搜档网
当前位置:搜档网 › ubifs文件系统挂载及同步

ubifs文件系统挂载及同步

ubifs文件系统挂载及同步
ubifs文件系统挂载及同步

UBIFS分区制作及UBIFS烧写和启动 (转载)

相关命令工具

ubiattach version 1.0 - a tool to attach MTD device to UB I.

Usage: ubiattach

[-m ] [-d ]

[--mtdn=] [--devn ]

Example 1: ubiattach /dev/ubi_ctrl -m 0 - attach MTD device 0 (mtd0) to UBI

Example 2: ubiattach /dev/ubi_ctrl -m 0 -d 3 - attach MTD device 0 (mtd0) to UBI and

and create UBI device number 3 (ubi3)

-d, --devn= the number to assign to the newly created UBI device(the number is assigned automatically if this is not specified)

-m, --mtdn= MTD device number to attach

-O, --vid-hdr-offset VID header offset (do not specify this unless you really know what you do and the optimal defaults will be used)

-h, --help print help m essage

-V, --version print program v ersion

ubimkvol version 1.0 - a tool to create UBI volumes.

Usage: ubimkvol [-h] [-a ] [-n ] [-N ] [-s ] [-S ] [-t ] [-V] [-m] [--alignment=][--vol _id=] [--name=] [--size=] [--lebs=] [--type=] [--help] [--version] [--maxavsize]

Example: ubimkvol/dev/ubi0 -s 20MiB -N config_data - create a 20 Megabytes volume

named "config_data" on UBI device /dev/ubi0.

-a, --alignment= volume alignment (default is 1)

-n, --vol_id= UBI volume ID, if not spec ified, the volume ID

will be assigned automatically

-N, --name= volume name

-s, --size= volume size volume size in bytes, kilobytes (KiB)

or megabytes (MiB)

-S, --lebs= alternative way to give vo lume size in logical

eraseblocks

-m, --maxavsize set volume size to maximum available size

-t, --type= volume type (dynamic, static), default is dynamic

-h, -?, --help print help message

-V, --version print program versi on

The following is a compatibility option which is deprecated, do not use it

-d, --devn= UBI device number - m ay be used instead of the UBI

device node name in which case the utility assumes

that the device node is "/dev/ubi"

ubidetach version 1.0 - a tool to remove UBI devices (deta ch MTD devices from UBI)

Usage: ubidetach [-d ] [-m ] [--devn ] [--mtdn=]

Example 1: ubidetach /dev/ubi_ctrl -d 2 - delete UBI device 2 (ubi2)

Example 2: ubidetach /dev/ubi_ctrl -m 0 - detach MTD device 0 (mtd0)

-d, --devn= UBI device number to delete

-m, --mtdn= or altrnatively, MTD device number to detach -

this will delete corresponding UBI device

-h, --help print help m essage

-V, --version print program v ersion

ubiformat version 1.0 - a tool to format MTD devices and flash UBI images

Usage: ubiformat [-h] [-V] [-y] [-q] [-v]

[-x ] [-E ] [-s ] [-O ] [-n]

[--help] [--version] [--yes] [--verbose] [--quiet]

[--ec=] [--vid-hdr-offset=]

[--ubi-ver=] [--no-volume-table]

Example 1: ubiformat /dev/mtd0 -y - format MTD device number 0 and do

not ask questions.

Example 2: ubiformat /dev/mtd0 -q -e 0 - format MTD device number 0,

be quiet and force erase counter value 0.

-s, --sub-page-size= minimum input/output unit used fo r UBI

headers, e.g. sub-page size in case of NAND

flash (equivalent to the minimum input/output

unit size by default)

-O, --vid-hdr-offset= offset if the VID header from s tart of the

physical eraseblock (default is the next

minimum I/O unit or sub-page after the EC

header)

-n, --no-volume-table only erase all eraseblock a nd preserve erase

counters, do not write empty volume table

-f, --flash-image= flash image file

-e, --erase-counter= use as the erase counter value for all

eraseblocks

-y, --yes assume the answer is "yes" for all question

this program would otherwise ask

-q, --quiet suppress progress p ercentage information

-v, --verbose be verbose

-x, --ubi-ver= UBI version number to put to EC headers

(default is 1)

-h, -?, --help print help message

-V, --version print program version

使用实例

将一个MTD分区挂载为UBIFS格式

●flash_eraseall /dev/mtd5 //擦除mtd5

●ubiattach /dev/ubi_ctrl -m 5 -d 0 //UBI和mtd5关联->ubi0

●ubimkvol /dev/ubi0 -n 0 -N rootfs0 -s 256MiB //创建分区ubi0_0设定volume 大小

●mount -t ubifs ubi0_0 /mnt/ubi或

mount -t ubifs ubi0:rootfs0 /mnt/ubi //挂载

烧写UBIFS文件系统映像

U-Boot烧写ubifs:(mmc)

#mmcinit

#fatload mmc 0:1 81000000 ubi.img

#nand unlock

#nand ecc sw

#nand erase 680000 7980000

#nand write.i 81000000 680000 $(filesize)

NFS文件系统上烧写

法一,使用ubiformat工具

./ubiformat -q /dev/mtd5 -f ubi.img

法二,不必烧写映像,将ROOTFS打包,解压到UBIFS

ubiattach /dev/ubi_ctrl -m 5 -d 0

ubimkvol /dev/ubi0 -n 0 -N rootfs -s 128MiB

mount -t ubifs ubi0_0 /mnt/ubi0

tar -jxv -C /mnt/ubi0 rootfs.tar.bz2

umount /mnt/ubi0

UBI文件系统启动

设置UBIFS文件系统作为根文件系统启动的参数

#setenv bootargs console=ttyAM0,115200n8 ubi.mtd=5 root=ubi0:root fs rootfstype=ubifs init=linuxrc

# setenv bootcmd nand read.i 80300000 280000 200000\;bootm 80 300000

UBIFS

一、UBIFS 简介

由IBM、nokia工程师Thomas Gleixner,Artem Bityutskiy等人于2006年发起,致力于开发性能卓越、扩展性高的FLASH专用文件系统,以解决当前嵌入式环境下以FLASH作为MTD设备使用时的技术瓶颈,

开发背景:

FLASH特性:

FLASH是一类电可擦出可编程存储体,在使用方式上与硬磁盘最大不同是:

FLASH文件系统所必须的关键技术:

1. 由于FLASH的“先擦除后写”的特性决定,必须(或者说所被公认为)采用异地更新策略(out-of-place update)。相关问题讨论可参考:

https://www.sodocs.net/doc/5614301604.html, 文档A Brief Introduction to the Design of UBIFS。

