搜档网
当前位置:搜档网 › 分形 数学与艺术结合的明珠

分形 数学与艺术结合的明珠

分形 数学与艺术结合的明珠
分形 数学与艺术结合的明珠

分形数学与艺术结合的明珠

大家注意到最近google 图标变成这个样子

很多人不明白,这是什么意思,其实这是为了纪念法国数学家Gston Julia是,他发现了在数论中有名的julia序列,就是在这个google LOGO上面看到的数学公式。通过这个数学公式可以在解析几何上实现很多不规则边的图形。学名,也叫做分形。我们在网上搜索了一些资料,为大家做一下分形这个图形学上的概念普及。

认识分形

作为一门新兴学科,分形不但受到了科研人员的青睐,而且因为其广泛的应用价值,正受到各行各业人士的关注。那么,在我们开始学习分形之前,首先应该明白的一件事情是:什么是分形?

严格地而且正式地去定义分形是一件非常复杂而且困难的事情。但是,有一些不太正规的定义却可以帮助我们理解分形的含义。在这些定义中,最为流行的一个定义是:分形是一种具有自相似特性的现象、图象或者物理过程。也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已。

让我们来看下面的一个例子。下图是一棵厥类植物,仔细观察,你会发现,它的每个枝杈都在外形上和整体相同,仅仅在尺寸上小了一些。而枝杈的枝杈也和整体相同,只是变得更加小了。那么,枝杈的枝杈的枝杈呢?自不必赘言。

如果你是个有心人,你一定会发现在自然界中,有许多景物和都在某种程度上存在这种自相似特性,即它们中的一个部分和它的整体或者其它部分都十分形似。其实,远远不止这些。从心脏的跳动、变幻莫测的天气到股票的起落等许多现象都具有分形特性。这正是研究分形的意义所在。例如,在道·琼斯指数中,某一个阶段的曲线图总和另外一个更长

的阶段的曲线图极为相似。

上图中的风景图片又是说明分形的另一很好的例子。这张美丽的图片是利用分形技术生成的。在生成自然真实的景物中,分形具有独特的优势,因为分形可以很好地构建自然景物的模型。

除了自相似性以外,分行具有的另一个普遍特征是具有无限的细致性。上面的动画所演示的是对Mandelbrot集的放大,只要选对位置进行放大,就会发现:无论放大多少倍,图象的复杂性依然丝毫不会减少。但是,注意观察上图,我们会发现:每次放大的图形却并不和原来的图形完全相似。这告诉我们:其实,分形并不要求具有完全的自相似特性。

不管你信不信,上面的这张月球表面的照片也是用分形技术生成的。如果你把图片放大观看,也可以看到更加细致的东西。因为,分形能够保持自然物体无限细致的特性,所以,无论你怎么放大,最终,还是可以看见清晰的细节。

Kohn雪花和Sierpinski三角形也是比较典型的分形图形,它们都具有严格的自相似特性(仔细看看,是不是这样?)。但是在前面说述的Mandelbrot集合却并不严格自相似。所以,用“具有自相似”特性来定义分形已经有许多局限了。

分形实用

经常有朋友问我“分形有何用?”。是的,分形作为一个新兴的基础理论有待于开发它的实用价值,而且分形的实用是分形理论得以普及的重要一步。

著名的鲁卡斯电影公司,在利用分形方法创造出与众不同的景观方面已做了一些开拓性的工作。这体现在影片《杰蒂的轮回》的剧情中,以及《星际旅程Ⅱ:可汗的愤怒》中的许多分形风景画上,其中最著名的是行星起源的演变序列图。而由理查德·沃斯在计算机上制作的分形山已被IBM公司广泛地应用于宣传广告中。不仅如此,在美国分形明信片和分形广告在市场上也于1986年底首次推出,随后又推出了分形年历和分形贺年卡,甚至在青年人穿的T恤衫、街道上的招贴画上也都印上了分形。在学术界,许多世界性刊物如《美国科学家》、《科学》、《自然》、《今日物理》、《研究与发展》、《科学美国人》以及《非线性》等等杂志的封面上或一些著作的封面上都出现过分形图案。在国内,我曾在公共汽车上看到过印有分形图案的棉衣和连衣裙,现在又出现了分形IC卡和分形扑克,至于分形用在书面设计上也已屡见不鲜。分形图形的错综、美丽和富于表现,不仅唤起一科学世界的想象力,同时也使人感受到它们与真实世界之间深奥的关系。

苑玉峰老师认为分形图像有如下用途:

1、制作成各种尺寸的装饰画(用卡纸装裱,可获得很好的装饰画效果)。

2、用作包装材料图案,效果新颖。

3、可以制作成各种尺寸的分形挂历、台历、贺卡等。

4、应用于印染行业。

5、装点科技馆、少年宫、旅游景点等。

刘华杰博士认为:

