搜档网
当前位置:搜档网 › 免疫算法的克隆选择过程

免疫算法的克隆选择过程

免疫算法的克隆选择过程
免疫算法的克隆选择过程

免疫算法的克隆选择过程

% 二维人工免疫优化算法

% m--抗体规模

% n--每个抗体二进制字符串长度

% mn--从抗体集合里选择n个具有较高亲和度的最佳个体进行克隆操作

% A--抗体集合(m×n),抗体的个数为m,每个抗体用n个二进制编码(代表参数) % T--临时存放克隆群体的集合,克隆规模是抗原亲和度度量的单调递增函数% FM--每代最大适应度值集合

% FMN--每代平均适应度值集合

% AAS--每个克隆的最终下标位置

% BBS--每代最优克隆的下标位置

% Fit--每代适应度值集合

% tnum--迭代代数

% xymin--自变量下限

% xymax--自变量上限

% pMutate--高频变异概率

% cfactor--克隆(复制)因子

% Affinity--亲和度值大小顺序

%%

clear all

clc

tic;

m=65;

n=22;

mn=60;

xmin=0;

xmax=8;

tnum=100;

pMutate=0.2;

cfactor=0.1;

A=InitializeFun(m,n); %生成抗体集合A,抗体数目为m,每个抗体基因长度为n F='X+10*sin(X.*5)+9*cos(X.*4)'; %目标函数

FM=[]; %存放各代最优值的集合

FMN=[]; %存放各代平均值的集合

t=0;

%%

while t

t=t+1;

X=DecodeFun(A(:,1:22),xmin,xmax); %将二进制数转换成十进制数

Fit=eval(F); %以X为自变量求函数值并存放到集合Fit中

if t==1

figure(1)

fplot(F,[xmin,xmax]);

grid on

hold on

plot(X,Fit,'k*')

title('抗体的初始位置分布图')

xlabel('自变量')

ylabel('每代适应度值集合')

end

if t==tnum

figure(2)

fplot(F,[xmin,xmax]);

grid on

hold on

plot(X,Fit,'r*')

title('抗体的最终位置分布图')

xlabel('自变量')

ylabel('每代适应度值集合')

end

%% 把零时存放抗体的集合清空

T=[];

%% 把第t代的函数值Fit按从小到大的顺序排列并存放到FS中

[FS,Affinity]=sort(Fit,'ascend');

%% 把第t代的函数值的坐标按从小到大的顺序排列并存放到XT中

XT=X(Affinity(end-mn+1:end));

%% 从FS集合中取后mn个第t代的函数值按原顺序排列并存放到FT中FT=FS(end-mn+1:end);

%% 把第t代的最优函数值加到集合FM中

FM=[FM FT(end)];

%% 克隆(复制)操作,选择mn个候选抗体进行克隆,克隆数与亲和度成正比,AAS是每个候选抗体克隆后在T中的坐标

[T,AAS]=ReproduceFun(mn,cfactor,m,Affinity,A,T);

%% 把以前的抗体保存到临时克隆群体T里

T=Hypermutation(T,n,pMutate,xmax,xmin);

%% 从大到小重新排列要克隆的mn个原始抗体

AF1=fliplr(Affinity(end-mn+1:end));

%% 把以前的抗体保存到临时克隆群体T里%从临时抗体集合T中根据亲和度的值选择mn个

T(AAS,:)=A(AF1,:);

X=DecodeFun(T(:,1:22),xmin,xmax);

Fit=eval(F);

AAS=[0 AAS];

FMN=[FMN mean(Fit)];

for i=1:mn

%克隆子群中的亲和度最大的抗体被选中

[OUT(i),BBS(i)]=max(Fit(AAS(i)+1:AAS(i+1)));

BBS(i)=BBS(i)+AAS(i);

end

%从大到小重新排列要克隆的mn个原始抗体

AF2=fliplr(Affinity(end-mn+1:end));