2. 采用异地更新策略就必须(或者说所被公认为)采用日志文件系统来管理。

3. 采用日志文件系统就必须(或者说所被公认为)实现垃圾回收(garbage collection)

4. 由于FLASH的物理擦除块(Physical Erase Block)只有有限次有效擦除,所以必须(或者说所被公认为)采用“负载平衡”(我比较喜欢翻译为“损益均衡”——一个经济学术语)

(Wear-Leveling)技术,即保证上的(几乎)所有PEB的擦除次数趋向于均衡化,从而避免小部分PEB大大先于其他PEB而”坏“掉。

当前嵌入式FLASH解决方案多采用:

1. 无文件系统直接使用FLASH:缺点很明显

2. 采用传统文件系统,如ext2,ext3, FAT16/32, dos,Cramfs 等:这些文件系统本来是为传统的磁盘体开发的,他们无法高效的管理以FLASH作为介质的文件系统,特别是在FLASH的使用寿命上。于是出现了第3中方案。

3. 采用FTL/NFTL(flash 转换层/nand flash转换层)+传统文件系统:FTL的使用就是针对FLASH的特有属性,通过硬件的方式来实现日志管理、损益均衡等技术。但实践证明,由于各方面因素导致本方案有一定的局限性。

4. FLASH专用文件系统,如JFFS1/2,YAFFS等,他们从一定程度上缓解了flash使用上的技术瓶颈。但也仍然存在诸多问题:如内存消耗大,对FLASH容量、文件系统大小、内容、访问模式等的线性依赖,损益均衡能力差活过渡损益。随作FLASH容量逐渐暴涨(我见到的资料已经有64GFLASH已经实用化),JFFS,YAFFS几乎无法管理如此大的FLASH——虽然JFFS 目前还在改进中,但前途不看好,一个很好的例子JFFS的主要开发者大多倒向了UBIFS。:)

UBI:一种类似于LVM的逻辑卷管理层。主要实现损益均衡,逻辑擦除块、卷管理,坏块管理等。

UBIFS:基于UBI的FLASH日志文件系统。

有关ubifs的详细介绍,请参考:

https://www.sodocs.net/doc/5614301604.html,/doc/ubi.html

https://www.sodocs.net/doc/5614301604.html,/doc/ubifs.html

二、使用UBIFS前的准备

1. 获取ubifs:

2.6.22以后,ubifs活跃于git管理工程中

git://https://www.sodocs.net/doc/5614301604.html,/ubi-2.6.git

2.6.27以后,ubifs被整合进内核树中,用户只需下载最新内核即可获取ubifs支持。

2. 配置linux内核(2.6.28 以上kernel 已经包含ubifs, 早期的kernel 还得去官网上找找,我的就是 2.6.28)

配置的时候选上

1)Device Drivers --->Memory Technology Device (MTD) support --->UBI - Unsorted block images --->Enable UBI

2)File systems --->Miscellaneous filesystems --->UBIFS file system support

这样我们的内核就支持UBIFS文件系统了

3. UBIFS工具

mtd-utils工具中提供了对UBIFS的支持,所以我们需要下载和编译这些工具,下载以下几个文件

1)下载mtd-utils

wget

http://debian.mirror.inra.fr/debian/pool/main/m/mtd-utils/mtd-utils_20080508.orig.tar.gz

tar xzvf mtd-utils_20080508.orig.tar.gz

cd mtd-utils-20080508

2)编译mtd-utils (主要是修改工具链)

修改Makefile文件:

#CROSS=arm-linux-

修改为CROSS=arm-marvell-linux-gnueabi-

BUILDDIR := $(CROSS:-=)

修改为BUILDDIR := .

修改ubi-utils/Makefile文件:

添加CROSS=arm-marvell-linux-gnueabi-

修改ubi-utils/new-utils/Makefile文件:

添加CROSS=arm-marvell-linux-gnueabi-

make WITHOUT_XATTR=1

3)ubi-utils子目录下生成我们需要的ubiattach、ubimkvol等文件(请确保是交叉编译所得)

mkfs.ubifs子目录下生成我们需要的mkfs.ubifs工具,通过这个工具我们能打包一个文件夹,生成UBIFS系统镜像,

我是使用nfs 启动,直接解压文件到flash 上,所以并没有使用mkfs.ubifs工具.

另外网络上很多文正提到zlib、lzo 这两个库,但是我并没有使用到。

三. 如何使用UBIFS

1. 使用nfs启动系统, 首先建立设备节点:

mknod /dev/ubi_ctrl c 10 58

mknod /dev/ubi0 c 250 0

2、执行以下命令挂载ubifs:

1)flash_eraseall /dev/mtd4 #擦出分区

2)ubiattach /dev/ubi_ctrl -m 4 #建立关联

3)ubimkvol /dev/ubi0 -N rootfs -s 450MiB #创建容量, -s 是设置大小

4)mount -t ubifs ubi0_0 /mnt # 也可以:mount -t ubifs ubi0:rootfs /mnt

三. uboot 如何支持UBIFS 为根文件系统启动:

setenv bootargs console=ttyS0,115200 ubi.mtd=4 root=ubi0_0 rootfstype=ubifs

ip=192.168.1.101:192.168.1.100::255.255.255.0::usb0:on

下面附上一个我自己通过nfs 启动以后,烧写kernel 和文件系统的脚本。

#!/bin/sh

TestResult()

{

if [ $? -ne 0 ]; then

echo "$1 faild please check the file"

exit 1

else

echo "$1 OK !!!"

echo " "

fi

}

#Erase the flash partition

echo "--------------Erase the flash partitin----------------"

/mtd-utils/usr/sbin/flash_eraseall /dev/mtd3

/mtd-utils/usr/sbin/flash_eraseall /dev/mtd4

echo "--------------Install kernel and software to flash----------------" /bin/dd if=/zImage of=/dev/mtdblock3

mkdir -p /mountpoint

mknod /dev/ubi_ctrl c 10 58

mknod /dev/ubi0 c 250 0

/mtd-utils/ubi/ubiattach /dev/ubi_ctrl -m 4

TestResult "/mtd-utils/ubi/ubiattach /dev/ubi_ctrl -m 4"

/mtd-utils/ubi/ubimkvol /dev/ubi0 -N rootfs -s 450MiB

TestResult "/mtd-utils/ubi/ubimkvol /dev/ubi0 -N rootfs -s 450MiB"

