务应用系统的正常运作,例如数据冲突或者状态不一致。特地编写此文档将对实施过程中的数据备份与恢复提供指导。 1.3.1使用者 本文档适用于参与江西中磊支付平台项目实施的工程师、江西中磊支付平台的系统管理员以及项目经理、开发经理、系统管理员。

系统数据备份与恢复管理制度

系统数据备份与恢复管理制度 一、目的 为规范数据备份管理工作,合理存储历史数据及保证数据的安全性,防止因硬件故障、意外断电、病毒等因素造成数据的丢失,保障中心技术资料的储备,特制订本管理制度。 二、适用范围 中心各部门、实验室。 三、备份介质 移动硬盘、光盘、邮盘等 四、制度内容 1、为了确保系统计算机系统的数据安全,使得在计算机系统失效或数据丢失时,能依靠备份尽快地恢复系统和数据,保护关键应用数据的安全,保证数据不丢失,特制定本制度。 2、拥有重要系统或重要数据的科室或部门应该及时对数据进行备份,防止系统数据的丢失;涉及数据备份和恢复的科室或部门要由专人负责数据备份工作,并认真填写数据备份记录表。 3、计算机信息数据备份的基本原则是“谁使用、谁备份”,即由计算机使用者按要求及时备份相关信息数据。 4、数据的备份分为定期备份和临时备份。定期备份是指按照规定的时间定期对数据进行备份;临时备份是指在特殊情况下(如电脑中毒、软件升级、更换设备等)进行的应急备份。各科室、部门可依据自身的工作特点选择不同的备份模式。 5、所有数据备份工作由各科室指定管理员进行详实记录,并建

立记录档案。备份的数据应该严格管理,妥善保存;备份数据资料保管地点应有防火、防热、防潮、防尘、防磁、防盗设施。 6、数据的备份、恢复、转出、转入的权限都应严格控制。严禁未经授权将数据备份出系统,转给无关的人员或单位;严禁未经授权进行数据恢复或转入操作。 7、一旦发生数据丢失或数据破坏等情况,要由系统管理员进行备份数据恢复,以免造成不必要的麻烦或更大的损失。 8、说明:其他相关规定按程序文件BZCDC/CX24-2011《计算机应用管理程序》执行。 五、附表 BZCDC/JL0050 《数据备份记录表》

FANUC系统的数据备份与恢复

引导画面得数据备份与恢复 一:参数得设定与修改 1.按下offset/seting 2.按下『setting』,出现setting画面. 3.在setting画面中,将PWE=1、出现P/S100报警,表示参数可以修改。 4.按『system』健。 5.按“参数”软件健,出现参数画面。 6.键入所需要修改得参数号。 7.按“搜索”健,页面直接翻到所需要修改得参数位. 8.在MDI方式下,可以修改所需要得参数。 9.参数修改后,将设定画面得参数写入保护开关置0(PEW=0)。 10.如果修改参数后,出现000号报警,说明必须重新上电后,参数才能生效。 二:引导画面数据得数据备份与恢复 1 :数据得分区与分类 1):ROM-FLASH-ROM,只读存储器,用于存储系统文件与机床厂家得(MTB)文件 2):SRAM-静态随机存储器,用于存储用户数据,断电后需要电池保护,具有易失性。2:数据得分类 1):系统文件—FANUC提供得CNC与伺服控制软件。 2):MTB文件-PMC程序、机床厂家编辑得宏程序执行器等 3):用户文件-系统参数、螺距误差补偿值、加工程序、宏程序、刀具补偿值、工件坐标系数据、PMC参数等等. 3:数据得备份与保存。 SRAM数据由于需要电池保护容易丢失,要通过“引导画面BACKUP”方式或”数据输入输出方式“保存前者保留得数据无法用WORD与写字板得软件打开.F-ROM数据相对稳定,不易丢失,但就是如果更换主板与存储器时,有可能丢失,其中得FANUC系统文件可由FANUC公司恢复,但就是机床厂家得PMC程序以及用户宏程序执行器很难恢复,所以备份数据十分必要。 三:SRAM数据得备份。 通过系统引导程序把数据备份到C-F卡中,该法简便易行,恢复容易。步骤如下: 1:CNC-SRAM得数据备份到C—F卡上。 1):启动引导系统(BOOTSYSTEM) 操作:同时按住软件右端两个健,并接通NC电源。系统就进入引导画面。 用软键『up』、『down』进行选择处理,按软键『select』,并按软键『yes』、『no』确认。2)用软键『up』、『down』选择到“SRAMDATA BACKUP"上,进入到SRAM DATA BACKUP”子画面上,便就是SRAM数据得备份画面。(通过此功能,可以将系统得用户数据,包括、螺距误差补偿值、加工程序、宏程序、刀具补偿值、工件坐标系数据、PMC参数等等全部存储到C-F中,或者以后恢复到CNC中。) 3)在该子画面中, 第一步:选择“1、、SRAM BACKUP”,显示确认得信息. 第二步:按『yes』健,就开始保存数据. 第三步:如果要备份得文件以及存在在卡中,系统就会提示就是否覆盖原文件? 第四步:在“”处显示现在正在写入得文件名。 第五步:结束后,显示以下信息。请按『select』键.