%选择克隆变异后mn个子群中的最好个体保存到A里,其余丢失A(AF2,:)=T(BBS,:);

end

disp(sprintf('\n The optimal point is:'));

disp(sprintf('\n x: %2.4f, f(x):%2.4f',XT(end),FM(end)));

%%

figure(3)

grid on

plot(FM)

title('适应值变化趋势')

xlabel('迭代数')

ylabel('适应值')

hold on

plot(FMN,'r')

hold off

grid on

免疫算法的克隆选择过程

免疫算法的克隆选择过程 % 二维人工免疫优化算法 % m--抗体规模 % n--每个抗体二进制字符串长度 % mn--从抗体集合里选择n个具有较高亲和度的最佳个体进行克隆操作 % A--抗体集合(m×n),抗体的个数为m,每个抗体用n个二进制编码(代表参数) % T--临时存放克隆群体的集合,克隆规模是抗原亲和度度量的单调递增函数% FM--每代最大适应度值集合 % FMN--每代平均适应度值集合 % AAS--每个克隆的最终下标位置 % BBS--每代最优克隆的下标位置 % Fit--每代适应度值集合 % tnum--迭代代数 % xymin--自变量下限 % xymax--自变量上限 % pMutate--高频变异概率 % cfactor--克隆(复制)因子 % Affinity--亲和度值大小顺序 %% clear all clc tic; m=65; n=22; mn=60; xmin=0; xmax=8; tnum=100; pMutate=0.2; cfactor=0.1; A=InitializeFun(m,n); %生成抗体集合A,抗体数目为m,每个抗体基因长度为n F='X+10*sin(X.*5)+9*cos(X.*4)'; %目标函数 FM=[]; %存放各代最优值的集合 FMN=[]; %存放各代平均值的集合 t=0; %% while t

