搜档网
当前位置:搜档网 › 45!!!!太阳电池最大功率点跟踪的三点比较法理论分析

45!!!!太阳电池最大功率点跟踪的三点比较法理论分析

45!!!!太阳电池最大功率点跟踪的三点比较法理论分析
45!!!!太阳电池最大功率点跟踪的三点比较法理论分析

光伏并网控制系统的最大功率点跟踪

光伏并网控制系统的最大功率点跟踪(MPPT)方法 2011年12月29日作者:周建华李冰郭玲田苗苗陈增禄来源:《中国电源博览》总第128期编辑:孙伟 摘要:最大功率点跟踪(MPPT)是光伏并网逆变器控制策略中的核心技术之一。本文首先介绍了光伏组件的输出特性,然后具体分析了3种典型的MPPT控制方法,并总结3种方法各自的特点和不足。 1 引言 日本福岛核电站事故之后,多国陆续宣布暂停核电建设,而太阳能是永不枯竭的清洁能源,并且更加稳定、安全。据国家权威数据,在“十二五”期间,中国光伏发电装机容量达到2000万千瓦。但由于光伏组件本身特性的非线性,受环境温度、日照强度、负载等因素的影响,均会使其输出最大功率点发生变化,导致光伏组件转换效率很低。而所有光伏发电系统均希望光伏组件在相同日照、温度条件下输出尽可大的功率,这就提出了对光伏组件最大功率点跟踪(Maximum Power Point Tracking,MPPT)的问题。本文首先讨论了光伏组件本身的P-V,I-V特性,以及温度、光照的影响;然后具体分析了几种常用的MPPT控制方法,并对3种MPPT控制方法作简单的比较。 2 光伏组件的特性 A. 物理数学模型 根据半导体物理学理论,太阳能组件的等效物理模型如图1所示。 其中: IPH 与日照强度成正比的光生电流; I0 光伏组件反向饱和电流,通常其数量级为10-4A;

n 二极管因子; q 电子电荷,; K 玻尔兹曼常数, J/K; T绝对温度(K); RS光伏组件等效串联电阻; RP光伏组件等效并联电阻; 式(1)中参数IPH、Io、Rs、RP、n与太阳辐射强度和组件温度有关,而且确定这些参数也十分困难。 B. 温度、光照对输出特性的影响 受外界因素(温度、光照强度等)影响,光伏组件输出具有明显的非线性,图2、图3分别给出其I-V特性曲线和P-V特性曲线。 由以上两图可知,光伏组件的输出短路电流(Isc)、最大功率点电流(Im)随光照强度的增强而增大。光照强度的变化对组件开路电压影响不大,最大功率点电压(Um)变化也不大,如图3-A所示。温度对光伏组件的输出电流影响不大,短路电流(Isc)随温度升高而略微增加。但开路电压(Uoc)受温度影响较大,开路电压随温度升高近似线性地下降,因此温度对光伏组件最大输出功率有明显影响,从图2-B曲线的峰值变化可以看出。

量子点太阳能电池外量子效率首超100%

量子点太阳能电池外量子效率首超100% 据美国物理学家组织网12月16日(北京时间)报道,美国国家可再生能源实验室(NREL)研制出一种新式的量子点太阳能电池,当其被太阳能光谱的高能区域发出的光子激活时,会产生外量子效率最高达114%的感光电流。发表于12月16日出版的《科学》杂志上的这一最新研究为科学家们研制出第三代太阳能电池奠定了基础。 当光子入射到太阳能电池表面时,部分光子会激发光敏材料产生电子空穴对,形成感光电流,此时产生的电子数与入射光子数之比称为感光电流的外量子效率。迄今为止,还没有任何一种太阳能电池在太阳能光谱内光波的照射下,显示出超过100%的外量子效率。 现在,NREL团队首次在量子点太阳能电池上实现了这一点。他们在一个叠层量子点太阳能电池上获得了114%的外量子效率。该电池由具有减反光涂层的玻璃(其包含有一薄层透明的导体)、一层纳米结构的氧化锌、一层经过处理的硒化铅量子点以及薄薄一层用作电极的金组成。 太阳能光子产生超过100%外量子效率基于载子倍增(MEG)过程,借助这一过程,单个被吸收的高能光子能激发多个电子空穴对。NREL团队首次在量子点太阳能电池的感光电流内展示了MEG,科学家们可借此改善太阳能电池的转化效率。研究结果显示,在模拟太阳光的照射下,新量子点太阳能电池的光电转化效率高于4.5%。目前,这种太阳能电池还没有达到最优化,因此,其能源转化效率相对来说偏低。 与传统的太阳能电池相比,量子点太阳能电池内的MEG能将电池的理论热力能转化效率提高35%;量子点太阳能电池也可使用廉价且产量高的卷对卷制程制造而成;其另外一个优势是每单位面积的制造成本很低,科学家们将其称为第三代(下一代)太阳能电池。