/bin/mount -t ubifs ubi0_0 /mountpoint

TestResult "/bin/mount -t ubifs ubi0_0 /mountpoint"

echo "tar xvf /fs.tar -C /mountpoint please wait"

tar xf /FSSoftware.tar -C /mountpoint

sync

/bin/umount /mountpoint

echo "----------------------------------------------------------------"

echo " Please set uboot environment: "

echo "setenv bootargs console=ttyS0,115200 ubi.mtd=4 root=ubi0_0 rootfstype=ubifs

ip=192.168.1.101:192.168.1.100::255.255.255.0::usb0:on"

echo "----------------------------------------------------------------"

exit 0

另外ubifs 是一个异步的文件系统,所以为了掉电的时候数据能保存完整,最好使用-o sync 挂载文件系统。

busybox详解制作根文件系统

详解制作根文件系统 单击,返回主页,查看更多内容 一、FHS(Filesystem Hierarchy Standard)标准介绍 当我们在linux下输入ls / 的时候,见到的目录结构以及这些目录下的内容都大同小异,这是因为所有的linux发行版在对根文件系统布局上都遵循FHS标准的建议规定。 该标准规定了根目录下各个子目录的名称及其存放的内容: 制作根文件系统就是要建立以上的目录,并在其中建立完整目录内容。其过程大体包括: ?编译/安装busybox,生成/bin、/sbin、/usr/bin、/usr/sbin目录 ?利用交叉编译工具链,构建/lib目录 ?手工构建/etc目录 ?手工构建最简化的/dev目录 ?创建其它空目录 ?配置系统自动生成/proc目录 ?利用udev构建完整的/dev目录 ?制作根文件系统的jffs2映像文件 下面就来详细介绍这个过程。 二、编译/安装busybox,生成/bin、/sbin、/usr/bin、/usr/sbin目录

这些目录下存储的主要是常用命令的二进制文件。如果要自己编写这几百个常用命令的源程序,my god,这简直是一个噩梦!好在我们有嵌入式Linux系统的瑞士军刀——busybox,事情就简单很多。 1、从https://www.sodocs.net/doc/5614301604.html,/下载busybox-1.7.0.tar.bz2 2、tar xjvf busybox-1.7.0.tar.bz2解包 3、修改Makefile文件 175 ARCH ?= arm 176 CROSS_COMPILE ?= arm-linux- 4、make menuconfig配置busybox busybox配置主要分两部分。 第一部分是Busybox Settings,主要编译和安装busybox的一些选项。这里主要需要配置:

mount用法详解

mount用法详解 1、挂载点必须是一个目录。 2、一个分区挂载在一个已存在的目录上,这个目录可以不为空,但挂载后这个目录下以前的内容将不可用。 对于其他操作系统建立的文件系统的挂载也是这样。但是需要理解的是:光盘、软盘、其他操作系统使用的文件系统的格式与linux使用的文件系统格式是不一样的。光盘是ISO9660;软盘是fat16或ext2;windows NT是fat16、NTFS;windows98是fat16、fat32;windows2000和windowsXP是fat16、fat32、NTFS。挂载前要了解linux是否支持所要挂载的文件系统格式。 挂载时使用mount命令: 格式:mount [-参数] [设备名称] [挂载点] 其中常用的参数有 -t<文件系统类型> 指定设备的文件系统类型,常见的有: minix linux最早使用的文件系统 ext2 linux目前常用的文件系统 msdos MS-DOS的fat,就是fat16 vfat windows98常用的fat32 nfs 网络文件系统 iso9660 CD-ROM光盘标准文件系统 ntfs windows NT 2000的文件系统 hpfs OS/2文件系统 auto 自动检测文件系统 -o<选项> 指定挂载文件系统时的选项。有些也可用在/etc/fstab中。常用的有 codepage=XXX 代码页 iocharset=XXX 字符集 ro 以只读方式挂载 rw 以读写方式挂载 nouser 使一般用户无法挂载 user 可以让一般用户挂载设备

提醒一下,mount命令没有建立挂载点的功能,因此你应该确保执行mount命令时,挂载点已经存在。(不懂?说白了点就是你要把文件系统挂载到哪,首先要先建上个目录。这样OK?) 例子:windows98装在hda1分区,同时计算机上还有软盘和光盘需要挂载。 # mk /mnt/winc # mk /mnt/floppy # mk /mnt/cdrom # mount -t vfat /dev/hda1 /mnt/winc # mount -t msdos /dev/fd0 /mnt/floppy # mount -t iso9660 /dev/cdrom /mnt/cdrom 现在就可以进入/mnt/winc等目录读写这些文件系统了。 要保证最后两行的命令不出错,要确保软驱和光驱里有盘。(要是硬盘的磁盘片也可以经常随时更换的话,我想就不会犯这样的错误了:-> ) 如果你的windows98目录里有中文文件名,使用上面的命令挂载后,显示的是一堆乱码。这就要用到-o 参数里的codepage iocharset选项。codepage指定文件系统的代码页,简体中文中文代码是936;iocharset指定字符集,简体中文一般用cp936或gb2312。 当挂载的文件系统linux不支持时,mount一定报错,如windows2000的ntfs文件系统。可以重新编译linux内核以获得对该文件系统的支持。关于重新编译linux内核,就不在这里说了。 四、自动挂载 每次开机访问windows分区都要运行mount命令显然太烦琐,为什么访问其他的linux分区不用使用mount命令呢?其实,每次开机时,linux自动将需要挂载的linux分区挂载上了。那么我们是不是可以设定让linux在启动的时候也挂载我们希望挂载的分区,如windows分区,以实现文件系统的自动挂载呢? 这是完全可以的。在/etc目录下有个fstab文件,它里面列出了linux开机时自动挂载的文件系统的列表。我的/etc/fstab 文件如下: /dev/hda2 / ext3 defaults 1 1 /dev/hda1 /boot ext3 defaults 1 2 none /dev/pts devpts gid=5,mode=620 0 0 none /proc proc defaults 0 0

LINUX文件系统制作详细

Linux文件系统制作流程 关键词:ARM Linux yaffs文件系统移植 Linux文件系统简介 Linux支持多种文件系统,包括ext2、ext3、vfat、ntfs、iso9660、jffs、romfs和nfs等,为了对各类文件系统进行统一管理,Linux引入了虚拟文件系统VFS(Virtual File System),为各类文件系统提供一个统一的操作界面和应用编程接口。 Linux下的文件系统结构如下: Linux启动时,第一个必须挂载的是根文件系统;若系统不能从指定设备上挂载根文件系统,则系统会出错而退出启动。之后可以自动或手动挂载其他的文件系统。因此,一个系统中可以同时存在不同的文件系统。 不同的文件系统类型有不同的特点,因而根据存储设备的硬件特性、系统需求等有不同的应用场合。在嵌入式Linux应用中,主要的存储设备为RAM(DRAM,