量子克隆进化算法

量子克隆进化算法 刘 芳,李阳阳 (西安电子科技大学计算机学院,陕西西安710071) 摘 要: 本文在量子进化算法的基础上结合基于克隆选择学说的克隆算子,提出了改进的进化算法———量子克 隆进化策略算法(QCES ).它既借鉴了量子进化算法的高效并行性又利用克隆算子来代替其中的变异和选择操作,以增加种群的多样性,避免了早熟,且收敛速度快.本文不仅从理论上证明了该算法的收敛,而且通过仿真实验表明了此算法的优越性. 关键词: 克隆算子;进化算法;量子克隆进化策略中图分类号: T N957 文献标识码: A 文章编号: 037222112(2003)12A 22066205 Quantum Clonal Evolutionary Algorithms LI U Fang ,LI Y ang 2yang (Institute o f Computer ,Xidian University ,Xi ’an ,Shaanxi 710071,China ) Abstract : Based on the combining of the quantum ev olutionary alg orithms (QE A )with the main mechanisms of clone ,an im 2proved ev olutionary alg orithm —quantum clonal ev olutionary strategies (QCES )was proposed in this paper.By adopting the high 2effec 2tive parallelism of QE A and replacing clone operator by mutation and selection of the classical ev olutionary alg orithms (CE A ),it has better diversity and the converging speed than CE A and av oided prematurity.The convergence of the QCES is proved and its superiori 2ty is shown by experiments in this paper. K ey words : clone operator ;ev olutionary alg orithm ;quantum clonal ev olutionary strategies 1 引言 计算是人类思维能力的最重要的方面之一,计算能力的提高与人类文明进步息息相关.从古老的算盘到现代的超级计算机,人类的计算技术实现了革命性的突破.综观当今,计算机的广泛应用已经并且仍在继续改变着我们的世界.一方面,人们为计算机的神奇能力所倾倒.另一方面,人们也为它无力完全满足实际的需要而烦恼.因此,加速计算机的运算速度以提高计算机的运算能力成为计算机科学的中心任务之一. 如何加快计算机的运算能力呢?这一问题大体可以从两个方面着手解决.一是制造更为先进的计算机硬件,另一则是设计恰当的计算机运算流程,后者可以称之为“算法”.一类模拟生物进化过程与机制来求解问题的自组织、自适应人工智能技术即进化计算(包括用于机器学习问题的遗传算法,优化模型系统的进化规划和用于数值优化问题的进化策略)的出现为我们寻找快速算法提供了新思路.进化计算是一种仿生计算,依照达尔文的自然选择和孟德尔的遗传变异理论,生物的进化是通过繁殖、变异、竞争、选择来实现的,进化算法就是建立在上述生物模型基础上的随机搜索技术.我们所熟悉的 遗传算法(G enetic alg orithms )[1],它通过模拟达尔文的“优胜劣汰,适者生存”的原理鼓励好的个体,通过模拟孟德尔的遗传变异理论在进化过程中保持好的个体,同时寻找更好的个体,由此来模仿一切生命与智能的产生与进化过程.理论上已经证明:进化算法能从概率的意义上以随机的方式寻求到问题的最优解;但在实际应用当中随着问题的复杂和海量的数据量,也出现了一些不尽人意的情况,主要表现在:计算后期解的多样性差即易造成早熟,收敛速度慢等缺点.因此,为克服上述缺点关键是构造性能良好的进化算法. 在改进的进化算法中,有些是将传统寻优算法与遗传算法相结合提出了混合遗传算法[2,3],有些则另辟蹊径提出了新颖的学习算法———量子进化算法[4]和免疫进化算法[5],量子力学是20世纪物理学最惊心动魄的发现之一,量子计算是物理理论与计算机的成功结合,在量子体系中,一位的信息位不在是经典的1比特,而是由两个本征态的任意叠加态所构成即称之为量子比特位(qubit ),例如一个n 位二进制的串在量子体系中就可同时表示2n 个信息,而量子计算机对每个叠加分量(本征态)实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算的结果,这种计算称之为量子并行计算[6].正是量子的 收稿日期:2003209210;修回日期:2003212210 基金项目:国家自然科学基金(N o.60133010);国家高技术研究发展计划(863计划)(N o.2002AA135080)   第12A 期2003年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.31 N o.12A Dec. 2003

纳米颗粒在免疫层析技术中的应用

纳米颗粒在免疫层析技术中的应用 纳米颗粒又称为超微颗粒,是指颗粒大小为1-100nm的粒子。纳米颗粒具有大的比表面积,从而导致其光、热、磁敏感特性和表面稳定性不同于正常的粒子,因而在生物和医疗领域有广阔的应用前景。目前已经用于免疫层析标志物的纳米材料包括胶体金、镧系元素、量子点、荧光乳胶、荧光微球、磁珠等几类。 免疫层析技术是通过标记物来得到结果分析信号的,因此,一种灵敏度高、稳定性好的标记物,可以大幅度提高其检测性能。目前应用和研究的热点主要是胶体金免疫层析技术、荧光免疫层析技术、磁珠免疫层析技术等。 1胶体金免疫层析技术 胶体金免疫标记技术是以胶体金作为示踪标志物应用于抗原抗体反应的一种免疫标记技术。胶体金,又称为胶体纳米金,金纳米颗粒在水溶液中呈胶体状,因此称为胶体金。胶体金颗粒具有纳米材料所特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应,具有很大的比表面积,独特的光学、导电、导热等物理特性以及良好的生物相容性,对蛋白质有较强的吸附能力,可以与免疫球蛋白、毒素、酶、糖蛋白、抗生素、激素、牛血清白蛋白、多肽化合物等非共价结合,同时,胶体金具有高电子密度特性,即金标物在相应配体处大量聚集,肉眼可见红色或粉色斑点,因而,目前多用于定性或半定量的快速免疫检测方法。 优点:简单、快速、准确、无污染、检测不依赖昂贵的激光检测仪器,只需普通光学仪器,甚至肉眼即可辨别。目前,市场上已经有检测各种成分(如各种病原体、标志物等)的胶体金免疫层析试纸条试剂盒。 缺点:这灵敏度不高,主要用于定性或半定量,对一些肿瘤标志物、神经性肽、心血管疾病标志物的检测,其灵敏度是远远不够。 2荧光免疫层析技术 荧光纳米材料由于其独特的结构和光、电、磁性质,使其在标记检测方面有着极大的应用价值。荧光免疫层析技术结合了荧光免疫技术和层析技术的优点,是当前研究的热点 2.1 量子点层析技术