太阳能电池最大功率点跟踪系统

课程设计报告 课程 题目 学院 年级专业 班级学号 学生姓名 指导教师 设计时间

目录 一、摘要 (3) 二、绪论 (3) 三、内容 (3) 2.1光伏电池的特性 (3) 2.2 MPPT基本原理 (4) 2.3 MPPT控制的实现 (5) 2.3.1控制算法 (5) 2.3.2硬件实现 (6) 2.3.3 软件实现 (7) 2.4实验结果分析 (7) 四、结论 (8) 五、参考文献 (8)

一、摘要 太阳能光伏阵列的输出特性受外界环境的影响具有强烈的非线性,为了提高系统的整体效率,一个重要的途径就是实时调整光伏电池的工作点,进行最大功率点跟踪(MPPT),使之始终工作在最大功率点附近。本文通过对太阳能电池伏安特性的分析,采用自适应扰动观察算法,基于TMS320F2812设计了MPPT控制系统。实验结果表明,在此算法控制下,系统能够准确地跟踪最大功率点。 二、绪论 随着经济全球化进程的不断加速和工业经济的迅猛发展,能源问题已成为人类需要迫切解决的问题,大力发展新的可替代能源已成为当务之急。太阳能是一种取之不尽用之不竭的绿色能源,太阳能发电具有充分的清洁性、绝对的安全性、资源的相对广泛性和充足性、长寿性及维护性等其它常规能源所不具备的优点。光伏发电虽然具有以上的优势,但是实际应用中还存在很多的问题。光伏发电的主要缺点之一是太阳能电池阵列的光电转换效率太低。为了解决该问题,一个重要的途径就是实时调整光伏电池的工作点,进行最大功率点跟踪(MPPT),使之始终工作在最大功率点附近。目前,光伏系统的最大功率点跟踪问题已成为学术界研究的热点。 高性能的数字信号处理芯片(DSP)的出现,使得一些先进的控制策略应用于光伏发电控制系统成为可能。本论文就是在此背景下,采用TI公司生产的TMS320F2812进行控制,开展了太阳能发电系统的理论和试验研究,具有重要的现实意义。 三、内容 2.1光伏电池的特性 太阳能电池的输出特性是非线性的,它受到光照强度、环境温度等因素的影响。太阳能电池的等效电路如图1所示,图2是光伏电池在不同温度下的I-V、P-V特性,图3为光伏电池在不同日照强度下的I-V、P-V特性。[1][4][7]

光伏最大功率点跟踪系统MPPT的设计【文献综述】

毕业设计开题报告 电气工程及其自动化 光伏最大功率点跟踪系统MPPT的设计 1前言部分 随着社会生产的日益发展,人们对能源的需求每天都在增加,全世界对能源的消耗在1970年约为83亿吨标准煤,而在1995年,这种消耗达到了140亿吨标准煤,25年间增长了69.7%,到2020年,全世界对能源的消耗预计将达到195亿吨标准煤。如果人类对能源的需求以目前的速度增长,根据公式计算,全世界的石油将在40年后被消耗殆尽,天然气和煤业最多能维持60年和200年左右。由此可见,研究和开发新能源的需求十分迫切,采用新能源和可再生能源不仅能解决能源短缺的问题,还能保护生态环境,减少污染,是走经济社会可持续发展的重大措施。太阳能资源丰富、分布广发、可再生、无污染,是当今国际社会公认的理想能源替代品[1]。能源危机迫在眉睫。根据对石油储量的综合估算,可支配的传统能源的极限大约为1180到1510亿吨,以1995年世界石油的年开采量33.2亿吨计算,石油储量大约在2040左右年宣告枯竭;天然气储备估计在131800到152900兆立方米,年开采量维持在2300兆立方米,将在60年内枯蝎;煤的储量约为5600亿吨,1995年煤炭开采量为33亿吨,可以供应169年;铀的年开采量目前为每年6万吨,根据1993年世界能源委员会的估计可维持到21世纪30年代中期;核聚变到2050年还没有实现的希望。传统能源与原料链条的中断,必将导致世界经济危机和冲突的加剧,最终将葬送现代市场经济[2]。事实上,近10年来,中东及海湾地区与非洲的战争都是由传统能源的重新配置与分配而引发。总之,能源危机随时会爆发,它的爆发将具有爆炸性[3]! 当今世界太阳能光伏技术的利用,特别是在非洲、美洲、澳洲、亚洲各国,其增长幅度相当大,只要原因是近几年来太阳能电池、电力电子及微电子技术的快速发展,以及人们环保意识的不断增强[4]。太阳能发电与其他发电系统相比具有许多优点: 1.太阳能取之不尽,用之不竭,每天照射到地球上的太阳能是人类消耗的能量 的6000倍。

