搜档网
当前位置:搜档网 › 无刷直流电机的保护电路

无刷直流电机的保护电路

无刷直流电机的保护电路
无刷直流电机的保护电路

无刷直流电机的保护电路

摘要:为了使无刷直流电机长期稳定运行,采用加保护电路的方法使其正常工作,保护电路主要由欠压保护、过流保护、短路保护等组成,在软件里设置电压、电流的阈值,直接对电压、电流进行检测并产生相应的保护,以免对电路和电机造成损害,并且做了相应的欠压、过压、过流测试实验。实践应用表明,该设计的几种方案切实可行,能够在异常情况下及时对电机做出保护动作。

关键词:无刷直流电机;欠压保护;过压保护;过流保护

0 引言

电机广泛应用于人们的生产、生活及科研等各个领域,因此各种类型的电机保护装置应运而生,如欠压保护、过压保护及过流保护等。这些保护装置相互独立,不仅安装麻烦,总体生产成本高,而且在电机正常运行过程中,还要消耗一定的电能,造成能源浪费。其实,上述保护装置,归根到底都是预防电机因自身过热而烧毁。本文给出几种电机的保护方案,它不仅响应速度快,控制可靠,而且大大地降低了保护装置的生产成本。该保护电路与传统的保护电路相比,省去了热继电器、交流接触器等保护装置的能耗,与电机为一体。经测试验证,效果良好。

1 电流检测原理

要实现过流保护,首要的任务是检测电机的电流。通常有2种检测电流的方法:

(1)小阻值无感采样电阻。通常采用康铜丝或者贴片件,这是一种廉价的方案,但是要注意采样电阻阻值的选取,功率要足够大,同时电阻的电感要小,以排除感抗在电阻两端引起的电压降。

(2)霍尔电流传感器。适合驱动开发,采用LEM公司的LA28-NP霍尔电流传感器的电流测量,它的优点是精度高,可靠性高。

在电流采样的位置上也有2种方法可以选择:

(1)相电流采样。将采样电阻或者霍尔电流传感器置于每一相,假设三相电流分别为ia,ib和ic,又因为无刷电机的三相电流有如下关系:ia+ib+ic=0,所以只要检测出无刷电机中两相电流就可以得到另一相的电流信息。

(2)母线电流采样。一般是将采样电阻或者电力传感器置于母线负侧进行电流采样。

下面介绍一种基于LEM霍尔电流传感器采样母线电流的方法,该方法精度高,可靠性高。

将霍尔传感器LA28置于母线负侧到地之间进行电流检测,LA28将检测到的初级电流按1 000:1的比例进行缩小,得到次级电流,次级电流经过I/V电路之后转化为方便A /D(模/数转换模块)采集的电压量,但是I/V输出的电压信号含有丰富的PWM斩波的高次谐波分量,所以如果直接送单片机的A/D口,会检测不到电压信息,因此需要加信号调理电路,即将I/V电路得到的电压送入巴特沃思(Butterworth)二阶低通滤波器进行低通滤波。经过低通滤波之后可以将高次谐波分量滤除,进而得到直流分量,同时为了便于A /D口采集,将滤波后的小电压信号进行比例放大,之后送入A/D口进行检测。这个硬件电路示意图如图1所示。

I/V电路如图2所示。

图3给出了二阶低通滤波器的设计方法。实际设计时,使R1=R2,C1=2C2,可以实现-40 dB/10倍频的频率响应。其截至频率的计算公式为:

在实际电路中电阻电容取值为R=100 kΩ,C=1μF,截至频率f=1.126 Hz,从而将方波电压信号的中高次谐波分量滤除,进而得到平稳的直流分量。

同相和反向比例电路是运放最典型的应用。经低通滤波之后出来的直流电压信号,其幅

值比较低,所以要经过同相比例运算放大电路放大,进行电压放大,便于单片机的A/D口进行采集。图4中D22,D23为箝位二极管,保持输入到单片机A/D口的电压在0~5 V 范围之内,选用1N4148即可。

2 电压检测原理

线电压检测电路的设计与电流检测电路的设计大体相同,具体原理参照电流检测原理。线电压检测硬件的整体电路结构图如图5所示。

3 保护方案

本文提出的保护方案主要是针对以IR2136芯片作为电机驱动器的电机,因为它不但实现了一套完整的无刷直流电动机驱动,而且它还集成了自身工作电源欠压检测器,检测到芯片的Vcc或Vbs欠压时能关闭高端MOSFET,防止MOS管长时间工作在高功耗状态下。