SDRAM)和ROM(常采用FLASH存储器),常用的基于存储设备的文件系统类型包括:jffs2,yaffs,cramfs,romfs,ramdisk,ramfs/tmpfs等。 >基于FLASH的文件系统 Flash(闪存)作为嵌入式系统的主要存储媒介,有其自身的特性。Flash的写入操作只能把对应位置的1修改为0,而不能把0修改为1(擦除Flash就是把对应存储块的内容恢复为1),因此,一般情况下,向Flash写入内容时,需要先擦除对应的存储区间,这种擦除是以块(block)为单位进行的。 闪存主要有NOR和NAND两种技术(简单比较见附录)。Flash存储器的擦写次数是有限的,NAND闪存还有特殊的硬件接口和读写时序。因此,必须针对Flash 的硬件特性设计符合应用要求的文件系统;传统的文件系统如ext2等,用作Flash的文件系统会有诸多弊端。 在嵌入式Linux下,MTD(Memory Technology Device,存储技术设备)为底层硬件(闪存)和上层(文件系统)之间提供一个统一的抽象接口,即Flash的文件系统都是基于MTD驱动层的(参见上面的Linux下的文件系统结构图)。使用MTD 驱动程序的主要优点在于,它是专门针对各种非易失性存储器(以闪存为主)而设计的,因而它对Flash有更好的支持、管理和基于扇区的擦除、读/写操作接口。 顺便一提,一块Flash芯片可以被划分为多个分区,各分区可以采用不同的文件系统;两块Flash芯片也可以合并为一个分区使用,采用一个文件系统。即文件系统是针对于存储器分区而言的,而非存储芯片。 1.jffs2 JFFS文件系统最早是由瑞典Axis Communications公司基于Linux2.0的内核为嵌入式系统开发的文件系统。JFFS2是RedHat公司基于JFFS开发的闪存文件系统,最初是针对RedHat公司的嵌入式产品eCos开发的嵌入式文件系统,所以JFFS2也可以用在Linux,uCLinux中。 Jffs2:日志闪存文件系统版本2(Journalling Flash FileSystem v2) 主要用于NOR型闪存,基于MTD驱动层,特点是:可读写的、支持数据压缩的、基于哈希表的日志型文件系统,并提供了崩溃/掉电安全保护,提供“写平衡”支持等。缺点主要是当文件系统已满或接近满时,因为垃圾收集的关系而使jffs2的运行速度大大放慢。 目前jffs3正在开发中。关于jffs系列文件系统的使用详细文档,可参考MTD补丁包中mtd-jffs-HOWTO.txt。 jffsx不适合用于NAND闪存主要是因为NAND闪存的容量一般较大,这样导致jffs为维护日志节点所占用的内存空间迅速增大,另外,jffsx文件系统在

linux中如何挂载NFS文件

如何挂载NFS开发环境的方法步骤 ———mount命令及umount命令的用法详解(附图说明)Step1:设置好网络 主机IP:222.204.59.185 网关:192.168.50.1 子网掩码:255.255.255.0 开发板IP:222.204.59.250 网关:192.168.50.1 子网掩码:255.255.255.0 目的是使得两个处于同一个网段。 Step2:在主机的linux中设置共享目录 运行命令 #gedit /etc/exports 编辑nfs 服务的配置文件(注意:第一次打开时该文件是空的),添加以下内容: /root/share *(rw,sync,no_root_squash) 保存退出 其中: /root/share表示nfs 共享目录,它可以作为开发板的根文件系统通过nfs 挂接; *表示所有的客户机都可以挂接此目录 rw表示挂接此目录的客户机对该目录有读写的权力 no_root_squash表示允许挂接此目录的客户机享有该主机的root 身份 使用showmount –e命令可以查看你的挂载点在哪,不加参数-e显示的是网络地址。 在开发板上的/mnt下建立新的nfs文件(可以放在其他地方,名字除了nfs也可以去其他的名字) Step3:通过命令启动和停止nfs 服务 在命令行下运行: #/etc/init.d/nfs restart 这将启动nfs 服务,可以输入以下命令检验nfs 该服务是否启动。 Step4:在minicom中使用mount命令(也可以在超级终端中使用) 确定 进入minicom界面:

# mount -t nfs 222.204.59.185: /root/share /mnt/nfs 上图为minicom中显示的linux(也即开发板中的) 如果提示:mount:RPC:unable to receive; errno =No route to host 说明你主机linux中的防火墙没关闭在主机linux 中使用一下命令就可以解决:#service iptables stop。在次使用mount命令就ok了。 注意:此处222.204.59.185主机的ip地址,使用mount命令是在超级终端或minicom中使用,而不是在主机的linux系统中。在取消挂载命令时也是在超级终端或minicom中使用,具体用法是:#umount /mnt/ 如果没有出现错误信息, 您将可以浏览到/mnt 目录中的内容和/root/share是一致的。 取消挂载: 使用这个命令可以停止nfs 服务: #/etc/init.d/nfs stop 检查nfs服务器是否开启: #service nfs status 启对应的2个服务:#service portmap restart #service nfs restart 检查防火墙看是否屏蔽了nfs端口:#service iptables stop #service iptables status

实验四 ramdisk 根文件系统的制作

实验四ramdisk根文件系统的制作 一.实验目的 1.熟悉根文件系统组织结构; 2.定制、编译ramdisk根文件系统。 二.实验设备 1.硬件:EduKit-IV 嵌入式教学实验平台、Mini2410 核心子板、PC 机; 2.软件:Windows 2000/NT/XP、Ubuntu 8.04、其他嵌入式软件包。 三.实验内容 利用6.3 中的已经完成的文件系统,生成一个根文件系统镜像。 四.实验原理 ramdisk是内核初始化的时候用到的一个临时文件系统,是一个最小的linuxrootfs系统,它包含了除内核以外的所有linux系统在引导和管理时需要的工具,做为启动引导驱动,包含如下目录: bin,dev,etc,home,lib,mnt,proc,sbin,usr,var。还需要有一些基本的工具:sh,ls,cp,mv……(位于/bin 目录中);必要的配置文件:inittab,rc,fstab……位于(/etc目录种);必要的设备文件:/dev/tty*,/dev/console,/dev/men……(位于/dev目录中);sh,ls等工具必要的运行库:glibc。1.制作ramdisk根文件系统映像 1)单击菜单应用程序->附件->终端打开终端,设置环境变量: $ source /usr/local/src/EduKit-IV/Mini2410/set_env_linux.sh $ source /usr/crosstool/gcc-3.4.5-glibc-2.3.6/arm-linux/path.sh 2)执行命令切换到ramdisk实验目录下: $cd $SIMPLEDIR/6.4-ramdisk 3)运行脚本文件: $ sudosh ramdisk-install.sh shell 脚本命令说明: #!/bin/bash # # ramdisk-install.sh - Make ramdiskfilesystem. # # Copyright (C) 2002-2007