太阳能电池最大功率点跟踪技术探讨

第31卷  第4期 2008年8月 电子器件 Chinese J ournal Of Elect ron Devices Vol.31 No.4Aug.2008 Study T echnology of Maximum Pow er Point T racker on the Solar Cell 3 YA N G Fan 3 ,P EN G Hong 2w ei ,H U W ei 2bi n g ,L I Guo 2pi ng ,J I A N G Yan (College of Elect ronic and I nf ormation Engineering ,W uhan I nstit ute of Technology ,W uhan 430073,Chi na ) Abstract :Outp ut characteristic of t he solar battery in p hotovoltaic power 2generation system and t he princi 2ple of Maximum Power Point Tracker are int roduced.Bot h t he merit s and flaws of several t racing met hods in common usage are analysed.The emp hasis of t he st udy is Maximum Power Point Tracker based on quadratic interpolation.A system is designed to ascertain t he maximum power outp ut (M PO ),which is based on regular empirical approach and t he quadratic interpolation.The result of t he test indicates t hat t he M PO of solar battery can be ascertained very soon in t he quadratic interpolation.K ey w ords :solar cell ;quadratic interpolation ;Maximum Power Point Tracker EEACC :8250 太阳能电池最大功率点跟踪技术探讨 3 杨 帆3,彭宏伟,胡为兵,李国平,姜 燕 (武汉工程大学电气信息学院,武汉430074) 收稿日期:2007208220 基金项目:湖北省教育厅基金资助(20060271)作者简介:杨 帆(19662),女,硕士,硕士生导师,教授,主要研究方向为智能仪器与测控技术,yangfan188@https://www.sodocs.net/doc/527034848.html,. 摘 要:介绍了光伏发电系统太阳能电池的输出特性及最大功率点跟踪技术的基本原理。分析了多种常用的跟踪方法的优 缺点。重点研究了二次插值法的最大功率点跟踪技术。并设计了一个系统,应用常规实验方法及二次插值法寻找太阳能电池的最大输出功率,试验结果表明二次插值法能快速寻找太阳能电池的最大输出功率。 关键词:太阳能电池;二次插值;最大功率点跟踪 中图分类号:TP331 文献标识码:A 文章编号:100529490(2008)0421081204 太阳能作为绿色能源,具有无污染,无噪音,取之不尽,用之不竭等优点,越来越受到人们的关注。由于光伏系统目前的主要问题是电池的转换效率低且价格昂贵,因此,如何进一步提高太阳能电池的转换效率,如何充分利用光伏阵列转换的能量,一直是光伏发电系统研究的重要方向。太阳能光伏发电系统的最大功率点跟踪控制M PP T (Maximum Power Point Tracker )就是其中一个重要的研究课题。 最大功率点跟踪是太阳能并网发电中的一项重要的关键技术,它是指,为充分利用太阳能,控制改变太阳能电池阵列的输出电压或电流的方法,使阵列始终工作在最大功率点上,根据太阳能电池的特性,目前实现的跟踪方法主要有以下三种:太阳追踪、最大功率点跟踪或两种方法综合使用。出于经 济方面的考虑,在小规模的系统中经常使用最大功率点跟踪的方法[1]。M PP T 能使太阳能电池阵列的输出功率增加约15%~36%。 1 太阳能电池的伏安特性分析 太阳能电池的伏安(p 2u )特性如图1所示,图1(a )为温度变化时的p 2u 特性曲线,图1(b )是日照强度变化时的p 2u 特性曲线。从图可以看出太阳能电池具有明显的非线性。太阳能电池的输出受日照强度、电池结温等因素的影响。当结温增加时,太阳能电池的开路电压下降,短路电流稍有增加,最大输出功率减小;当日照强度增加时,太阳能电池的开路电压变化不大,短路电流增加,最大输出功率增加。在一定的温度和日照强度下,太阳能电池具有唯一

#什么是太阳能电池量子效率,如何测试

什么是太阳能电池量子效率,如何测试 请教大家,什么是太阳能电池量子效率啊?Quantum efficiency of a solar cell, QE 太阳能电池量子效率和太阳能电池光谱响应,太阳能电池IPCE有什么区别啊?spectral response, IPCE, Incident Photon to Charge Carrier Efficiency 太阳能电池这些特性如何测试啊? 什么是太阳能电池量子效率?如何测试啊?Quantum efficiency of a solar cell, QE 太阳能电池的量子效率是指太阳能电池的电荷载流子数目和照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率和太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的量子效率和光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的量子效率为1。对于能量低于能带隙的光子,太阳能电池的量子效率为0。理想中的太阳能电池的量子效率是一个正方形,也就是说,对于测试的各个波长的太阳能电池量子效率是一个常数。但是,绝大多数太阳能电池的量子效率会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。影响吸收能力的同样的太阳能电池结构,也会影响太阳能电池的量子效率。比如,太阳能电池前表面的变化会影响表面附近产生的载流子。并且,由于短波长的光是在非常接近太阳能电池表面的地方被吸收的,在前表面的相当多的再结合将会影响太阳能电池在该波长附近的太阳能电池量子效率。类似的,长波长的光是被太阳能电池的主体吸收的,并且低扩散深度会影响太阳能电池主体对长波长光的吸收能力,从而降低太阳能电池在该波长附近的太阳能电池量子效率。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池量子效率,有时也被叫做IPCE,也就是太阳能电池光电转换效率(Incident-Photon-to-electron Conversion Efficiency)。 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 测试原理 用强度可调的偏置光照射太阳能电池,模拟其不同的工作状态,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的绝对光谱响应和量子效率。