量子免疫算法1

报告正文 (一)立项依据与研究内容 1。项目的立项依据(研究意义、国内外研究现状及分析、附主要参考文献目录) (1)研究意义 随着石化能源危机的来临以及人们环保意识的加强,世界各国争相发展可再生新兴能源。风电装机容量每年以20%至30%的速度增长,其增长势头迅猛,据专家预测风力发电量在2020年将占全球发电总量的12%。风力发电已经成为解决世界能源问题的不可或缺的重要力量。 但随着投产的风力发电机数量和容量的不断增加,风力发电机组的运行维护、故障检测、诊断技术的优化和改进已成为风力发电亟待解决的新课题。长期以来,风力发电机一直采用计划维修与事后维修方式,计划维修即运行2500h和5000h 后的例行维护,如检查螺栓力矩,加注润滑脂等。该维修体制往往无法全面、及时地了解设备运行状况。而事后维修则因事前准备不足,从而造成维修工作旷日持久,损失重大。并且由于近年来大型风力发电机组研究的快速发展,其机械结构日趋复杂,不同部件之间的相互联系、耦合也更加紧密,一个部件出现故障,将可能导致整个发电过程中断。因此,有必要对风力发电机组的运行状态进行检测跟踪,对其故障征兆进行分析处理,预测分析风力发电机的故障趋势,减少事故发生造成的财产损失,也减少强迫停机的次数,降低发电机的维护费和提高发电机的可用性,指导风电机组的维护与维修。 目前的故障诊断方法虽然为诊断电机的故障起到了重要作用,但也存在如训练仿真模型耗时,需大量的先验知识,对故障样本的学习缺乏自主连续,实时性差等问题。为了提高故障诊断的准确性、实时性及鲁棒性,还需加强新方法的研究,特别是基于生物智能的新方法研究。近年来逐渐发展起来的基于生物免疫机理的人工免疫系统具有多样性、分布式、噪声忍耐、无教师学习、自组织、自适应等特点,不需要反面例子,结合了分类器、神经网络和机器推理等学习系统的一些优点,在复杂系统的故障检测与诊断中具有很大的潜力。通过研究人工免疫系统,可望产生更有效的风力发电机组故障诊断方法。 而传统的故障诊断技术主要依靠单一的故障特征来进行故障判定,且存在样本需求量大及诊断学习缺乏自主连续性等问题,远不能满足现代化生产的要求。受生物免疫系统启发而建立的人工免疫系统蕴含了噪声忍耐、自学习、自组织和自记忆等进化学习机理,为解决旋转机组故障诊断问题提供了一条新的思路,反面选择算法可以有效判断自我-非我状态,并成功地应用于振动信号异常检测,动态规模免疫算法能够通过学习进化保持记忆抗体的多样性,实现较好的故障分类效果,将以上思想应用于故障诊断之中,得到了风力发电机组状态监测与故障

对基于克隆选择和小种群粒子群算法的混杂算法的实证研究【精品文档】(完整版)