1、将高精度分形图形具体应用在建筑设计中,可以考虑将整面墙壁用一幅分形图装饰。

2、研究分形建筑陶瓷纹样、分形纺织纹样设计及其印染工艺。

3、设计分形时装。

4、将分形图形用于信息加密防伪。

5、印制分形贺卡、明信片和小台历。

分形软件

分形设计师

是用于IBMPC及其兼容机的交互式分形图象设计系统。使用者不必具有分形几何学的艰深知识,便可轻松绘制出精美的分形图象来。

主要特点:①界面友好,使用方便。软件所有编辑功能都以按扭的方式设置在界面上。②功能强大,绘图丰富。软件内设150个分形生成器,以及〈放大〉〈参数〉〈调色〉〈变色〉〈闪烁〉〈色粗化〉〈二值图〉等编辑功能,几乎可生成无数幅分形图象。③兼容性强,所生成的图象可被常用图像软件读取。本系统所生成的图案可用〈存盘〉功能存贮,其文件格式为.pcx,此类文件可方便地被Photoshop等图像处理软件读出,以便进行实用编辑。

另外还有一个软件https://www.sodocs.net/doc/537908235.html,

分形欣赏来自:https://www.sodocs.net/doc/537908235.html,

分形与分形艺术

分形与分形艺术 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 “分形” 一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有“破碎”、“不规则”等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的“蜿蜒曲折的一段海岸线”,无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。 图 1 Mandelbrot集合

分形维数算法

分形维数算法. 分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,

如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近 似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维 D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的[26]。点 集和多枝权的三维图形,下面介绍一些常用的测定方法(1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系

-D(2-21) N~λ上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: 1-D(2-22)L=Nλ~λ 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈[27]。。这说明挪威的海岸线更曲折一些1.3. )小岛法(2面积如果粗糙曲线都是封闭的,例如海洋中的许多小岛,就可以利用周长-关系求分维,因此这个方法又被称为小岛法。则与λ的而面积A对于规则图形的周长与测量单位尺寸λ的一次方成正比, 二次方成正比。通常我们可以把它们写成一个简单的比例关系:1/2 (2-23) AP∝对于二维空间内的不规则分形的周长和面积的关系显然更复杂一些,提出,应该用分形周长曲线来代替原来的光滑周长,从而给出了下Mandelbrot 述关系式:21/??D??1/1/D2)(2-24)]?(?)]?[a?AP[(?)][??a(1?D)/DA(?00的P)式),使1(周长光滑时D=1,上式转化成为(2.23这里的分维D大于??的数1变化减缓,a是和岛的形状有关的常数,为小于是测量尺寸,一般取0/D)(1-D??减小而增大。作随测

趣味数学--分形艺术

神奇的分形艺术:无限长的曲线可能围住一块有限的面积 很多东西都是吹神了的,其中麦田圈之谜相当引人注目。上个世纪里人们时不时能听见某个农民早晨醒了到麦田地一看立马吓得屁滚尿流的故事。上面这幅图就是97年在英国Silbury山上发现的麦田圈,看上去大致上是一个雪花形状。你或许会觉得这个图形很好看。看了下面的文字后,你会发现这个图形远远不是“好看”可以概括的,它的背后还有很多东西。 在说明什么是分形艺术前,我们先按照下面的方法构造一个图形。看下图,首先画一个线段,然后把它平分成三段,去掉中间那一段并用两条等长的线段代替。这样,原来的一条线段就变成了四条小的线段。用相同的方法把每一条小的线段的中间三分之一替换为等边三角形的两边,得到了16条更小的线段。然后继续对16条线段进行相同的操作,并无限地迭代下去。下图是这个图形前五次迭代的过程,可以看到这样的分辨率下已经不能显示出第五次迭代后图形的所有细节了。

当把三条这样的曲线头尾相接组成一个封闭图形时,有趣的事情发生了。这个雪花一样的图形有着无限长的边界,但是它的总面积却是有限的。 这个神奇的雪花图形叫做Koch雪花,其中那条无限长的曲线就叫做Koch曲线。他是由瑞典数学家Helge von Koch最先提出来的。麦田圈图形显然是想描绘Koch雪花。Koch曲线于1904年提出,是最早提出的分形图形之一。下面我们来看Koch雪花的面积与周长,如下图