最大功率跟踪控制在光伏系统中的应用

最大功率跟踪控制在光伏系统中的应用3X 赵庚申33,王庆章 (南开大学光电所,天津300071) 摘要:对最大功率跟踪控制中DC2DC变换器的原理和控制方法进行了实验研究,利用DC2DC转换电路和单片机控制系统实现最大功率点跟踪,使太阳电池始终保持最大功率输出;和普通的控制器相比增加输出功率5%~15%。 关键词:光伏(PV);最大功率点跟踪(MPPT);DC2DC变换器 中图分类号:TP206 文献标识码:A 文章编号:100520086(2003)0820813204 T racing and Control of Maximum Pow er Point in a PV System ZHAO G eng2shen33,WAN G Qing2zhang (Institute of Photoelectronics,Nankai University,Tianjin300071,China) Abstract:Principle and control method of DC2DC conversion for MPPT in a solar cell system experi2 mentally discussed.MPPT was implemented with a DC2DC conversion circuit and a MCU control system,and more output power of5to15percent than common control mathod was achieved. K ey w ords:photovoltaics system(PV);maximum power point tracking(MPPT);DC2DC conversion 1 引 言 独立光伏系统一般是由储能蓄电池电压来选择太阳电池输出电压,而对蓄电池的充放电控制则是通过监控蓄电池的电压实现,控制工作电压在一定程度上可以调节太阳电池的输出。但太阳电池的最大功率点是变化的。当太阳电池的最大功率点超出所控制的范围时,就会浪费一部分能源。因此,为了有效利用太阳能,就必须跟踪控制太阳电池的最大功率点来调节太阳电池的输出;同时将蓄电充电电压限制在一定的范围,以保证蓄电池有稳定的电压。在并网发电光伏系统中,通过跟踪控制太阳电池的最大功率点来调节太阳电池的输出,可以随时将系统富裕的电能馈送到常规电网,最大限度地利用太阳能。 DC2DC变换器是通过控制电压的方法将不控的直流输入变为可控的直流输出的一种变换电路,被广泛应用于开关电源、逆变系统和用直流电动机驱动的设备中[1]。用DC2DC变换器可以实现最大功率点的跟踪(MPPT)。实际使用中用DC2DC变换器实现MPPT有不同的方法,其中谐振法是利用开关型电压逆变器的输出电压,通过电感、电容产生谐振,电感上的电压通过变压器和桥式整流向蓄电池充电。该方法可以通过改变工作频率来调节输出电压和电流,实现MPPT,但线路较复杂,需用中间变压器,本文将DC2DC变换器接入太阳电池的输入回路,并将对DC2DC变换器的输入、输出电压和电流测量结果通过单片机的分析运算,由单片机输出PWM脉冲调节DC2DC转换器内部开关管的占空比来控制太阳电池的输出电流,从而使蓄电池电压保持恒定。同时通过控制开关管的占空比也可调节太阳电池输出。由于采用了升降压式(buck2boost)DC2DC转换电路[2]来实现MPPT,所以该方法电路简单、软硬件结合、控制方法灵活。 2 MPPT原理和控制方法[3] 2.1 升降压式DC2DC变换电路 升降压式DC2DC转换电路原理如图1。在开关管Q1处于导通状态时,电源给电感L充电,L上的 光电子?激光 第14卷第8期 2003年8月 J ournal of Optoelectronics?L aser Vol.14No.8 Aug.2003 X收稿日期:2003203212  3 基金项目:“十五”国家重大科技攻关资助项目(2002BA901A44)  33E2m ail:zhaogs@https://www.sodocs.net/doc/527034848.html,