对基于克隆选择和小种群粒子群算法的混杂算法的实证研究 Pinaki Mitra, 学生会员, IEEE, Ganesh K. Venayagamoorthy, 资深会员, IEEE 摘要—本文提出了一种混合算法,基于对克隆选择算法(CSA)和小种群中的粒子群优化(SPPSO)于对克隆选择算法(CSA)和引入小种群粒子群算法,本文 CS P SO)是观察四家已知的基准函数。提出了一种混合算法。演出这种新算法(22 该SPPSO是一个传统PSO的变种(CPSO),是由本文的第二作者提出,初始粒子选择极小数目,经过几次迭代,最好是保留,而且其余颗粒取而代之的是相同的再生粒子数。另一方面,克隆选择算法属于人工免疫系统(AIS)家庭。它是一种进化算法,其中,在进化过程中的抗体能够识别通过克隆增殖的抗原。通过两种算法的混杂,CPSO优化能力得到大幅提升。用较少的内存需求和CSA的概念提高寻优能力和减少收敛到局部最小的可能性使SPPSO概念有助于找到最优解,试CS P SO表现比CPSO和SPPSO在求解Rosenbrock's,Rastrigin's 验结果表明:22 和Griewank's函数时表现更好。 1.引言 粒子群优化(PSO)已被证明有解决单一和多目标的忧化问题巨大潜力 [1]。这是一个简单,灵活和平衡算法为了进行局部和全局搜索过程。在这里,一组的粒子,称为群,在多维空间移动搜索,以找出全局最优解。随着粒子数的大群增加,到一个全局最优解越来越得到更多的保障。原因是越大的搜索空间的探索需要更高的粒子数。但是,正如粒子数的增加,为了运算内存要求也增加了,随着该算法在现实世界实时数字信号处理器或微控制器等应用这常常是不允许的,同样地,如果在首次的几个迭代,一粒子动作非常接近局部极小和没有一个是接近全全局最优解,那儿有一个可能,整个群是被误导收敛到本地极小。 投稿日期2008年6月15日。这项工作是支持的一部分美国国家科学基金会,美国国家科学基金会就业资助下#ECCS的0348221。 Pinaki Mitra是实时的电源与智能系统实验室,欧洲经委会系,美国密苏里大学和科学技术,罗拉,莫65401,美国(电话:609-384-1302,电子邮件:pm33d@https://www.sodocs.net/doc/597536401.html,)。 Ganesh K. Venayagamoorthy与实时功率和智能系统实验室,欧洲经委会系,美国密苏里大学和科学技术,罗拉,莫65401,美国(电子邮件:gkumar@https://www.sodocs.net/doc/597536401.html,)。 这种情况经常发生在有大量局部极小值的功能函数。为了摆脱这两个问题,SPPSO算法提出了在[2]和[3]。该SPPSO概念是开始几次迭代后用少量的粒子数更换所有的粒子除了全球最佳相同数的再生粒子。在这种方法以来,PSO算法的运