Linux 创建文件系统及挂载文件系统详解

摘要: 本文对新增硬盘,切割硬盘,创建硬盘分区,为硬盘分区创建文件系统,以及加载文件系统的流程做总结性论述; 主要是为初学者弄清楚这一操作过程; 本文涉及fdisk、mkfs、mount ... ... 等工具; 对/etc/fstab 进行了解说; 还有磁盘扫描工具fsck 等介绍; 如果您想加载一个分区(文件系统),首先您得确认文件系统的类型,然后才能挂载使用,比如通过mount 加载,或者通过修改/etc/fstab来开机自动加载; 如果您想添加一个新的分区,或者增加一个新的硬盘,您要通过分区工具来添加分区,然后要创建分区的文件系统,然后才是挂载文件系统;比如通过mount 加载,或者通过修改/etc/fstab来开机自动加载; 一、对存储设备的分区; 我们这里所指的存储设备主要是本地硬盘、移动硬盘(比如USB 和1394接口的硬盘);由于磁盘很大并且为了满足我们各种需要,所以把硬盘分成若干个分区; 在Linux中进行硬盘分区操作的工具有: fdisk ,目前看来也是最好用的分区工具; parted 和cfdisk在某一方面有点优点,如parted中的数据备份功能; 推荐您用fdisk 分区工具; 二、存储设备进行格式化,即建立文件系统的过程; 1、文件系统的一点介绍 对存储设备分区还是远远不够的,我们还要对这些新增分区进行格式化;一个分区只有建立了某种文件系统后,这个分区才能使用;建立文件系统过程,就是用相应格式化工具格式化分区的过程; 在Linux操作系统中,目前几乎支持目前主流的文件系统,比如NTFS(只读)、FAT(可读可写)、ext2、ext3、reiserfs、hfs (MAC 操作系统的文件系统)、swap 交换分区... ... 还有一些不熟悉的操作系统的文件系统等;

嵌入式Linux根文件系统制作

实训项目四-嵌入四Linux系统根文件系统制作一. 项目实施目的 了解 UP-CUP2440 型实验平台Linux 系统下根文件系统结构 掌握根文件系统的搭建过程 掌握busybox、mkcramfs等工具的使用方法 二. 项目主要任务 使用busybox生成文件系统中的命令部分,使用mkcramfs工具制作CRAMFS 格式的根文件系统。 分析根文件系统etc目录下重要配置文件的格式及语法,熟悉根文件系统的启动过程 三. 基本概念 1.文件系统基本概念 Linux的一个最重要特点就是它支持许多不同的文件系统。这使Linux非常灵活,能够与许多其他的操作系统共存。Linux支持的常见的文件系统有:JFS、ReiserFS、ext、ext2、ext3、ISO9660、XFS、Minx、MSDOS、UMSDOS、VFAT、NTFS、HPFS、NFS、SMB、SysV、PROC等。随着时间的推移, Linux支持的文件系统数还会增加。Linux是通过把系统支持的各种文件系统链接到一个单独的树形层次结构中,来实现对多文件系统的支持的。该树形层次结构把文件系统表示成一个整个的独立实体。无论什么类型的文件系统,都被装配到某个目录上,由被装配的文件系统的文件覆盖该目录原有的内容。该个目录被称为装配目录或装配点。在文件系统卸载时,装配目录中原有的文件才会显露出来。在Linux 文件系统中,文件用i节点来表示、目录只是包含有一组目录条目列表的简单文件,而设备可以通过特殊文件上的I/O 请求被访问。 2.常见的嵌入式文件系统 嵌入式Linux系统一般没有大容量的磁盘,多使用flash存储器,所以多采用基于Flash(NOR和NAND)的文件系统或者RAM内存的文件系统。 (1)Flash根据结构不同分为 NOR Flash和NAND Flash。基于flash的文件系统主要有: jffs2:RedHat基于jffs开发的文件系统。

基于busybox的根文件系统制作

龙源期刊网 https://www.sodocs.net/doc/5614301604.html, 基于busybox的根文件系统制作 作者:李飞,武金虎,石颖博 来源:《电脑知识与技术》2010年第17期 摘要:Busybox是构建嵌入式Linux文件系统的必备软件,它是所有文件和设备节点的起始点,是决定系统能否正常启动的关键。通过busybox-1.1.3为例,进行配置、编译、安装等过程,从而形成简单的根文件系统映像文件,为以后嵌入式Linux系统的移植打下了良好的开端。 关键词:Busybox;嵌入式Linux;Linux操作系统;根文件系统;cramfs 文件系统 中国分类号:TP316.81文献标识码:A文章编号:1009-3044(2010)17-4655-02 Making Root File System Based on Busybox LI Fei, WU Jin-hu, SHI Ying-bo (College of Computer Science and Information, Guizhou University, Guiyang 550025, China) Abstract: Busybox is an essentiaL software to buiLd an embedded Linux fiLe system. It is the starting node point of aLL the fiLes and devices and the key whether the system can have a normaL start. Taking busybox-1.1.3 for exampLe, making a simpLe root image system fiLe by configuration compiLation and instaLLation Lays a good foundation for migration of the embedded Linux system. Key words: busybox; embedded linux; Linux OS; root file system; cramfs file system 1 根文件系统结构 根文件系统是所有文件和设备节点的起始点,包括系统所必须的各种工具软件、库文件、 脚本、配置文件等一系列的文件。一个基本的Linux根文件系统包含有以下的目录:dev、proc、bin、etc、usr、Lib、temp、var、usr等等目录。其中dev是设备文件节点目录,proc是挂载proc文件系统所用的目录,bin目录下面包含了系统的基本命令,etc目录是系统启动脚本所在的目录,Lib是系统默认的动态链接库目录,usr是用户目录,temp是临时目录,用来保存临时文 件,var目录包含系统运行时要改变的数据。以上都是根文件系统所必须的目录 2 Busybox简介 熟练嵌入式Linux的朋友对busybox一定不会陌生,它是标准Linux工具的一个单个可执行实现,被形象的称为嵌入式Linux系统中的“瑞士军刀”,因为它将许多常用的UNIX工具和命令 结合到一个单独的可执行程序中。虽然busybox中的这些工具相对于GNU常用工具功能有所