电子数据备份和恢复管理规程

电子数据备份和恢复管理规程 1.目的:本规程定义了GMP 计算机及自动化系统关于数据备份恢复的基本通用规程。规程涉及了数据的产生,存储和归档,采用独立的物理介质备份机制以避免系统因意外事故,网络中断,病毒恶意攻击,系统或软件参数修改等造成重要数据的丢失。 2.范围: 本操作规程适用于公司所有GMP计算机和自动化系统的电子数据管理,此类系统用于或为GMP法规环境提供支持。 3.职责 4.术语和定义 4.1备份/恢复:备份是指复制记录、数据和软件的过程,用以预防原始记录、数据和软件的完整性和可用性的损失。恢复是指随后在需要时还原己备份的记录、数据或软件 4.2存档:存档是指通过将记录和数据转移到另外的位置或系统,以使其不可在当前工作中使用的过程,这通常能使这些记录和数据不再变动。有时还需要同时保存支持这些记录和数据的应用程序。存档记录应该可以很容易地获取,以用于商业目的或监管目的。 5.程序 5.1应将计算机系统的数据和软件进行周期性的备份,并做好记录(见附件1)。所有备份介质存放在档案室,按照《档案管理规范(Q/CDGK3.18)》的相关要求进行管理,一律不准外借,不准流出公司,任何人员不得擅自取用,更不得私自再备份。归档的备份介质取用,需经质量负责人批准,并填写《档案借阅审批表》。借用人员使用完介质后,应立即归还,由档案管理员检查,确认介质完好。 5.2独立的数据文件,数据每次以独立的数据文件产生,可以由应用程序直接从磁盘分别调用,如HPLC Chemstation 产生的数据文件,这样文件的备份可以只备份新增的文件。 5.3文件型数据库的应用程序通常不提供备份功能,备份时需要从磁盘上直接复制数据库,比如Access 数据库。由于所有数据存贮与一个数据库内,需要对数据库全部复制。 5.4关系型数据库是同时存放数据及其关系的数据库,这些数据库通常由应用程序提供备份功能或自动备份功能,对于这类数据库应采用完全备份的方式进行备份,备份后的文件复制在备份磁盘上。 5. 5备份周期通常可以设定为一个月,如果程序自动备份,异地备份的周期可为一年。 5.6可通过备份前后文件或文件夹的大小、文件数量来核查被备份的文件或文件夹的完整性,并进行登记,表格见附件1。 5.7每半年应对之前的备份介质进行一次检查,应随机抽取至少一份备份介质,在该备份介质上调用至少1个备份数据,并打印相关报告,作为附件并登记,检查表格见附件2. 5.8存放备份数据的介质必须具有明确的标识;标识必须使用统一的命名规范,注明介质编号、介质的启用日期、保留期限和系统管理员等重要信息。 5.9 备份文件的保存时间至少为产品效期后一年,出口的原料药保存时间为该批产品销售后三年。过期或不能使用的备份媒介应通过受控的方式进行销毁或处置,由数据使用部门和质量管理人员现场见证销毁或处置过程,并提供