周长为次分叉图第4n 设图1三角形周长为31=P ,面积为4 31=A ; 第一次分叉图2;913,3411212A A A P P ??+==面积为周长为 第二次分叉图3 … 面积为 1121211)9 1(43)91(43913A A A A n n --??++??+?+=Λ ]})9 4(31)94(31)94(3131[1{221-+++++=n A Λ Λ,3,2=n 雪花曲线令惊异的性质是:无限长的曲线可能围住一块有限的面积。 ;91431223?????????????? ????+=A A A 面积为Λ ,2,1)34(11==-n P P n n ]})9 1[(4{31121A A A n n n n ---+=,周长为12 334P P ??? ??=

分形维数算法

分形维数算法

分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法[26]。 (1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系 N~λ-D(2-21) 上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: L=Nλ~λ1-D(2-22) 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈1.3。这说明挪威的海岸线更曲折一些[27]。

经典的分形算法 (1)

经典的分形算法 小宇宙2012-08-11 17:46:33 小宇宙 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德布罗(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 真正令大众了解分形是从计算机的普及肇始,而一开始,分形图的计算机绘制也只是停留在二维平面,但这也足以使人们心驰神往。近来,一个分形体爱好者丹尼尔?怀特(英国一钢琴教师)提出一个大胆的方法,创造出令人称奇的3D分形影像,并将它们命名为芒德球(mandelbulb)。

分形几何与分形艺术

我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

《高频电子线路》课程设计指导书.doc

《高频电子线路》课程设计指导书 一、课程设计基本信息 核心课程名称(中文)高频电子线路核心课程名称(英文)High-frequency Electronic Circuits 课程设计名称高频电子线路课程设计 课程设计编号课程设计类型实物制作 相关辅助课程电路分析、电子线路(线性部分) 教材及实验指导书教材《电子线路(非线性部分)》,谢嘉奎,高等教育出版 课程设计时间:第五学期18 周 面向专业电子信息科学与技术 二、课程设计的目的 《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。通过设计,加深对调幅的理解,学会电路的调整;进一步培养学生的动手能力 三、主要仪器设备 序号实验项目名称仪器设备名称仪器设备编号 1调幅收音机设计高频信号发生器、数字示波器、稳压电源 四、课程设计的内容与要求 1、内容:根据所学知识,设计一超外差调幅收音机电路,选择合适的元器件,进行安装和调试电路;应能接收正常广播,且接收的广播节目不少于3套° 序 号 名称目的方式场所要求

1调幅收音机设计加深对调幅的理解,学会 电路的调整;进一步培养 学生的动手能力 实物制作 通信学 院 2、要求 1设计电路图; 2供电电压:直流3V 3 接收频段:535kHz ~ 1605kHz; 4输出功率:P o> 1W。 5为满足偷出功率要求,采用两级放大电路; 6采用互补推挽功率放大器作为输出级。 五、考核与报告 考核内容:1实际操作:包括电路设计、安装、焊接及调试 2设计报告:包括原理、电路图、元器件的选择 成绩评定:实际操作和设计报告各占50%o 六、主要参考文献 1、《电子线路(非线性部分)》,谢嘉奎,高等教育出版社 2、《实用电子电路手册》,孙肖子,高等教育出版社 3、《电子技术技能训练》,张大彪,电子工业出版社七、课程设计报告 1、报告内容 目的、原理、电路图、安装注意事项、调试过程及结果。 2、版面格式 (1)A4纸打印,上、下、左、右边距为2. 5cm,段落间距0,行间距1. 5倍; (2)标题使用四号黑体、居中,正文使用小四号宋体; 一级标题:小四号黑体(如:1、2、3……);

函数也可以如此美丽-Julia集的分形艺术

函数也可以如此美丽——Julia集的分形艺术 微博:@月绒兔子 前言 大家在高中的时候都学过解析函数吧?说解析函数是不是有点显得太高端了?那好,给你一个y=x的函数,在XY坐标系上画出这个函数的图像。别告诉我你不会啊,这可是拿脚后跟都能画出来的图像啊。 闲话不多说了。首先,先声明下此文并不是给大家讲数学的,也不是专门给理工科童鞋看的。此文的目的就是想让大家知道,有那么一个函数,她是如此的奇幻如此的美丽多变,就像她的名字一样—Julia。然后我们用HTML5的canvas来召唤她。 先来几张Julia的芳容欣赏下: 没错,以上四个图片不是电脑桌面,但是它确实Julia集合(Julia Set)所描绘的抽象艺术。 Julia集简介 我是在一门叫做“高等统计物理”的课程上认识到Julia集的。虽然她的图像非常绚丽多姿,但其实她的真身非常简单,简单到你不敢想象: f(z)=z^2+C 其中,z^2表示z的平方,z和C均为复数(复习一下:复数就是a+ib,a为实部,b为虚部,i就是表示虚部的部分)。 然后我们做以下的迭代: Z1=f(z0) Z2=f(z1)