yaffs2文件系统制作

交叉编译器ARM-Linux-gcc4.1.2 开发板TX2440A Busybox-1.15.1.tar.bz2(在Linux中被称为瑞士军刀) mkyaffs2image工具 首先创建一个名字为root_2.6.31的文件夹,在其中创建如下文件夹 etc bin var dev home lib mnt proc root sbin sys tmp usr opt共14个文件夹 解压Busybox tar xjvf busybox 进入源目录,修改Makefile 第164行,CROSS_COMPILE=arm-linux- 第190行,ARCH=arm 执行#make men onfig进行配置 配置选项大部分都是保持默认的,只需要注意选择以下这几个选项,其他的选项都不用动:Busybox Setting---> Build Options---> [*]Build Busybox as a static binary(no shared libs) [*]Build with Large File Support(for accessing files>2GB) Installation Options--->

(./_install)Busybox installation prefix 进入这个选项,输入busybox的安装路径,如:../rootfs Busybox Library Tuning---> [*]vi-style line editing commands [*]Fancy shell prompts 要选择这个选项:“Fancy shell prompts”,否则挂载文件系统后,无法正常显示命令提示符:“[\u@\h\W]#” 配置完成以后 执行#make #make install 然后就会在上一级目录下生成rootfs文件夹,里面包含几个文件夹/bin/sbin/usr linuxrc 把这些文件全部复制到刚建好的root_2.6.31目录下, #cp–rf*../root_2.6.31 在dev目录下,创建两个设备节点: #mknod console c51 #mknod null c13 然后进入自己建立的etc目录 拷贝Busybox-1.15.2/examples/bootfloopy/etc/*到当前目录下。 #cp-r../../busybox-1.15.2/examples/bootfloopy/etc/*./ 包括文件:fstab init.d inittab profile

在硬盘上制作根文件系统.doc

在硬盘上制作根文件系统 一、实验目标: 在硬盘上建立一个根文件系统,硬盘镜像文件的名称为:hdc-0.11.new.img 二、实验环境: 1、Vmware workation, bochs虚拟机,ultraedit编辑环境 2、用到的四个重要的镜像文件:bootimage-0.11-hd,hdc-0.1.img,并将他们放到 mylinux0.11文件夹中。 3、实验环境:redhat linux 三、实验理论依据: 1、Linux引导启动时,默认使用的文件系统是根文件系统。其中一般都包括以下一些子目录和文件: etc/ 目录主要含有一些系统配置文件; dev/ 含有设备特殊文件,用于使用文件操作语句操作设备; bin/ 存放系统执行程序。例如sh、mkfs、fdisk等; usr/ 存放库函数、手册和其它一些文件; usr/bin 存放用户常用的普通命令; var/ 用于存放系统运行时可变的数据或者是日志等信息。 存放文件系统的设备就是文件系统设备。Linux 0.11内核所支持的文件系统是MINIX 1.0文件系统。 2、inode 译成中文就是索引节点。每个存储设备或存储设备的分区(存储设备是硬 盘、软盘、U盘... ... )被格式化为文件系统后,应该有两部份,一部份是inode,另一部份是Block,Block是用来存储数据用的。而inode呢,就是用来存储这些数据的信息,这些信息包括文件大小、属主、归属的用户组、读写权限等。inode为每个文件进行信息索引,所以就有了inode的数值。操作系统根据指令,能通过inode 值最快的找到相对应的文件。每一个文件开头都是一个inode。 做个比喻,比如一本书,存储设备或分区就相当于这本书,Block相当于书中的每一页,inode 就相当于这本书前面的目录,一本书有很多的内容,如果想查找某部份的内容,我们可以先查目录,通过目录能最快的找到我们想要看的内容。

Linux下的文件系统为树形结构

Linux下的文件系统为树形结构,入口为/树形结构下的文件目录:无论哪个版本的Linux系统,都有这些目录,这些目录应该是标准的。各个Linux发行版本会存在一些小小的差异,但总体来说,还是大体差不多。 1. /文件系统的入口,最高一级目录; 2. /bin基础系统所需要的命令位于此目录,是最小系统所需要的命令,如:ls, cp, mkdir等。 这个目录中的文件都是可执行的,一般的用户都可以使用。 3. /boot包含Linux内核及系统引导程序所需要的文件,比如vmlinuz initrd.img 文件都位于这个目录中。在一般情况下,GRUB或LILO系统引导管理器也位于这个目录; 4. /dev设备文件存储目录,比如声卡、磁盘... ...这是一个非常有趣的目录,是Linux文件系统的一个闪亮的特性- 所有对象都是文件或目录。仔细观察这个目录你会发现hda1, hda2等, 它们代表系统主硬盘的不同分区。 /dev/cdrom和/dev/fd0代表你的CDROM驱动器和floppy驱动器。看上去可能有些奇怪,但比较文件和硬件的特性这却是十分合理的。它们都可以读出和写入。例如/dev/dsp,这个文件代表你的扬声器。那么写入这个文件的数据都回传送到喇叭。试一试'cat /etc/lilo.conf > /dev/dsp' 你会听到一些声音。这是你的lilo.conf 文件的声音!同样,向/dev/ttyS0 ( COM 1 ) 读出或写入数据你可以和接到上面的设备进行通讯。 5. /etc存放系统程序或者一般工具的配置文件。 如安装了apache2之后,配置文件在/etc/apache2/目录下。 /etc/init.d 这个目录是用来存放系统或服务器以System V模式启动的脚