FUC系统的数据备份与恢复

F U C系统的数据备份与 恢复 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

引导画面的数据备份与恢复 一:参数的设定和修改 1.按下offset/seting 2.按下『setting』,出现setting画面。 3.在setting画面中,将PWE=1.出现P/S100报警,表示参数可以修改。 4.按『system』健。 5.按“参数”软件健,出现参数画面。 6.键入所需要修改的参数号。 7.按“搜索”健,页面直接翻到所需要修改的参数位。 8.在MDI方式下,可以修改所需要的参数。 9.参数修改后,将设定画面的参数写入保护开关置0(PEW=0)。 10.如果修改参数后,出现000号报警,说明必须重新上电后,参数才能生效。二:引导画面数据的数据备份与恢复 1:数据的分区和分类 1):ROM-FLASH-ROM,只读存储器,用于存储系统文件和机床厂家的(MTB)文件 2):SRAM-静态随机存储器,用于存储用户数据,断电后需要电池保护,具有易失性。 2:数据的分类 1):系统文件-FANUC提供的CNC和伺服控制软件。 2):MTB文件-PMC程序、机床厂家编辑的宏程序执行器等

3):用户文件-系统参数、螺距误差补偿值、加工程序、宏程序、刀具补偿 值、工件坐标系数据、PMC参数等等。 3:数据的备份和保存。 SRAM数据由于需要电池保护容易丢失,要通过“引导画面BACKUP”方式或”数 据输入输出方式“保存前者保留的数据无法用WORD和写字板的软件打开。F-ROM数据相对稳定,不易丢失,但是如果更换主板和存储器时,有可能丢失,其中的FANUC系统文件可由FANUC公司恢复,但是机床厂家的PMC程序以及用户宏程序执行器很难恢复,所以备份数据十分必要。 三:SRAM数据的备份。 通过系统引导程序把数据备份到C-F卡中,该法简便易行,恢复容易。步骤如下: 1:CNC-SRAM 的数据备份到C-F卡上。 1):启动引导系统(BOOT SYSTEM) 操作:同时按住软件右端两个健,并接通NC电源。系统就进入引导画面。 用软键『up』、『down』进行选择处理,按软键『select』,并按软键『yes』、『no』确认。 2)用软键『up』、『down』选择到“SRAM DATA BACKUP”上,进入到SRAM DATA BACKUP”子画面上,便是SRAM数据的备份画面。(通过此功能,可以将系统的 用户数据,包括、螺距误差补偿值、加工程序、宏程序、刀具补偿值、工件坐标系数据、PMC参数等等全部存储到C-F中,或者以后恢复到CNC中。) 3)在该子画面中, 第一步:选择“1..SRAM BACKUP”,显示确认的信息。