自适应混合变异克隆选择算法研究

Computer Engineering and Applications 计算机工程与应用 2018,54(21)1引言基于免疫机制的进化算法因其对复杂问题具有强大的处理能力,已被广泛地应用于智能优化、数据挖掘、模式识别、机器学习、故障诊断、入侵检测等[1-2]诸多领域,deCastro 和Von Zubon 等人在2000年提出了克隆选择算法(Clonal Selection Algorithm ,CSA )[3],它应用于检测器的训练过程,但是其易陷入局部最优,收敛速度慢等缺点也显露无疑。为了解决传统克隆选择算法的不足,更好地兼顾进化过程中全局和局部的搜索,胡江强等在克隆选择过程中采用分级变异的方式[4],该算法根据抗体的亲和度合理地将整个种群分为3个不同的子种群,在每个子种群 中分配不同的搜索任务,并使用不同的变异策略,还在进化过程中实时地改变种群的规模大小、克隆的规模大小和变异参数。为了能够自适应地调整变异的尺度,陶新民等提出了一种定向多尺度变异克隆选择算法[5],该算法采用多尺度高斯变异的机制,在算法的开始阶段利用较大尺度的变异,伴随着适应度值的不断提升,小尺度的变异会随之减低,使得算法在后期阶段能够有效使 用小尺度的变异实现局部的精确搜索。Hong 和Liao 提出了自适应动态克隆选择算法[6],根据亲和度大小自适应调整克隆规模,根据抗体浓度选择变异尺度的大小。自适应混合变异克隆选择算法研究 巫东凯,张凤斌,席亮 WU Dongkai,ZHANG Fengbin,XI Liang 哈尔滨理工大学计算机科学与技术学院,哈尔滨150080 School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China WU Dongkai,ZHANG Fengbin,XI Liang.Research on clonal selection algorithm of adaptive hybrid https://www.sodocs.net/doc/597536401.html,puter Engineering and Applications,2018,54(21):78-83. Abstract :Clonal selection algorithm is the core of the detectors ’evolution in immune invasion theory.In traditional im-mune clonal selection algorithm,it is difficult to take into account the global and local search with a single mutation,which leads to the disadvantage of easy to fall into local optimization or slow convergence.By introducing cultural algorithm,this paper realizes the evolution of population space and belief space.This paper proposes clonal selection algorithm of adaptive hybrid mutation,which combines the strong global search ability of cauchy mutation with the strong local search ability of chaos mutation in the mutation.And it utilizes the knowledge of belief space to adaptively determine the time and the proportion of the two kinds of mutations.The algorithm is tested in KDDCUP99data set.The result shows that the algorithm has good convergence and robustness. Key words :immune intrusion detection;cultural algorithm;cauchy mutation;chaos mutation;clonal selection 摘要:克隆选择算法是免疫入侵理论中检测器进化的核心。传统免疫克隆选择算法中通过单一的变异很难同时兼顾全局和局部搜索,从而导致容易陷入局部最优或者收敛速度慢等弊端,通过引入文化算法,实现种群空间和信仰空间双层进化,在变异时将全局搜索能力强的柯西变异和局部搜索能力强的混沌变异相结合,提出了自适应混合变异克隆选择算法,利用信仰空间的知识来自适应地确定两种变异的作用时间和作用比例,通过KDDCUP99数据集进行测试,结果显示该算法有较好的收敛性和鲁棒性。 关键词:免疫入侵检测;文化算法;柯西变异;混沌变异;克隆选择 文献标志码:A 中图分类号:TP393.08doi :10.3778/j.issn.1002-8331.1707-0499 基金项目:国家自然科学基金(No.61172168);黑龙江省教育厅科学技术研究项目(No.12541130)。 作者简介:巫东凯(1992―),男,硕士研究生,研究领域为网络与信息安全,E-mail :122041275@https://www.sodocs.net/doc/597536401.html, ;张凤斌(1965―),男,博士, 教授,研究领域为网络与信息安全;席亮(1983―),男,博士,副教授,研究领域为网络与信息安全。 收稿日期:2017-08-01修回日期:2017-09-20文章编号:1002-8331(2018)21-0078-06 CNKI 网络出版:2018-03-01,http∶//https://www.sodocs.net/doc/597536401.html,/kcms/detail/11.2127.TP.20180301.1539.012.html 78万方数据