Z3=f(z2) Z4=f(z3) … 那么当Z0=0,C=0.5时 Z1=0^2+0.5=0.5 Z2=0.5^2+0.5=0.75 Z3=0.75^2+0.5=1.0625 Z4=1.0625^2+0.5=1.62890625 Z5=1.62890625^2+0.5=3.653355… Z6=Z5^2+0.5=14.346860796… 最终Zn趋于无限大。 同理,如果令Z0等于另一个值时,有可能会出现最终Zn收敛于某一值(无限趋近于某一个值),也有可能趋近无穷大,或者趋近无穷小(负值)。 Julia集绘制原理 上面的简介说明了其实Julia集就是一个迭代函数而已,那么,这么美丽的图像是怎么画出来的呢?其实很简单,刚才我有提到过,z和C都是复数,C是常量。 所以,z=x+iy,C=a+ib,图像是以x为横坐标,y为纵坐标绘制的。这么说来,只要随便改变a和b的值,就会出现不同的图案了。 那么图像中颜色是根据什么来的呢? 我们从画布左上角第一个像素(x=0,y=0)开始,这个像素所代表的物理意义就是,当z=0+i0(也就是z=0)时,进行Zn的迭代计算。我们预先设置一个阀值k(例如k=4),当计算到Z10的时候,发现Z10的模大于k了(|Z10|>k),就说明在迭代到第10次的时候发散了。依此类推,如果是计算到Z88的时候|Z88|>k了,就说明迭代到第88次的时候发散了。这时候你就可以按照你的口味来了,你可以设置为发散的越慢(迭代次数越多)颜色越深,发散的越快(迭代次数越少)颜色越浅。当然也可以用冷暖色系来表示。找到形成发散的迭代次数,就可以结束迭代运算了。 当然,有一点是要注意的,这个迭代在计算到很高阶的时候运算量可是会很大的哦,所以一定要设置一个迭代次数的最大值,比如,如果再迭代到300次的时候,|Zn|还没有大于阈值k,那就认为这个点永远不会发散了(可以叫做收敛点),直接停止迭代运算。这点的颜色就按迭代最大值时对应的颜色值来填充。 第一个点的绘制原理就是酱紫。下面就是要遍历所有的点,按照同样的方法让计算机去计算喽。如果你的画布是800x800,那就需要从(x=0,y=0)一直遍历到(x=800,y=800),一共是800x800=640000个点。如果你对你的电脑运算能力有信心的话,就可以利用Julia集绘制高分辨的HD桌面壁纸喽! Julia集的魅力所在 学术界对于Julia集的研究非常广泛,学者们深深被这个集合的美丽和规律所吸引。除了她的多变和美丽外,还有一个神奇的地方(不要跟太多人讲哦),就是她的分形艺术(fractal art)。