计算机化系统数据备份与恢复操作规程

计算机化系统数据备份与恢复 管理规程 目的:建立有效的计算机系统数据备份和恢复操作规程,采用独立的物理介质备份机制,避免系统因意外事故,网络中断,病毒恶意攻击或软件参数修改等造成重要数据的丢失。范围:适用公司使用的具有数据记录、储存和运算功能、软件的计算机化系统。 责任:检验中心、设备部、及各使用部门。 内容: 1 概述 计算机化系统的数据和软件进行周期性的备份,并做好记录。所有备份介质存放在指定位置有超级管理员进行管理,一律不准外借,不准流出公司,任何人员不得擅自取用,更不得私自再备份。归档的备份介质取用,需经质量负责人批准。借用人员使用完介质后,应立即归还,由超级管理员检查,确保介质完好。 1.1 备份/恢复 数据备份采用人工备份的方式,将原有数据复制到另一区域或另一存储设备,预防原始记录、数据和软件的完整性和可用性的损失。数据包括原始数据备份、计算机操作系统备份、应用软件备份。 数据恢复是指在主机系统发生故障或计算机化系统发生意外无法正常服务在指定时间内按设定步骤恢复,包括软件、各类数据等。 1.2 存档 是指通过将备份的数据采用各类备份介质转移到另外的位置或系统,以使其不可在当前工作中使用的过程,这通常能使这些记录和数据不再变动。有时还需要同时保存支持这些记录和数据的应用程序。存档记录应该可以很容易地获取,以便于监管。 2 程序 2.1 数据备份 2.1.1 超级管理员应对公司使用计算机化系统中涉及的数据进行备份管理,由每一计算机化系统的管理员进行数据备份和复核,再交由超级管理员进行存档管理。如检验中心精密仪器产生的检验数据进行备份,包括液相色谱系统、气相色谱系统、原子吸收系统、紫外-可见分光系统等相关原始数据。 2.1.2 备份介质

数据备份与恢复

一、摘要: 随着信息化建设的进展,各种应用系统的运行,必然会产生大量的数据,而这些数据作为企业和组织最重要的资源,越来越受到大家的重视。同样,由于数据量的增大和新业务的涌现,如何确保数据的一致性、安全性和可靠性;如何解决数据集中管理后的安全问题,建立一个强大的、高性能的、可靠的数据备份平台是当务之急。数据遭到破坏,有人为的因素,也有各种不可预测的因素。 有专业机构的研究数据表明:丢失300MB的数据对于市场营销部门就意味着13万元人民币的损失,对财务部门意味着16万的损失,对工程部门来说损失可达80万。而丢失的关键数据如果15天内仍得不到恢复,企业就有可能被淘汰出局。 实际上,我们很多企业和组织已有了前车之鉴,一些重要的企业内曾经不止一次地发生过灾难性的数据丢失事故,造成了很大的经济损失,在这种情况下,数据备份就成为日益重要的措施,我们必须对系统和数据进行备份!通过及时有效的备份,系统管理者就可以高枕无忧了。所以,对信息系统环境内的所有服务器、PC进行有效的文件、应用数据库、系统备份越来越迫切。 二、引言: 随着以计算机为基础的电子信息技术在社会各方面越来越广泛的深入应用,各种工作逐步走上了办公自动化网络管理的发展道路,大量的管理信息系统和专用办公软件被开发并投入使用,这对规范管理、提高工作效率起到了良好的促进作用。在实际工作中,信息系统和管理软件从开始投入使用起,就将随着工作的开展和时间的推移,持续记录并积累大量的数据。工作中的许多重要的决策就是以这些日常积累的数据为基础的。但信息系统在提供方便和高效的同时,在运行中却常常会出现一些意料之外的问题,如人为误操作、硬件损毁、电脑病毒侵袭、断电或其它意外原因造成网络系统瘫痪、数据丢失,给企业、单位和管理人员带来难以弥补的损失。避免这种损失的最佳途径就是建立可靠的数据备份恢复系统,但是大部分应用人员只是在受到损失后才意识到了数据备份的重要性。