太阳能电池最大功率点跟踪技术探讨

第31卷 第4期 2008年8月 电子器件 Chinese J ournal Of Elect ron Devices Vol.31 No.4Aug.2008 Study T echnology of Maximum Pow er Point T racker on the Solar Cell 3 YA N G Fan 3 ,P EN G Hong 2w ei ,H U W ei 2bi n g ,L I Guo 2pi ng ,J I A N G Yan (College of Elect ronic and I nf ormation Engineering ,W uhan I nstit ute of Technology ,W uhan 430073,Chi na ) Abstract :Outp ut characteristic of t he solar battery in p hotovoltaic power 2generation system and t he princi 2ple of Maximum Power Point Tracker are int roduced.Bot h t he merit s and flaws of several t racing met hods in common usage are analysed.The emp hasis of t he st udy is Maximum Power Point Tracker based on quadratic interpolation.A system is designed to ascertain t he maximum power outp ut (M PO ),which is based on regular empirical approach and t he quadratic interpolation.The result of t he test indicates t hat t he M PO of solar battery can be ascertained very soon in t he quadratic interpolation.K ey w ords :solar cell ;quadratic interpolation ;Maximum Power Point Tracker EEACC :8250 太阳能电池最大功率点跟踪技术探讨 3 杨 帆3,彭宏伟,胡为兵,李国平,姜 燕 (武汉工程大学电气信息学院,武汉430074) 收稿日期:2007208220 基金项目:湖北省教育厅基金资助(20060271)作者简介:杨 帆(19662),女,硕士,硕士生导师,教授,主要研究方向为智能仪器与测控技术,yangfan188@https://www.sodocs.net/doc/527034848.html,. 摘 要:介绍了光伏发电系统太阳能电池的输出特性及最大功率点跟踪技术的基本原理。分析了多种常用的跟踪方法的优 缺点。重点研究了二次插值法的最大功率点跟踪技术。并设计了一个系统,应用常规实验方法及二次插值法寻找太阳能电池的最大输出功率,试验结果表明二次插值法能快速寻找太阳能电池的最大输出功率。 关键词:太阳能电池;二次插值;最大功率点跟踪 中图分类号:TP331 文献标识码:A 文章编号:100529490(2008)0421081204 太阳能作为绿色能源,具有无污染,无噪音,取之不尽,用之不竭等优点,越来越受到人们的关注。由于光伏系统目前的主要问题是电池的转换效率低且价格昂贵,因此,如何进一步提高太阳能电池的转换效率,如何充分利用光伏阵列转换的能量,一直是光伏发电系统研究的重要方向。太阳能光伏发电系统的最大功率点跟踪控制M PP T (Maximum Power Point Tracker )就是其中一个重要的研究课题。 最大功率点跟踪是太阳能并网发电中的一项重要的关键技术,它是指,为充分利用太阳能,控制改变太阳能电池阵列的输出电压或电流的方法,使阵列始终工作在最大功率点上,根据太阳能电池的特性,目前实现的跟踪方法主要有以下三种:太阳追踪、最大功率点跟踪或两种方法综合使用。出于经 济方面的考虑,在小规模的系统中经常使用最大功率点跟踪的方法[1]。M PP T 能使太阳能电池阵列的输出功率增加约15%~36%。 1 太阳能电池的伏安特性分析 太阳能电池的伏安(p 2u )特性如图1所示,图1(a )为温度变化时的p 2u 特性曲线,图1(b )是日照强度变化时的p 2u 特性曲线。从图可以看出太阳能电池具有明显的非线性。太阳能电池的输出受日照强度、电池结温等因素的影响。当结温增加时,太阳能电池的开路电压下降,短路电流稍有增加,最大输出功率减小;当日照强度增加时,太阳能电池的开路电压变化不大,短路电流增加,最大输出功率增加。在一定的温度和日照强度下,太阳能电池具有唯一

光伏电池及其最大功率点跟踪

光伏电池及其最大功率点跟踪 1光伏电池 1.1 光伏电池简介 太阳能电池是一种由于光生伏特效应而将太阳光能即时转化为电能的器件。当太阳光照在半导体p-n结上,由于吸收了光子的能量,会形成电子--空穴对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,这使得相应区域的主载流子的浓度在靠近p-n结部分增加,而这种局部浓度的增加必然使得主载流子朝着外部接触面的方向扩散,导致外部端子上产生电压,接通电路后就形成电流。单体的单晶硅光伏电池的输出电压在标准照度下只有0.5V左右,常见的单体电池输出功率一般在1W左右,一般不能直接作为电源使用。单体电池除了容量小以外,其机械强度也较差。因此在实际应用中,将若干光伏电池单体串并联并封装起来成为有比较大的输出功率(几瓦到几百瓦不等)的太阳能电池组件。光伏电池组件再经过串并联就形成了光伏电池阵列,可以作为大型光伏并网逆变器的功率输入。

图2.1 太阳能电池单体、组件、方阵示意图 1.2 光伏电池数学模型 光伏电池的数学模型[12]可以由图2.2所示的单二极管等效电路[13]来描述。 图中L R 为光伏电池的外接负载,负载电压为L U ,负载电流为L I 。s R 和sh R 为光伏电池内阻。s R 为串联电阻,通常阻值较小,取决于体电阻、接触电阻、扩散电阻以及电极电阻等;sh R 为旁路电阻,一般阻值较大,取决于电池表面污染和半导体晶体缺陷引起的边缘漏电以及耗尽层内的复合电流等。VD I 为通过p-n 结的总扩散电流。sc I 代表光子在光伏电池中激发的电流,取决于辐照度、电池面积和本体温度T 。