分形与幽默艺术

分形与幽默艺术 分形与幽默艺术 作者:憔悴太子 ── 从赵本山的小品《心病》谈起 摘要表演艺术本身就有着自己的规律与理论。研究分形与幽默,研究分形与表演艺术之间的关系,只不过是从一个从新的角度来进一步了解及研究表演艺术它的自身规律与理论,将原来看到的,还有可能看不到的和遗漏的,或者看不清楚的问题及内容,从理论与技术上进一步进行归纳与升华成为应用价值的东西,从而形成新的规律与理论。并用它来指导表演艺术的编导与表演艺术的实践。从赵本山的小品《心病》谈起, 研究分形与幽默的目的就在于希望本文能起抛砖引玉的作用。 关键词分形自相似性表演艺术幽默 一前言 2003春节晚会上赵本山的小品“心病”(何庆魁先生等撰写),由赵本山、高秀敏、范伟组成的“黄金铁三角” 重新杀回央视,成为最大的看点和亮点。小品“心病”在舞台演出需要的时间很短(网上下载赵本山的“心病”播放时间为13分54秒),然而观众的笑声不断共计有25次之多(除“黄金铁三角”的人物出场时深受观众欢迎,引起观众大笑叫好外,其中还有15次也是大笑与幽默喜剧的高潮),足见其成功之处。他们获得非常好的幽默喜剧效果与巨大轰动效应。该小品最典型的幽默是赵本山这个“医生”与“病人”范伟一样都得了相似的“心病”。对于身外之物的“钱”的“心病”上,“医生”治好了“病人”的“心病”,他自己却是同样的“心病”大发其着,而且更为甚之。正是赵本山这个“医生”与“病人”范伟一样都得了相似的“心病”才引发了幽默喜剧的效果,也正是这个幽默喜剧情节才引发了一些不必要的争论。其实艺术上的“相似”的故事情节,“相似”表现手法的相互借鉴是无可非议的,因为世界上从时间与空间的整体来看每时每刻不知要发生多少“相似”,“相同”的事情,这是不足为奇的。世界本来就是“分形”的世界。 从现在的观点来看,赵本山的小品“心病”他们获得非常好的幽默喜剧效果与巨大轰动效应,除了他们的表演技巧外,小品剧情的发展与表现技巧都应用了“分形”这一手法。这里我们只不过是从一个从新的角度来进一步了解及研究表演艺术而已。 二分形简介 “分形”(f ractal)这个名词是由美国IBM(International Business Machine)公司研究中心物理部研究员暨哈佛大学数学教授曼德勃罗特(Benoit B. Mandelbort)在1975年首次提出的,其原意是“不规则的,分数的,支离破碎的”物体,这个名词是参考了拉丁文f ractus(弄碎的)后造出来的,它既是英文又是法文,既是名词又是形容词。1977年,他的所撰写的世界第一部关于“分形”的著作“分形:形态,偶然性和维数”(Fractal:From, Chance and Dimension),标志着分形理论的正式诞生。五年后,他又出版了著名的专著“自然界的分形几何学”(The Fractal Geometry of Nature),至此,分形理论初步形成。由于他对科学作出的杰出的贡献,他荣获了1985年Barnard奖,该奖是由全美科学院推荐,每五年选一人,是非常有权威性的奖。在过去的获奖者中,爱因斯坦名列第一,其余的也都是著名的科学家。 分形理论诞生后,人们意思到应该把它作为工具,从新的角度来进一步了解及研究自然界和社会,范围包括所有的自然科学和社会科学领域。[1] (张济忠<<分形>> 清华大学出版社1995年8月第一版绪论pⅧ-Ⅸ) 分形的几个特点: (1) 具有无限精细的结构; (2) 比例自相似性; (3) 一般它的分数维大于它的拓扑维数; (4) 可以由非常简单的方法定义,并由递归,迭代产生等。 这里(1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段包含整个分形的信息。第(3)项说明了分形的复杂性,第(4)项说明了分形的生成机制。[2](分形--自然几何.htm)请看图1中的几个图形,它们叫做科赫曲线和科赫雪花曲线,从它的任何一个局部经过放大,都可以得到一个局部和整体自相似的图形。这就是分形几何的一个特点叫做自相似性。并且具有无限精细的结构,即它的全息性。从图1中,可以看出它的生成规律,即其递归过程。[3](分形艺术欣赏.htm)[4](21ic_com

分形之Julia集及其算法实现

成绩:课程名称:智能信息处理概论 分形之Julia集及其算法实现 摘要:本文从自然界的几何现象引出分形的概念,再从其定义、几何特征和分形维的计算这三个方面来加以介绍。以Julia集和Mandelbort集为例来具体描述分形。本文主要从Julia集的特点和算法实现来描述分形以及其实现的方法。 关键词:分形、分数维、Julia集、Mandelbort集、算法实现 引言 大自然是个很伟大的造物者,它留给我们一大笔美丽景观:蜿蜒曲折的海岸线、起伏不定的山脉,变幻无常的浮云,粗糙不堪的断面,袅袅上升的烟柱,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星……那么,我们又能从这些美妙的自然现象中得到什么有趣的结论呢? 正文 分形概述 分形的英文单词为fractal,是由美籍法国数学家曼德勃罗(Benoit Mandelbrot)创造出来的。其取自拉丁文词frangere(破碎、产生无规则碎片)之头,撷英文之尾所合成,本意是不规则的、破碎的、分数的。他曾说:分形就是通过将光滑的形状弄成多个小块,反复的碎弄。1975年,曼德勃罗出版了他的法文专著《分形对象:形、机遇与维数》,标志着分形理论正式诞生。【1】 两种定义 其一:具有自相似性结构的叫做分形; 其二:数学定义:豪斯道夫维Df>=拓扑维Dt。 若一有界集合,包含N个不相重叠的子集,当其放大或缩小r倍后,仍与原集合叠合,则称为自相似集合。自相似集合是分形集。具有相似性的系统叫做分形。 当放大或缩小的倍数r不是一个常数,而必须是r(r1,r2,….)的各种不同放大倍数去放大或缩小各子集,才能与原集合重合时,称为自仿射集合。具有自仿射性的系统叫做分形。【2】 特征 1.自相似性:局部与整体的相似,是局部到整体在各个方向上的等比例变换的结果; 2.自仿射性:是自相似性的一种拓展,是局部到整体在不同方向上的不等比例变换的结果; 3.精细结构:即使对该分形图放大无穷多倍,还是能看到与整体相似的结构,表现出无休止的重复; 4.分形集无法用传统几何语言来描述,它不是某些简单方程的解集,也不是满足某些条件的点的轨 迹; 5.分形集一般可以用简单的方法定义和产生,如递归、迭代;分形其实是由一些简单的图形,经过 递归或者迭代产生的复杂、精细的结构; 6.无确定的标度且具有分数维数。【3】