FANUC数控系统数据备份与恢复

FANUC 使用存储卡数据备份和恢复 1.关闭系统插存储卡 2.起动引导系统方法及画面如下(BOOT SYSTEM ): 3. 注意事项:CF 卡如果初次使用请事先格式化;抽取或安装CF 卡请先关闭控制器电源避免CF 卡损坏;不要在格式化或数据存取的过程中关闭控制器电源避免CF 卡损坏。 4. 系统数据被分在两个区存储。F-ROM 中存放的系统软件和机床厂家编写PMC 程序以及P-CODE 程序。S-RAM 中存放的是参数,加工程序,宏变量等数据。通过进入BOOT 画面可以对这两个区的数据进行操作(按住以上两个键后同时接通CNC 电源,引导系统起动后,开始显示『MAIN MENV 画面』,下面对此画面及操作进行说明。 5. 操作方法:用软件UP DOWN 进行选择处理。把光标移到要选择的功能上,按软件SELECT ,英文显示请确认?之后按软件YES 或NO 进行确认。正常结束时英文显示请按SELECT 键。最终选择END 结束引导系统BOOT SYSTEM ,起动CNC ,进入主画面。 6. 软菜单:[<1][SELECT 2][YES 3][NO 4][UP 5][DOWN 6][7>]使用软键起动时,数字显示部的数字不显示。用软键或数字键进行1-7操作说明如下表: 序号 显示 键 动作 1 < 1 在画面上不能显示时,返回前一画面 2 SELECT 2 选择光标位置的功能 3 YES 3 确认执行时,按“是”回答 4 NO 4 不确认执行时,按“否”回答 5 UP 5 光标上移一行 6 6 光标下移一行 7 > 7 在画面上不能显示时,移向下一画面 SYSTEM MONITOR MAIN MENU 60M4-01 (显示标题。右上角显示的是引导系统的系列号和版号。) 1. SYSTEM DA T A LOADINC (把系统文件、用户文件从存储卡写入到数控系统的快闪存储器中。) 2. SYSTEM DA T A CHECK (显示数控系统快闪存储器上存储的文件一览表,以及各文件128KB 的管理单位数和软件的系列、确认ROM 版号。) 3. SYSTEM DA T A DELETE (删除数控系统快闪存储器上存储的文件。) 4. SYSTEM DA T A SA VE (对数控系统 F-ROM 中存放的的用户文件,系统软件和机床厂家编写PMC 程序以及P-CODE 程序写到存储卡中。) 5. SRAM DA T A BACKUP ( 对数控系统S-RAM 中存放的 CNC 参数、PMC 参数、螺距误差补偿量、加工程序、刀具补偿量、用户宏变量、宏P-CODE 变量、SRAM 变量参数全部下载到存储卡中,作备份用或复原到存储器中。注:使用绝对编码器的系统,若要把参数等数据从存储卡恢复到系统SRAM 中去,要把1815号参数的第4位设为0,并且重新设置参考点。备份:SRAM BACKUP[ CNC –---MEMORY CARD ];恢复:.RESTOR SRAM[ MEMORY CARD ----CNC ] ) 6. MEMORY CARD FILE DELETE (删除存储卡上存储的文件) 7. MEMORY CARD FORMA T (可以进行存储卡的格式化。买了存储卡第一次使用时或电池没电了,存储卡的内容被破坏时,需要进行格式化。) 10. END (结束引导系统BOOT SYSTEM ,起动CNC 。) *** MESSAGE *** SELECT MENU AND HIT SELECT KEY (显示简单的操作方法和错误信息) 〔SELECT 〕 〔YES 〕 〔NO 〕 〔UP 〕 〔DOWN 〕