抗独特型克隆选择算法_张立宁

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.sodocs.net/doc/597536401.html, Journal of Software, Vol.20, No.5, May 2009, pp.1269?1281 https://www.sodocs.net/doc/597536401.html, doi: 10.3724/SP.J.1001.2009.03266 Tel/Fax: +86-10-62562563 ? by Institute of Software, the Chinese Academy of Sciences. All rights reserved. ? 抗独特型克隆选择算法 张立宁1,2+, 公茂果1,2, 焦李成1,2, 马文萍1,2 1(西安电子科技大学智能信息处理研究所,陕西西安 710071) 2(西安电子科技大学智能感知与图像理解教育部重点实验室,陕西西安 710071) Clonal Selection Algorithm Based on Anti-Idiotype ZHANG Li-Ning1,2+, GONG Mao-Guo1,2, JIAO Li-Cheng1,2, MA Wen-Ping1,2 1(Institute of Intelligent Information Processing, Xidian University, Xi’an 710071, China) 2(Key Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education, Xidian University, Xi’an 710071, China) + Corresponding author: E-mail: liningzh@https://www.sodocs.net/doc/597536401.html, Zhang LN, Gong MG, Jiao LC, Ma WP. Clonal selection algorithm based on anti-idiotype. Journal of Software, 2009,20(5):1269?1281. https://www.sodocs.net/doc/597536401.html,/1000-9825/3266.htm Abstract: Based on the antibody clonal selection theory of immunology, an artificial immune system algorithm, clonal selection algorithm based on anti-idiotype (AICSA), is proposed to deal with complex multi-modal optimization problems by introducing the anti-idiotype. This algorithm evolves and improves the antibody population through clonal proliferation, anti-idiotype mutation, anti-idiotype recombination and clonal selection operation, which can perform global search and local search in many directions rather than one direction around the identical antibody simultaneously. Theoretical analysis proves that AICSA can converge to the global optimum. By introducing the anti-idiotype, AICSA can make the most of the structure information of antibodies, accelerate the convergence, and obtain the global optimization quickly. In experiments, AICSA is tested on four different types of functions and compared with the clonal selection algorithm and other optimization methods. Theoretical analysis and experimental results indicate that AICSA achieves a good performance, and is also an effective and robust technique for optimization. Key words: clonal selection; anti-idiotype; evolutionary algorithm; artificial immune system; numerical optimization 摘要: 基于免疫学中的抗体克隆选择学说,通过引入抗独特型结构,提出了一种用于求解复杂多峰函数优化问 题人工免疫系统算法——抗独特型克隆选择算法.该算法通过克隆增殖操作、抗独特型变异操作、抗独特型重组操 ? Supported by the National Natural Science Foundation of China under Grant No.60703107 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2009AA12Z210 (国家高技术研究发展计划(863)); the National Basic Research Program of China under Grant No.2006CB705700 (国家重点基础研究发展计划(973)); the Program for New Century Excellent Talents in University under Grant No.NCET-08-0811 (新世纪优秀人才支持计划); the Program for Cheung Kong Scholars and Innovative Research Team in University of China under Grant No.IRT0645 (长江学者和创新团队发展计划) Received 2007-09-04; Accepted 2008-01-29

基于克隆选择机制的函数优化免疫算法

人工免疫系统是基于生物免疫系统特性而发展的新兴智能系统。利用免疫系统的克隆选择机制,提出一种用于函数优化的改进免疫算法。其主要特点是采用克隆和自适应变异等操作,提高收敛速度和种群的多样性。仿真程序表明,该算法能以较快速度完成给定范围的搜索和全局优化任务。 在工程实际中,很多问题都可转化为函数优化问题,而对于高维、非凸、且有多个局部极值点的函数优化问题,传统的基于梯度的算法通常不能求得理想解。免疫系统作为一种分布式自学习系统,能自适应地维持群体多样性及具有自我调节功能,导致基于免疫机制的算法具有整体、局部搜索能力强的特点,使得这类算法在函数优化、组合优化、模式识别、数据挖掘及机器学习等方面得到了有效应用。 1 免疫算法原理 免疫算法的灵感来自生物获得性免疫的克隆选择原理。根据该原理,在生物免疫系统中,一旦病原体侵入肌体就被分解为抗原片段,B淋巴细胞能够为产生相应的抗体与抗原结合,同时活化、增殖和分化,产生浆细胞,通过中和、溶解和调理等作用,最终使抗原从体内清除。另有一些B细胞变成了长期存活的记忆细胞,它通过血液、淋巴和组织液循环,为下一次快速、高效的消除相同或者类似抗原引起的感染奠定了基础。 免疫算法采用高变异克隆的单性繁殖搜索方式,避免了遗传算法中的交叉操作引起的模式干扰,同时具有未被激发的细胞消亡及记忆细胞的产生等过程又保证了抗体的多样性。 2 算法描述 克隆选择算法模拟生物免疫系统的克隆选择原理,一般将待优化的目标函数及其约束条件视为抗原,其算法步骤如下: (1)初始化:随机产生N个二进制编码的抗体对应问题的可能解。 (2)评价和选择1:将N个抗体分解成由m和r个抗体组成的两部分Am,Ar,分别表示进入记忆集的抗体和剩下的部分,其中进入记忆集的都是亲和度较高的抗体。 (3)克隆:在亲和度最高的抗体中选择k个进行克隆,克隆的数量与其亲和度成正比。 (4)变异:模拟生物克隆选择中的超变异过程,对克隆后的抗体执行变异操作,变异按某一变异概率以一定规模随机进行。 (5)评价和选择2:重新计算变异后的抗体的亲和度,若克隆变异后的抗体中亲和度最高的抗体比父代抗体的亲和度还要高,就用该抗体替换原抗体,形成薪的记忆集。 (6)消亡:模拟生物克隆选择中5%的B细胞自然消亡的过程,在Ar中选择d个亲和度最低的抗体重新初始化,以保证抗体的多样性。