分形插值算法和MATLAB实验

一,分形插值算法 ——分形图的递归算法1,分形的定义 分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。其定义有如下两种描述: 定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数 r D ,则称该集合为分形集,简称分形。 定义 2组成部分以某种方式与整体相似的形体叫分形。 对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。 根据自相似性的程度,分形可分为有规分形和无规分形。有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。本文主要研究有规分形。

2. 分形图的递归算法 2.1 三分康托集 1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。 其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。三分康托集的 Hausdorff 维数是0.6309。 图2.2 三分康托集的构造过程

分形几何与分形艺术

分形几何与分形艺术 Revised as of 23 November 2020

分形几何与分形艺术 作者: 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特()于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

分形算法与应用

《分形算法与应用》教学大纲 1 课程的基本描述 课程名称:分形算法与应用Algorithm and Application of Fractal 课程编号:5301A36 课程性质:专业课适用专业:计算机专业 教材选用:孙博文编著,《分形算法与程序设计》,科学出版社,2004.11 总学时:32学时理论学时:32学时 实验学时:0学时课程设计:无 学分:2学分开课学期:第七学期 前导课程:算法分析 后续课程:毕业设计 2 教学定位 2.1 能力培养目标 通过本课程的学习,培养学生的认知和理解能力、逻辑思维能力,以及算法设计与分析能力,程序设计和实现能力。一方面使学生掌握非规则图形的计算机绘制的基本方法,以便实现对不规则对象的算法设计。另一方面,学习本课程的过程也是进行复杂程序设计的训练过程。 2.2 课程的主要特点 本课程是一门重要的专业课,有理论性、设计性与实践性的特点。介绍分形的基本概念及算法设计的基本方法。它是介于计算机软件、程序设计和数学三门课程之间的核心课程。不仅为后续专业课提供了必要的知识基础,也为计算机、软件工程的专业人员提供了必要的技能训练。

2.3 教学定位 通过本课程的学习,使学生达到知识和技能两方面的目标: 1.知识方面:从算法设计及其实现这两个层次的相互关系的角度,系统地学习和掌握非规则图形的算法设计方法,了解并掌握分析、比较和选择不同非规则结构的设计方案,不同运算实现的原则和方法。 2.技能方面:系统地学习和掌握在不同非规则对象实现的不同算法及其设计思想,从中体会并掌握结构选择和算法设计的思维方式及技巧,使分析问题和解决问题的能力得到提高。 3 知识点与学时分配 3.1掌握分形的基本概念 分形简介 分形 分维 分形的测量 共2学时 3.2分形图生成算法之一 分形图的递归算法 Cantor三分集、Koch曲线、Sierpinski垫片、 Peano曲线、分形树等的递归算法。 共2学时 3.3分形图生成算法之二 文法构图算法 LS文法、单一规则的LS文法生成、多规则的LS文法生成、 随机LS文法生成。 共2学时 3.4分形图生成算法之三 迭代函数系统