3.1 过流保护方案

过流保护方案共有3套,其中包括两套硬件过流方案和一套软件过流方案。

(1)电流检测电路和LM311构成比较电路,输出送到单片机PWM模块的FLTA进行故障检测,如果FLTA引脚为低电平,则PWM模块硬件关断PWM输出。该过流保护为单片机集成的硬件级保护,响应速度快。

(2)电流检测电路输出电压经过分压之后送到IR2136的ITRIP引脚,如果ITRIP引脚电压高于0.5 V,则引起IR2136内部叩比较器动作,FAULT引脚输出低电平,RCIN引脚连接的电阻电容构成RC延时机制,延时之后过流状态自动清除。因为FAULT在过流和

自身欠压的情况下都会变为低电平。区别在于:过流情况下,FAULT引脚的电平时高时低,而自身欠压的状态下,FAULT会一直输出低电平。该过流保护为IR2136集成的硬件级保护,响应速度快。

(3)单片机设置软件级的过流保护程序代码,通过A/D口采集电流检测电路输出电压,以判断是否过流。这属于软件级别的过流保护,响应速度较硬件级别保护慢,若在程序跑飞的情况下不能提供过流保护。

3.1.1 方案一

电流检测电路配合LM311构成过流检测电路如图6所示。

正常情况下,在电流检测电路中,电路输出的电压信号(接到LM311的反相输入端)小于电阻分压电路输出电压(接到LM311的同相输入端),LM311输出高电平,电路无动作;若发生过流时,电路输出的电压信号(接到LM311的反相输入端)大于电阻分压电路输出电压(接到LM311的同相输入端),LM311输出低电平,当单片机PWM模块的FLTA检测到低电平之后,设置PWM输出无效电平(在此应用中PWM有效电平为低电平,无效电平为高电平)从而使电机停转。

电阻R42提供正反馈构成滞回比较器,可以为整个电路起到50 mV的抗噪声能力;分压电阻采用滑动变阻器,从而可以方便地设置过流门限。要注意的是:因为电阻分压电路直接接到LM311的输入端,而认为LM311的输入端电阻是无限大的,所以不会产生负载效应,可以放心使用。

3.1.2 方案二

IR2136集成的过流检测功能如图7所示。

如果电压值小于0.5 V,则电路正常工作;此时连接到ITRIP的内部比较器输出0(低电平),因为RCIN外接RC延时电路的原因,电容充电至1(高电平),所以此时SR锁存器S=0,R=1,根据SR锁存器的特性表,不管当前状态如何,SR锁存器都输出0,表示没有过流发生。

如果电压值大于0.5 V,则会引发IR2136内部电路一系列动作。具体分析如下,ITRIP 引脚连接的比较器输出1(高电平),经过输入噪声滤波器确认不是由噪声引起的误动作之后,送到SR锁存器的S端,即此时S端为1;同时比较器输出的1(高电平)加到与RCIN 相连的MOSFET栅极,从而引发MOSFET漏极和源极导通,即RCIN连接到低,而RCIN 在外部还连接了RC延时电路,如图8所示。

过流之前,电容被充电至Vcc,并连接到RCIN,但是过流发生之后RCIN内部通过MOSFET连接到地,所以电容沿着箭头所示路径放电。此时RCIN引脚为0(低电平),RCIN 又连接到SR锁存器的R端,所以过流发生时,SR锁存器的S=1,R=0。根据所学的SR 锁存器特性表,S=1,R=0,现态Q=0,那么锁存器输出1(高电平),表示有过流情况发生。锁存器输出分为两路(如箭头所示),一路使FAULT输出低电平,FAULT可以接到单片机各种检测端口进行相应的过流处理;另一路关断上桥臂的3个MOS管,从而使电机停转实施保护。

3.1.3 单片机固件软件级过流保护

单片机软件中设定好过流门限数值之后,软件通过A/D实时采集电流检测电路输出的电压信号,并解算得到对应的电流值,与过流保护门限值进行比较。如果实时电流值大于过流门限值,则执行相应的电机保护动作;如果实时电流值小于过流门限值,则继续采集电流值进行比较,以此循环。

软件流程如图9所示。

3.2 过压保护

线电压检测电路的设计与电流检测电路的设计大体相同。过压:检测直流母线电压,如果高于上限电压值,则发送警告信息帧,并停止驱动电机。过压保护如图10所示。

电路简单实用,直接检测母线电压,如果电压高于程序中的设定值,则做出相应的保护动作。在软件编程的时候采用了查询法,即只有在进行电压检测的程序段中打开A/D,检

测中断标志,然后读数并返回电压值,最后再关A/D,这样不用在整个程序执行过程中一直打开A/D采集模块,从而提高了程序执行的效率。

3.3 欠压保护

欠压:检测直流母线电压,如果低于下限电压值,则发送警告帧,并停止驱动电机,以保护电池。

欠压保护:第一套方案和上面的过压保护过程类似;第二套方案使用了IR2136内部集成的自身工作电源检测器。从IR2136内部原理框图可以看出,当Vcc欠压时,FAULT输出低电平,同时3个上桥臂的MOS管被关断。