量子克隆遗传算法

https://www.sodocs.net/doc/597536401.html, 量子克隆遗传算法1 李阳阳1,焦李成1 1西安电子科技大学电子工程学院,西安(710071) E-mail: lyy_111@https://www.sodocs.net/doc/597536401.html, 摘要:遗传算法是解决优化问题的一种有效方法。但在实际应用中也存在着收敛速度慢,早熟等问题,使得其结果极不稳定。本文将遗传算法和量子理论相结合并利用免疫系统中所特有的克隆算子,针对0/1背包问题,提出了一种改进的进化算法——量子克隆遗传算法(QCA)。它能有效的避免早熟,且具有收敛速度快的特点。 关键词:遗传算法量子克隆遗传算法 0/1背包 中图分类号:TN957 1.引言 进化计算是一种仿生计算,依照达尔文的自然选择和孟德尔的遗传变异理论,生物的进化是通过繁殖、变异、竞争、选择来实现的,进化算法就是建立在上述生物模型基础上的随机搜索技术。我们所熟悉的遗传算法(Genetic Algorithms)[1],它通过模拟达尔文的“优胜劣汰,适者生存”的原理鼓励好的个体,通过模拟孟德尔的遗传变异理论在进化过程中保持好的个体,同时寻找更好的个体,由此来模仿一切生命与智能的产生与进化过程[2][3]。理论上已经证明:进化算法能从概率的意义上以随机的方式寻求到问题的最优解;但在实际应用当中随着问题的复杂和海量的数据量,也出现了一些不尽人意的情况,主要表现在:计算后期解的多样性差即易造成早熟,收敛速度慢等缺点。因此,为克服上述缺点关键是构造性能良好的进化算法。 量子力学是20世纪物理学最惊心动魄的发现之一,量子计算是物理理论与计算机的成功结合,在量子体系中,一位的信息位不在是经典的1比特,而是由两个本征态的任意叠加态所构成即称之为量子比特位(qubit),例如一个n位二进制的串在量子体系中就可同时表示n 2个信息,而量子计算机对每个叠加分量(本征态)实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算的结果,这种计算称之为量子并行计算[4]。正是量子的并行性使得原来传统计算机无法解决的复杂问题以惊人的速度得以解决,但在量子计算机尚未构成的情况下,为了充分利用量子计算的高效并行性,本文借用了量子计算中的量子编码,继承了免疫克隆策略[5]中的克隆算子将二者相结合,提出了量子克隆遗传算法,并将其应用于0/1被包问题上,与传统进化算法相比较,它具有收敛速度快、寻优能力强的特点。 1本课题得到高等学校博士学科点专项科研基金(项目编号:20030701013)资助。 - 1 -

相关主题