_论分形艺术美的本质

第10卷第6期2008年11月  哈尔滨工业大学学报(社会科学版) J O U R N A LO FH I T (S O C I A LS C I E N C E S E D I T I O N )   V o l .10N o .6 N o v .,2008 收稿日期:2008-06-16 作者简介:王建一(1962-),男,黑龙江哈尔滨人,副教授,从事工程技术美学研究;汪俊琼(1985-),女,湖北武汉人,硕士研究 生,从事数字人工生命研究。 论分形艺术美的本质 王建一,汪俊琼 (哈尔滨工业大学媒体技术与艺术系,哈尔滨150001) 摘 要:分形艺术是基于分形几何理论所创建的一类奇特的新媒体艺术,是计算机技术在图形图像艺术领域的应用,富于视觉冲击力,具有非同寻常的美感。分形几何具有自相似和分数维两大重要特征,它们正是分形艺术美感的数学缘起。此外,分形艺术也是一门创造艺术,分形艺术家运用数学算法作为画笔来进行造型、色彩设计,这种艺术灵感的挥洒过程实现了美的创造。基于分形理论和数学方法创作的分形艺术,不仅象征了科学与艺术自然而完美的结合,更具有独特的美学意义。从美学角度来分析,分形艺术具有数学和谐、标度对称和奇异性等特点,在超越传统美学标准审美的同时形成其独特的审美感染力,而分形艺术这种活跃的生命力正是分形美的本质。 关键词:新媒体艺术;分形艺术;标度对称;奇异性 中图分类号:J 9 文献标志码:A 文章编号:1009-1971(2008)06-0046-06 分形是指具有自相似特征的图形图像或者 物理过程,而分形艺术是特指具有分形特性的艺术作品所形成的一种艺术门类,即分形艺术的审美主体是分形作品。分形艺术具有深厚的几何理论基础,强调标度变换下的不变性和分数维度,即具有自相似和分数维两大特性,这些特性使得分形长于表现自然的真实细腻和生命力的蓬勃延伸,所以,分形艺术能表现出传奇的和谐、亲近感及奇异性。分形艺术的与众不同还在于其创作方法和创作过程的独特,分形艺术家们将数学算法作为画笔来进行造型和构图设计,凝聚着的艺术灵感实现了美的创造。分形力是蕴涵于分形中的自然生命力的宣扬,它表征了一类新兴艺术的动态交流形态。 一、分形的自相似与分数维特征 美籍法国数学家曼德布罗特(B e n o i t B .M a n d e l b r o t )在研究复杂图形时,发现许多不规则的点集拥有一个共性,那就是粗糙性和自相似性,于是他提出了“F r a c t a l ”的概念,“F r a c t a l ”强调破碎与不规则,一般译作“分形”或者“碎 形” [1]58 。而今天谈论的“分形”即由此而来。曼 德布罗特在介绍分形时这样说过,云彩不是球体,山岭不是锥体,大自然界的很多图样是很不规则的,甚至是支离破碎的。它说明了分形在大自然中存在的普遍性。这种独特的分形思想最终指导曼德布罗特创立了分形几何。作为非欧几何中重要的一支,分形几何具有自相似和分维两大特征,它们也正是分形艺术区别与其他艺术的两大特色,最初这两大特点都是从几何学的角度提出的,其中,自相似特征正是分形的核心意义所在。 自相似是指一个对象的局部与局部或者局部与整体相似,如叶脉的无限分叉、俄罗斯套娃的无穷嵌套都具有自相似的特点。自相似性是分形理论的核心,是分形艺术最基本,也最根本的特征。根据曼德布罗特的研究,无论是对自然中的不规则结构进行模拟,还是将简单的形状进行无限次重复,这些过程都贯穿着自相似的基本观点,甚至可以说,分形就意味着自相似。美丽的科赫雪花(见图1)、谢宾斯基衬垫等图形(见图2)就是具有自相似特性的典型分形图形。不断放大科赫雪花图形的边缘,会出现无数个科赫雪花,可以发现每一个小局部中包含的细节并不

分形算法及C++实现

分形算法及C++实现 分形简介 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 例如,首先画一个等边三角形,把边长为原来三角形边长的三分之一的小等边三角形选放在原来三角形的三条边上,由此得到一个六角星;再将这个六角星的每个角上的小等边三角形按上述同样方法变成一个小六角星……如此一直进行下去,就得到了雪花的形状。 2.分形中的迭代函数系统 相似变换是指在各个方向上变换的比率必须相同的一种比例变换;仿射变换是指在不同的方向上变换的比率可以不同的一种比例变换。 仿射变换的数学表达式为:

其中,a,b,c,d,e,f是仿射变换系数。 对于比较复杂的图形,可能需要多个不同的仿射变换来实现,而且,每个仿射变换被调用的概率不一定相同,所以引进一个参数概率p。a,b,c,d,e,f,p 就构成了一个IFS码。 3.分形中计算机模拟算法 递归算法。 字符串替换算法。 迭代函数系统算法。 逃逸时间算法。 4.使用迭代函数系统算法对一棵树的C++实现程序 fractal.h文件: #ifndef _FRACTAL_H #define _FRACTAL_H #include #include class CFractal { private: float m[7][7]; float a; float b; float c;

神奇的分形艺术(二):一条连续的曲线可以填满整个平面

神奇的分形艺术(二):一条连续的曲线 可以填满整个平面 虽然有些东西似乎是显然的,但一个完整的定义仍然很有必要。比如,大多数人并不知道函数的连续性是怎么定义的,虽然大家一直在用。有人可能会说,函数是不是连续的一看就知道了嘛,需要定义么。事实上,如果没有严格的定义,你很难把下面两个问题说清楚。 你知道吗,除了常函数之外还存在其它没有最小正周期的周期函数。考虑一个这样的函数:它的定义域为全体实数,当x为有理数时f(x)=1,当x为无理数时f(x)=0。显然,任何有理数都是这个函数的一个周期,因为一个有理数加有理数还是有理数,而一个无理数加有理数仍然是无理数。因此,该函数的最小正周期可以任意小。如果非要画出它的图象,大致看上去就是两根直线。请问这个函数是连续函数吗?如果把这个函数改一下,当x为无理数时f(x)=0,当x为有理数时f(x)=x,那新的函数是连续函数吗? Cauchy定义专门用来解决这一类问题,它严格地定义了函数的连续性。Cauchy定义是说,函数f在x=c处连续当且仅当对于一个任意小的正数ε,你总能找到一个正数δ使得对于定义域上的所有满足c-δ< x