JFFS文件系统和YAFFS文件系统的比较

JFFS文件系统和YAFFS文件系统的比较 NAND flash文件系统JFFS2和YAFFS比较JFFS是由瑞典的Axis Communications Ab公司开发的(1999,以GNU发布),针对flash设备的特性为嵌入式设备开发的.(我边上的兄弟曾想去那里作毕业设计) JFFS1和JFFS2的设计中都考虑到了FLASH的特性特别是满足了上述3个条件,包括了垃圾回收,坏块管理等功能. 这两种文件系统属于LFS(Log-structured File System).这种文件系统的特点是一旦数据出错,容易恢复,但是系统运行是需要占用一定的内存空间,这些空间就是用来存储”log”的. JFFS的缺点就是加载时间太长,因为每次加载都需要将FLASH上的所有节点(JFFS的存储单位)到内存,这样也占用了可观的内存空间.除此之外,”circle log”设计使得在对文件数据进行所有的数据都会被重写,这样造成不必要的时间,同时也会减少FLASH的寿命. JFFS2对JFFS1作了些改进,比如所需的内存变少了,垃圾回收机制也优化了. 针对JFFS1,JFFS2的缺点,JFFS3出现了. YAFFS1 ">“Yet Another Flash File System”作者是新西兰的Charles Manning为一家名叫Alpha one 的公司(https://www.sodocs.net/doc/5614301604.html,/)设计的,是第一个为NAND Flash设计的文件系统.共两个版本YAFFS1 和YAFFS2. YAFFS1支持512Bytes/Page的NAND Flash;后者YAFFS2支持2kBytes/Page的NAND Flash. YAFFS文件系统也属于LFS. 跟其他文件系统比较,它具有更好的可移植性,甚至可以使用在没有操作系统的设备上(called “YAFFS/Direct”). YAFFS采用模块化设计,虽然最初是用在linux系统上的,但是也已经移植到其他系统比如wince. 还有个突出的优点是它在mount的时候需要很少的内存.(如果是小页—512byte/page,每1MByte NAND大约需要4KBytes内存;大页需要大概1KBytes RAM/1MByte NAND) JFFS与YAFFS比较,两者各有长处. 一般来说,对于小于64MBytes的NAND Flash,可以选用JFFS;如果超过64MBytes,用YAFFS比较合适.

实验 文件系统管理

实训项目4 文件系统管理 一、实训目的 ●掌握Linux下文件系统的创建、挂载与卸载。 ●掌握文件系统的自动挂载。 二、项目背景 某企业的Linux服务器中新增了一块硬盘/dev/sdb,请使用fdisk命令新建/dev/sdb1主分区和/dev/sdb2扩展分区,并在扩展分区中新建逻辑分区/dev/sdb5,并使用mkfs命令分别创建vfat和ext3文件系统。然后用fsck命令检查这两个文件系统;最后,把这两个文件系统挂载到系统上。 三、实训内容 练习Linux系统下文件系统的创建、挂载与卸载及自动挂载的实现。 四、实训步骤 子项目1.创建/dev/sdb1和/dev/sdb5 ●使用fdisk命令创建/dev/sdb1主分区。 ●使用fdisk命令创建/dev/sdb2扩展分区。

●使用fdisk命令创建/dev/sdb5逻辑分区。 ●输入子命令w,把设置写入硬盘分区表,退出fdisk并重新启动系统。 ●用mkfs命令在上述刚刚创建的分区上创建ext3文件系统和vfat文件系统。 ●用fsck命令检查上面创建的文件系统。 子项目2.挂载/dev/sdb1和/dev/sdb5 ●利用mkdir命令,在/mnt目录下建立挂载点,mountpoint1和mountpoint2。

●把上述新创建的ext3分区挂载到/mnt/mountpoint1上。 ●把上述新创建的vfat分区挂载到/mnt/mountpoint2上。 ●利用mount命令列出挂载到系统上的分区,查看挂载是否成功。 ●利用umount命令卸载上面的两个分区。 子项目3.实现/dev/sdb1和/dev/sdb5的自动挂载 ●编辑系统文件/etc/fstab文件,把上面两个分区加入此文件中。 ●重新启动系统,显示已经挂载到系统上的分区,检查设置是否成功。 子项目4.挂载光盘和U盘 ●取一张光盘放入光驱中,将光盘挂载到/media/cdrom目录下。查看光盘中的文件。 ●利用与上述相似的命令完成U盘的挂载与卸载。 五、实训思考题 1. 在Linux下能创建Windows 的分区吗?在Linux下能创建Windows的文件系统吗?Windows操作

使用uboot去挂载根文件系统

1、根文件系统的制作 1)创建根文件系统主目录: mkdir rootfs 2)创建根文件系统的子目录 cd rootfs mkdir bin dev etc lib proc sbin sys usr mnt tmp var 3)然后创建usr下的子目录 mkdir usr/bin usr/lib usr/sbin lib/modules 4)创建设备文件 内核在引导时设备节点console,null必须存在 cd dev/ 注:该目录为/mini2440/nfsroot/rootfs 下的dev目录mknod –m 666 console c 5 1 mknod -m 666 null c 1 3 c:表明类型为字符设备 第一个数字(5,1):主设备号 第二个数字(1,3):次设备号 这两个设备文件设备号是固定的 5)安装etc etc目录主要是一些启动时的脚本文件一般不需要修改 tar etc.tar.gz –C /xxx/rootfs

这个命令可能不给用改为: tar xvzf etc.tar.gz –C /xxx/rootfs 6)编译内核模块 内核模块保存在lib下面的module下 配置内核:*直接编译到zimage m不链接到zimage而是编译成模块到.o就停住 进入Linux内核目录(linux-2.6.32.2) make modules ARCH=arm CROSS_COMPILE=arm-linux- 添加了ARCH=arm表示现在编译的是arm架构的内核 CROSS_COMPILE=arm-linux-表示使用交叉编译工具链 安装内核模块到根文件系统: make modules_install ARCH=arm INSTALL_MOD_PATH=/xxx/rootfs 7)配置busybox 因为Linux很多命令都是通过软连接实现的,所以无法直接将这些命令复制到根文件系统中。Busybox是一个工具集合,根文件系统很多命令都可以通过busybox编译得到,如命令ls,cd,mkdir。 Busybox相当于一个命令解析器,根文件中命令被软连接到 busybox,由busybox进行命令解析。 a) 解压busybox tar xvzf busybox-1.13.3 b) 配置busybox

实验八 构建根文件系统

实验八构建根文件系统 一、实验目的 1、了解嵌入式Linux文件系统的作用和类型; 2、了解jffs2文件系统的优点和在嵌入式系统中的应用; 3、理解文件系统的挂载过程; 4、使用BusyBox制作一个根文件系统。 二、实验环境 预装redhat9.0(内核版本2.4.x)的pc机一台,XScale嵌入式实验箱一台(已构建嵌入式Linux系统),以太网线一根,交叉编译工具链,BusyBox软件包。 三、实验步骤 1、解压BusyBox软件包; 2、使用make menuconfig来配置BusyBox,修改交叉编译器前缀; Build Option [*] Build BusyBox as a static binary(no shared library) [*]Do you want to build BusyBox with a Cross ompile /usr/local/hybus-linux-R1.1/bin/arm-linux- Installation Option [*]Don't’t use /use Coreutils [*]ls