Win7系统备份与还原机制

近来关于单分区方案可行性的讨论非常火热,关于数据的备份与还原也多次被提及。看来确有写点东西的必要了。 我们为什么要备份?从小的说,便于我们在紧急情况下迅速恢复正常工作状态;从大的说,数据无价——特别在计算机越来越多的成为我们个人生活写照的容器的今天,这一点尤为重要。 我们应当用什么来备份?我相信很多人会不假思索的说:“GHOST。”确实,GHOST 作为一款分区数据迁移软件是非常成功的,在中国的软件应用环境中在诸多因素的共同作用下它也得到了终端用户的极大接纳乃至神化,广泛应用于系统部署、系统备份等领域。但GHOST是基于硬盘分区的方案,这意味着把它不过是备份与还原体系的某一环节而已。而从现今流行的GHOST版本来看,缺乏在线备份、增量或差异备份、备份计划等不足使其实用性大打折扣。我不得不中断现有的工作来进行GHOST备份,我不得不只能将系统状态恢复到一个时间点上(除非您保留多个GHO文件),我不得不在日历上标注诸多的“今日宜GHOST”。对于无技术人群,即便有力图简化操作的“一键GHOST”,他们也无法有效的创建符合自己使用情况的备份文件(而脱离用户使用情况的备份等于什么也不是),同时误操作的较大可能使得数据丢失的风险大大上升。因而,在之前的几年中,对于父母使用的电脑,我并没有给他们装上什么“一键GHOST”。因为我明白,GHOST对于他们而言,非倒不能有效的实现应急还原,反而会成为毁灭数据的炸弹。对于有诸多新闻稿的父亲而言,这是不可想象的灾难。 备份绝不是只有GHOST能完成,诸多软件都在备份与还原这一领域奋斗着。我们正在使用的操作系统也向我们提供了丰富的备份与还原功能,何不先看看“系统能做什么”再做决断呢? 纵观近几代Windows操作系统的备份与还原功能发展史,不难看出微软在这方面做出了相当的努力。从XP下基于卷影复制的简单的文件备份与不太灵光的还原点,到Vista 下可用性大幅改进的还原点(我曾利用一台机器上数个月前的还原点成功的将系统从瘫痪状态迅速的恢复了过来,当然使用过老的还原点不是值得推荐的做法)、横空出世的CompletePC系统映像备份与WIN RE环境的引入,再到7之下进一步完善的备份管理与备份计划的引入,体会过这一变化过程的用户,肯定会感叹:Windows的备份功能越来越能用了,越来越好用了。 这篇文章将要介绍的,即是Windows7的备份与还原机制。事实上,这一备份与还原机制的核心在Vista时代就已奠定,在此依然向Vista表示敬意。

谈几种数控系统数据备份与恢复方法

谈几种数控系统数据备份与恢复方法 【摘要】本文系统的分析了备份机床参数的重要性,并归纳总结了几种常见数控系统的机床数据备份与回装的方法、注意事项与具体步骤。 【关键词】数控系统;参数;数据备份 引言 数控设备使技术密集型和知识密集型机电一体化产品,其技术先进、结构复杂、价格昂贵,在各行各业的生产上都发挥着重要作用。 数控机床参数用于调整机床功能,是机床厂家根据机床特点设定的,决定数控机床的功能和控制精度,是保证数控机床正常工作的关键,一旦参数丢失或误改动,容易使机床的某些功能不能实现或系统混乱甚至瘫痪,如轴补偿数据,是根据每台机床的实际情况确定的,即便是同厂家、同型号的两台机床,也是不一样的,一旦丢失,就需要用激光干涉仪重新进行检测、补偿,需要大量时间和精力,给工作带来很大的不便。所以在数控机床安装调试完毕或进行重大调整后,进行正确、完整、有效的参数备份是非常必要的。 1、参数恢复的方法 一般情况下,当参数发生改变和丢失时可以采用以下两种方式进行参数的恢复。 1.1根据故障现象进行正确的参数设置 这种方法适合处理许多常见的机床故障,例如主轴准停位置的调整,机床原点位置的调整,补偿反向间隙,螺距补偿参数设置等等。但是由于数控系统的参数数量非常相当庞大,当参数大范围丢失和改变时,最好借助于参数的备份与回装完成参数的恢复任务,这样既简单又可以保证准确性。 1.2利用机床的备份数据进行参数的下载和恢复 利用机床的备份数据进行恢复方法简单易行,效率高,可靠性高,是进行参数恢复的主要手段。下面着重介绍针对不同数控系统数据备份的方法和步骤。 2、常见数控系统参数备份和参数恢复的方法与步骤 2.1SINUMERIK 802D SL的参数备份与回装 SINUMERIK 802D SL的参数可以在系统内部备份,也可在CF卡上备份,或在计算机硬盘上备份。在机床调试完毕后,应备份以下数据:

相关主题