L I L 图2.2 光伏电池的单二极管等效电路 )1(0-=AKT qE D VD e I I (2.1) 式中0D I 为光伏电池在无光照时的饱和电流。 旁路电阻两端电压s L L sh R I U U +=,流过旁路电阻的电流为 ()sh s L L sh R R I U I /+=。 由以上各式可得负载电流为: sh s L L AKT R I U q D sc L R R I U e I I I s L L +-???? ??--=+1) (0 (2.2) 一般s R 很小,sh R 很大,可以忽略不计。可得理想光伏电池特性: )1(0--=AKT qU D sc L L e I I I (2.3) 由式2.3可得 ??? ? ??+-=1ln 0D L sc L I I I q AKT U (2.4)

柔性衬底微晶硅太阳电池量子效率的研究

第39卷第5期 人 工 晶 体 学 报 V o.l 39 N o .5 2010年10月 J OURNAL O F S YNTHET IC CRY STA LS O c tober ,2010 柔性衬底微晶硅太阳电池量子效率的研究 刘 成,周丽华,叶晓军,钱子勍,陈鸣波 (上海空间电源研究所,上海200233) 摘要:通过对微晶硅太阳电池量子效率的测量,结合微区拉曼光谱和电学特性测试,讨论了本征层的硅烷浓度和等离子体辉光功率对太阳电池量子效率的影响。发现本征层硅烷浓度增加时,电池的长波响应变差,材料结构由微晶相演变成非晶相;等离子体辉光功率的增加造成了电池短波响应的变化。同时发现测量微晶硅太阳电池时使用掩膜板所得短路电流密度与量子效率积分获得的短路电流密度相差不大。将优化后的沉积参数应用于不锈钢柔性衬底的非晶硅/微晶硅叠层太阳电池,获得了9.28%(AM 0,1353W /m 2)和11.26%(AM 1.5,1000W /m 2)的光电转换效率。关键词:太阳电池;量子效率;柔性衬底;微晶硅;非晶硅/微晶硅中图分类号:O484;TK 514 文献标识码:A 文章编号:1000 985X (2010)05 1161 05 Study on Quantu m Effici enci es ofM icrocrystalli ne Silicon Solar Cells on Flexi ble Substrates LI U Cheng,Z HOU L i hua,Y E X iao j u n,QI AN Z i qing,C HEN M i n g bo (Shanghai Institute of Space Po w er sou rces ,Shanghai200233,Ch i na) (R eceive d 22M arc h 2010,acce p t ed 21Jul y 2010) Abstract :W it h the m easure m ent o f quant u m efficienc ies ,Ra m an spectra and e lectrical characteristics ,the effects of silane concentrations and p las m a d i s charge po w ers on quantum efficiencies of m i c rocrysta lline silicon solar ce lls had been discussed .It is found that the long w avelength responses o f so l a r cells decrease w hen silane concentrations i n crease ,and the shortw aveleng t h responses o f solar cells changesw hen plas m a discharge powers i n crease .It is also found that the short circu it current density are al m ost the sa m e bet w een m easured by ill u m i n ated J V w ith m asks and by quant u m effic iency .W ith the opti m ized deposition para m eters ,a m or phous silicon /m icr ocrystalli n e silicon tande m so lar ce lls on sta i n less steel flex i b le substratesw ith conversi o n efficiency of 9.28%(AM 0,1353W /m 2 )and 11.26%(AM 1.5,1000W /m 2 )w ere obta i n ed . K ey w ords :so lar cells ;quantu m efficienc ies ;flex i b le substrates ;m icr ocr ystalli n e silicon ;a morphous silicon /m icrocr ystalli n e silicon 收稿日期:2010 03 22;修订日期:2010 07 21 基金项目:上海市博士后科研资助计划项目(08R21420200);上海市引进技术的吸收与创新计划项目(07X I 2 016) 作者简介:刘 成(1980 ),男,湖南省人,博士后。E m ai :l thomas .li u cheng @g m ai.l com 1 引 言 量子效率(Quantum efficiency ,简称QE)的定义为:当太阳光照射到太阳电池上,在内建电场作用下产生的光生载流子数目与入射的光子数的比值。它是一个小于1的无量纲的数。量子效率分为内量子效率和外量子