[*]cp [*]reboot [*]echo [*]mkdir [*]rm Editors [*]vi Login Utilities [*]getty 3、交叉编译BusyBox; make make install 4、建立BusyBox顶层目录结构 mkdir etc dev proc tmp lib var sys 5、在dev目录下创建必要的设备节点 (ram0,console,null,zero); mknod mdblock b 31 3 mknod console c 5 1 mknod null c 1 3 mknod zero c 1 5 cp –dpR /dev /_install/dev (假设busybox的安装目录为/_install)

Yaffs2文件系统中对NAND Flash磨损均衡的改进

Yaffs2文件系统中对NAND Flash磨损均衡的改进 摘要:针对以NAND Flash为存储介质时Yaffs2文件系统存在磨损均衡的缺陷,通过改进回收块选择机制,并在数据更新中引入冷热数据分离策略,从而改善NAND Flash的磨损均衡性能。实验借助Qemu软件建立Linux嵌入式仿真平台,从总擦除次数、最大最小擦除次数差值和块擦除次数标准差等方面进行对比。实验结果表明,在改进后的Yaffs2文件系统下NAND Flash的磨损均衡效果有明显提升,这有益于延长NAND Flash的使用寿命。 关键词: Yaffs2文件系统;NAND Flash;垃圾回收;冷热数据 0 引言 NAND Flash存储设备与传统机械磁盘相比,具有体积小、存储密度高、随机存储和读写能力强、抗震抗摔、功耗低等特点[1]。它被广泛用于智能手机、车载智能中心、平板电脑等智能终端中。近年来,以NAND Flash为存储介质的固态硬盘也得到越来越多的应用。目前Yaffs2文件系统(Yet Another Flash File System Two,Yaffs2)[1]是使用最多、可移植性最好的专用文件系统,在安卓、阿里云OS、Linux等嵌入式系统中都有使用。在Yaffs2文件系统下以NAND Flash为存储介质时存在磨损均衡的缺陷,可通过对回收块选择机制作改进和引入冷热数据分离策略来提高磨损均衡的效果。 1 Yaffs2和Nand Flash关系 这里以使用最多的Linux操作系统为实践,将Yaffs2文件系统移植到Linux操作系统中。Linux系统通常可以分为3层:应用层、内核层和设备层,其中支持NAND Flash设备的Yaffs2文件系统属于内核层,。 最上层用户应用程序通过VFS(Virtual File System)提供的统一接口,将数据更新等文件操作传递给Yaffs2。VFS代表虚拟文件系统,它为上层应用提供统一的接口。有了这些接口,应用程序只用遵循抽象后的访问规则,而不必理会底层文件系统和物理构成上的差异。然后Yaffs2通过MTD(Memory Technology Device)提供的统一访问接口对NAND Flash进行读、写和擦除操作,从而完成数据的更新或者存储操作。MTD代表内存技术设备,它为存储设备提供统一访问的接口。最终,在NAND Flash上以怎样的格式组织和存储数据由Yaffs2文件系统决定。 NAND Flash由若干块(block)组成,每个块又是由若干页(page)组成,页中含有数据区和附加区。NAND Flash的页根据状态不同,可以分为有效页、脏页、空闲页。有效页中存放有效数据,脏页中存放无效数据,空闲页是经过擦除后可以直接用于写入数据的页。NAND Flash在写入数据前需要执行擦除操作,因此数据不能直接在相同的位置更新。当一个页中数据需要更新时,必须将该页中有效数据拷贝到其他空闲页上再更新,并将原来页上的数据置为无效。随着时间的推移,许多无效页累积在存储器中使得空闲页逐渐减少。当存储器中的空闲空间不足时,启动垃圾回收操作,利用回收块选择机制从待回收块中选取满足要求的块来擦除,从而得到足够的空闲空间。NAND Flash中块的擦除次数有限,通常为10 000次~100 000次[2]。当某个块的擦除次数超过使用寿命时,该块将无法正常用于数据存储。因此,垃圾回收应利用合理的回收块选择机制,从待回收块中找到回收后能产生良好磨损均衡效果且付出较少额外代价的块来回收,从而获得足够的空闲空间用于数据更新操作。 2 Yaffs2在磨损均衡方面的缺陷 Yaffs2中回收块的选择机制[3]是从待回收块中找到有效数据最少的块来回收。回收过程中,Yaffs2能够减少有效数据的额外读和写操作。当数据更新处于均匀分布的情况下,Yaffs2表现出较好的磨损均衡效果。 但是,通常情况下数据的更新频率不同,有些数据经常更新,而有些数据很少更新。经

Hi3518内核和文件系统烧写以及nfs挂载

Hi3518内核和文件系统烧写以及NFS挂载

修改履历

第一步编译内核和文件系统 文档说明:涉及到目录的请根据自己的实际情况进行更改,本文档仅根据笔者的测试进行举例说明。 1 安装交叉编译器 cd arm-hisiv100nptl-linux ./cross.install 说明:3518e推荐使用100nptl进行编译,arm-hisiv100nptl-linux-(使用uclibc库,uclibc 工具链支持全规格版本和小型化版本 )arm-hisiv200-linux-(glibc 库glibc 工具链只支持全规格版本),实验时没有使用hisiv200,不确定会出什么问题,不推荐使用。 2 编译步骤 cd ./linux-3.0.y ./mk3518.sh mk3518.sh 脚本里面包含了编译linux内核所需的所有的命令,具体看mk3518.sh文件,编译成功将生成在目录arch/arm/boot/uImage文件,这个就是要烧录到板子上的 注意:大小大约为1M。大于1M也许会出问题,在实验前期都是大于1M,烧录的时候出问题。 制作rootfs文件系统,使用的是最新的squashfs只读文件系统,使用的工具为mksquashfs,目录squashfs4.2为这个工具的代码 rm ./rootfs.squashfs //仅仅为了删除之前存在的文件系统,如果没有,可不执行这一步。 ./mksquashfs ./rootfsrootfs.squashfs -b 256K cp ./rootfs.squashfs ./tftpboot //可不用命令,自己拷贝,黏贴,文件夹根据自己实际情况所定。 生成的rootfs.squashfs这个就是要烧录到板子上的文件 注意:生成的文件大约为1.5M 地址空间说明 | 256K | 1M | 1.5M | |------------|---------------|-----------------------| | boot | kernel | rootfs |

相关主题