基于分形参数的可控木纹纹理仿真

基金项目:湖北省教育厅科研计划项目(B200534004)收稿日期:2007-11-20 修回日期:2008-02-02 第26卷 第3期 计 算 机 仿 真 2009年3月 文章编号:1006-9348(2009)03-0220-03 基于分形参数的可控木纹纹理仿真 常君明,颜 彬 (江汉大学数学与计算机学院,湖北武汉430056) 摘要:自然景物的模拟是计算机图形学中具有挑战性的研究方向之一。木纹纹理仿真是自然环境模拟中不可缺少的重要组成部分,但由于木纹纹理生成的复杂性和随机性,使得对其进行逼真仿真十分困难。在分析分形布朗运动以及随机中点位移法的基础上,讨论了中点位移法中各参数对分形曲线的影响,提出了一种非常简单的、基于参数可控的木纹纹理生成算法。仿真结果表明,方法具有快速、简单、高效、可控的特点,通过改变参数能较好地实现真实木纹纹理的仿真。关键词:分形;纹理;递归;分形布朗曲线;仿真中图分类号:TP15 文献标识码:A S i m ul a ti on of Param eter -ba sed Con troll able Fract a l -W ood Textures CHANG Jun -m ing,Y AN B in (Depart m ent of Maths and Computer,J ianghan University,W uhan Hubei 430056,China ) ABSTRACT:Envir on ment si m ulati on has al w ays been one of the most challenging tasks in computer graphics .Si m u 2lati on of wood -texture is an indis pensably i m portant part of envir on ment si m ulati on.Because of the comp lexity and randomness of wood -texture,it is very difficult t o si m ulate it realistically .Based on the deep study of the p rinci p les of fracti onal B r ownian moti on and the random m id -point dis p lace ment algorith m ,the influences of different para me 2ters on fractal curves are deduced .A method of para meter -based contr ollable fractal -Wood Textures is p r oposed in this paper .Si m ulati on results show that the method is fast,si m p le,efficient and contr ollable .By changing para me 2ters the real wood texture si m ulati on can be better achieved .KE YWO RD S:Fractal;Textures;Recursi on;F B M;Si m ulati on 1 引言 自然景物表面纹理往往带有丰富的细节或随机变化的不规则形状,用计算机仿真生成时,其建模非常不易。分形几何是描述非规则图形及客观对象的有效工具,特别是随着计算机图形学的应用发展,由于生态环境仿真、动画制作、建筑物配景、园林设计以及影视特殊效果生成等的需要,用传统的几何学几乎无法描述,而用分形方法,目前已经达到以假乱真的程度。美国AC M SI GGRAPH 每年会议发表的最新研究成果中,有很多是基于分形方法建模而取得的[1]。 木纹纹理是自然界最常见的自然景物纹理之一,其形状复杂,长势百态,但其结构特征很强,在统计性质上具有自相似性[2]。A.Pentland 对自然景物纹理图像进行了大量的实验,实验发现有92%的纹理在局部区域里能够很好的满足 F BM 的统计特性 [3] 。通常生成木纹纹理的方法有:①采用势 函数的方法建立来纹理模型;②利用三角函数辅之以扰动函数来描述木纹纹理变化 [1] 。这些生产方法虽然能很好的满 足纹理的不规则性,但其随机性很大,难以很好的在统计性质上实现自相似性以及对可视结果进行有效的预测和控制。为了在木纹纹理生成过程中既能保持其统计自相似性,又能根据实际情况对给定形状进行有效控制,本文详细论述了中点位移中参数与纹理结构形状之间的关系,提出了基于参数的可控分形木纹纹理生成方法。 2 分形布朗运动的数学模型 分形布朗运动(Fractal B r own Moti on,F BM )是Mandelbr ot 和Ness 提出一类一维高斯随机过程的数学模型,它是布朗运动的拓广,同时也是现代非线性时序分析中重要随机过程,利用随机中点位移、插值、傅立叶滤波等方法,借助于方差和分形维数能够很好的描述真实逼真的木纹纹理[4]。 分形布朗曲线是一种无规则分形曲线,其两个重要特征是自相似性和分数维,但这种自相似性具有统计的性质。如果定义一个随机过程f (x )为分形布朗运动,对于任意x 和Δx,则满足如下概率分布函数[5]~[6]: p f (x +△x )f (x ) ‖△x ‖H

相关主题