分布式最大功率点跟踪系统提高光伏系统效率

如何利用分布式最大功率点跟踪系统提高光伏系统效率 太阳能是市场上最有前景的可再生能源之一。由于政府推出激励政策和传统电力成本不断攀升的影响,越来越多的家庭开始转向太阳能,并在屋顶安装光伏(PV)系统。按照目前的光伏系统价格计算,用户通常在 7-8 年后才能获得投资回报。政府激励政策和光伏系统的使用寿命必须能持续 20 年或更久。太阳能光伏系统的投资回报取决于该系统每年的发电量,因此用户需要的光伏系统必须具备高效、可靠和易于维护等特性,从而可以获得最大限度的发电量。 如今,很多安装太阳能光伏系统的用户已经意识到部分或间歇性的遮蔽会影响到系统的发电量。 部分阴影遮蔽对太阳能光伏系统的影响: 当树木、烟囱或其他物体投射的阴影遮挡住光伏系统时,就会导致系统造成“失配”问题。即使光伏系统只受到一点点阴影的遮挡都会导致发电量的大幅下跌。部分遮蔽导致的系统失配对发电量的实际影响很难通过简单的计算公式获得。因为影响系统发电量的因素很多,包括内部电池模块间互连、模块定向、光伏电池组间的串并联问题以及逆变器的配置等。光伏模块通过多个电池串相互连接而成,每个电池串被称为一个“组列”。每个组列由一个旁路二极管来保护,以免一个或多个电池被遮蔽或损坏时导致整个电池串因为过热而受到损坏。这些串联或并联的电池组列能够使电池板产生相对较高的电压或电流。本文来自环球光伏网 光伏阵列由串联在一起的光伏模块通过并联构成。每串光伏模块的的最大电压必须低于逆变器的最大输入电压额定值。 当光伏系统部分被遮蔽时,未被遮蔽的电池中的电流流经被遮蔽部分的旁路二极管。 当光伏阵列受到遮蔽而出现上述情况时,会产生一条具有多个峰值的 V-P 电气曲线。图 1 显示了具有集中式最大功率点跟踪系统( MPPT) 功能的标准并网配置,其中一个组列的两个电池板被遮蔽。集中式 MPPT无法设置直流电压,因此无法令两个组列的输出功率都达到最大。在高直流电压点 (M1),MPPT 使未遮蔽组列的输出功率达到最大。在低直流电压点 (M2),MPPT 将使遮蔽组列的输出功率达到最大:旁路二极管绕过遮蔽电池板,此组列的未遮蔽电池板将提供全量电流。阵列的多个 MPP 可能导致集中最大功率点跟踪(MPPT)配

最大功率跟踪原理及控制方法

最大功率跟踪原理及控制方法 2.1最大功率跟踪原理 太阳能电池的输出特性如图一所示,从图中的P/V特性曲线可以看出,随着端电压的增加输出功率先增加后减小,说明存在一个端电压值,在其附近可获得最大功率,因此,在光伏发电系统中,要提高系统的整体效率,一个重要的途径就是实时调整光伏电池的工作点,使之始终工作在最大功率点附近,这一过程就称之为最大功率点跟踪-MPPT。 图一光伏电池的特性曲线 2.2 最大功率跟踪的控制方法 MPPT的控制方法:光伏系统中的最大功率点跟踪的控制方法很多,使用最多的是自寻优的方法,即系统不直接检测光照和温度,而是根据光伏电池本身的电压电流值来确定最大功率点。这种方法又叫做TMPPT(True Maximum Power Point Tracking)。在自寻优的算法中,最典型的是扰动观察法和增量电导法。本论文使用扰动观察法,扰动观察法主要根据光伏电池的P-V特性,通过扰动端电压来寻找MPPT,其原理是周期性地扰动太阳能电池的工作电压值( ),再比较其扰动前后的功率变化,若输出功率值增加,则表示扰动方向正确,可朝同一方向(+ )扰动;若输出功率值减小,则往相反(- )方向扰动。通过不断扰动使太阳能电池输出功率趋于最大,此时应有[8]。此过程是由微处理器即C8051F320控制完成的。 3、系统的总体结构 3.1系统的结构图 系统的结构图如图二所示。其中单片机要采集太阳能电池的输出电压和输出电流及蓄电池的充电电流和开路电压,通过一定的控制算法(即改变占空比),调节太阳能电池的输出电压和电流,从而实现太阳能电池在符合马斯曲线的条件下以最佳功率对蓄电池充电,系统的硬件主要由核心控制模块、采样模块、驱动模块、升压式DC/DC变换器模块组成。

太阳能电池片转换效率

太阳能电池片转换效率 影响太阳能电池转换效率的因素很多,简单的归纳下吧: 1)太阳能光强。太阳能电池就是把太阳光转化为电的一种器件,在一般的情况下(注意条件),太阳能电池的效率随光强增加而增加的。再进一步说就是太阳能电池效率和安装地的综合气候条件有关系。2)电池的材料。不同的材料对光的吸收系数不同,禁带宽度也不同,量子效率自然也不同,电池效率自然也不同了。一般来说,单晶硅/多晶硅对光的系数系数远小于非晶硅的,所以非晶硅太 阳能电池厚度仅仅有单晶硅/多晶硅厚度的百分之一即可较好的吸收太阳光。另 外理论上讲GaAs太阳能电池的极限效率要大于其他太阳能电池的极限效率,因为GaAs太阳电池的禁带宽度在1.4ev,和地面太阳光光谱能量的最值最为接近。3)工艺水平。不同的工艺水平,电池的效率自然也不同,看看各个厂子就很明白了,为什么原材料几乎都一样,做出来的电池效率却差别很大,原因就在这。工艺水平自然和设备水平有着重要的关系,一般来说设备越是先进工艺就越优秀,电池效率就越高(工艺是设备的产物,没有设备工艺无法实现,都是空想)。典型的例子就是SiN:H减反膜以及倒金字塔结构,一块电池如果不采用这两种工艺,效率差别会很大(大概8%左右)。实际生产中典型的工艺有:尚德的“Pluto”,晶澳的“Maple”,英利的“熊猫”等等。 新能源是新经济,新经济前期的发展是指数性的爆发增长,这个行业的前景不错。但是中国人容易头脑发热,一窝蜂的上,现在有着说法“买个切片机就说自己是 某某光伏公司”,这样发展下去电池行业会重复中国彩电业,苦了自己,富了别人。电池这个产业现在火的有道理又没有道理,国企也进来掺和了,一锅粥就这乱炖起来,我相信未来几年行业就会大洗牌,谁是骡子谁是马自然一目了然。另外光伏行业的发展发向(近几年看)是垂直一体化,但是这个模式究竟能不能演义成经典,有待考察。上有硅料供应商纷纷进入中下游,电池制作商也纷纷进入上游硅料,现在就是这样一副景象,做电池的更关心怎么做硅料,做硅料的更关心怎么做电池,然而与电池最为核心的设备却无人问津,高校的研究者就是扯淡,国家大笔钱投入,都让他们换成了发票,但是不见设备出来,哎,乱哪! 借用一句话总结“道路坎坷,前途光明”! 电阻R=ρ*L/S (ρ为电阻率,S为截面积,L为样品长度),由于电阻率是金属的固有属性,它不随金属的横截面,长度的变化而变化,所以针对组件输出电性能,适当增加截面积,以降低组件内电阻,提高输出功率。涂锡铜带基材的截面积越大其电阻越小,组件的串联电阻也越小,提高涂锡铜带基材的截面积有两种,在相同材质下,一种是提高基材厚度,一种是提高基材宽度。但不管采取哪种情况,增加截面积势必会影响涂锡铜带的“柔软度”,也就会影响焊接的破损率。至于采用何种规格,还需要根据实际情况来做试验得出,目的是在保证焊接破

最大功率点跟踪(MPPT)

电子知识 最大功率点(2)MPPT(14) MPPT控制器的全称“最大功率点跟踪”(Maximum Power Point Tracking)太阳能控制器,是传统太阳能充放电控制器的升级换代产品。所谓最大功率点跟踪,即是指控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最高的效率对蓄电池充电。下面我们用一种机械模拟对比的方式来向大家解释MPPT太阳能控制器的基本原理。 要想给蓄电池充电,太阳板的输出电压必须高于电池的当前电压,如果太阳能板的电压低于电池的电压,那么输出电流就会接近0。所以,为了安全起见,太阳能板在制造出厂时,太阳能板的峰值电压(Vpp)大约在17V左右,这是以环境温度为25°C时的标准设定的。这样设定的原因,(有意思的是,不同于我们普通人的主观想象,下面的结论可能会让我们吃惊)在于当天气非常热的时候,太阳能板的峰值电压Vpp会降到15V左右,但是在寒冷的天气里,太阳能的峰值电压Vpp可以达到18V! 现在,我们再回头来对比MPPT太阳能控制器和传统太阳能控制器的区别。传统的太阳能充放电控制器就有点象手动档的变速箱,当发动机的转速增高的时候,如果变速箱的档位不相应提高的话,势必会影响车速。但是对于传统控制器来说,充电参数都是在出厂之前就设定好的,这就像车的档位被固定设置在了1档。那么不管你怎样用力的踩油门,车的速度也是有限的。MPPT控制器就不同了,它是自动挡的。它会根据发动机的转速自动调节档位,始终让汽车在最合理的效率水平运行。就是说,MPPT控制器会实时跟踪太阳能板中的最大

的功率点,来发挥出太阳能板的最大功效。电压越高,通过最大功率跟踪,就可以输出更多的电量,从而提高充电效率。 理论上讲,使用MPPT控制器的太阳能发电系统会比传统的效率提高50%,但是跟据我们的实际测试,由于周围环境影响与各种能量损失,最终的效率也可以提高20%-30%。 从这个意义上讲,MPPT太阳能充放电控制器,势必会最终取代传统太阳能控制器 为什么要使用MPPT ? 太阳能电池组件的性能可以用U-I曲线来表示。电池组件的瞬时输出功率(U*I)就在这条U-I曲线上移动。电池组件的输出要受到外电路的影响。最大功率跟踪技术就是利用电力电子器件配合适当的软件,使电池组件始终输出最大功率。 如果没有最大功率跟踪技术,电池组件的输出功率就不能够在任何情况下都达到最佳(大)值,这样就降低了太阳能电池组件的利用率。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析

相关主题