4 实验测试

在实验室对设计制成的电路板进行了测试。测试条件为:电机与直流母线电压均为48 V(DC),负载电机为750 W无刷直流电动机,PWM斩波频率为10 kHz。

图11便是用示波器观察到I/V电路的电压信号波形。通过电压信号可以看出,电流信号的波形为方波,同时方波中含有丰富的PWM高次谐波分量,所以在送至单片机的A/D口之前,需要进行信号调理。

图12是调整LPF截至频率为f=1.126 Hz之后,放大8倍的电压波形。在500 mV 下,PWM中点的电压信号纹波很小,符合设计标准。

5 结语

根据本文内容设计并实现的无刷直流电动机保护电路,简单可靠,效果良好,可以为交流调速系统、直线电机控制、开关磁阻、电机控制、USP等的研究提供参考。

无刷直流电机(BLDC)双闭环调速解析

无刷直流电机(BLDC)双闭环调速系统 在无刷直流电机双闭环调速系统中,双闭环分别是指速度闭环和电流闭环。对于PWM 的无刷直流电机控制来说,无论是转速的变化还是由于负载的弯化引起的电枢电流的变化,可控量输出最终只有一个,那就是都必须通过改变PWM的占空比才能实现,因此其速度环和电流环必然为一个串级的系统,其中将速度环做为外环,电流环做为内环。调节过程如下所述:由给定速度减去反馈速度得到一个转速误差,此转速误差经过PID调节器,输出一个值给电流环做给定电流,再由给定电流减去反馈电流得到一个电流误差,此电流误差经过PID 调节器,输出一个值就是占空比。 在速度环和电流环的调节过程中,PID的输出是可以作为任意量纲(即无量纲,用标幺值来表示;标幺值:英文为per unit,简写为pu,是各物理量及参数的相对单位值,是不带量纲的数值)来输入给下一环节或者执行器的,因此无需去管PID输出的量纲,只要是这个输出值反映了给定值和反馈值的差值变化,能够使这个差值无限趋近于零即可,相当于将输出值模糊化,不用去搞的太清楚,如果你要是一直在这里纠结输出值具体是个什么东西时,那么你就会瞎在这里出不来了。假如你要控制一个参数,并且这个参数的大小和你给定量和反馈量有着直接的关系(线性关系或者一阶导数关系或者惯性关系等),那么就可以不做量纲变换。比如速度环的PID之后的输出就可以直接定义为转矩,因为速度过慢就要提高转矩,速度过快就要减小转矩,PID输出量的意义是调整了这个输出量,就可以直接改变你要最终控制的参数,并且这个输出量你是可以直接来控制的,这种情况下PID输出的含义是你可以自己定的,比如直流电机,速度环输出你可以直接定义为转矩,也可以定义为电流,然后适当的调节PID的各个参数,最终可以落到一个你能直接控制的量上,在这里最终的控制量就是占空比的值,当占空比从0%—100%时对应要写入到寄存器里面的值为0—3750时,那么0—3750就是最终的控制量的范围。 在调速控制中,既要满足正常负载时的速度调节,还要满足过负载时进行电流调节。如果单独采用一个调节器时,其调节器的动态参数无法保证两种调节过程同时具有良好的动态品质,因此采用两个调节器,分别调节主要被调量转速和辅助被调量电流,以转速调节器的输出作为电流调节器的输入,电流环是通过电流反馈控制使电机电枢电流线性受控,可达到电机输出力矩的线性控制,并使其动态范围响应快,最后再输出去控制占空比,从而改变MOSFET的导通时间,二者之间实行串级连接,它是直流电力传动最有效的控制方案。 在双闭环调速系统中,输入参数有三个,分别为给定速度和反馈速度以及反馈电流,其中给定速度由用户指定,一般指定为旋转速度(RPM 转/分钟)或直线速度(m/s 米/秒)。而反馈速度和反馈电流则需要由传感器来获取,下面来讲一下在无刷直流电机控制系统中,反馈速度和反馈电流的获取。 反馈速度:简单点的就由电机内用来检测转子位置的三个霍尔元件来得到,高端点的就加光电编码器,分别称为霍尔元件测速和编码脉冲测速。 霍尔元件测速:在电机磁极对数为1的情况下,转子旋转一周的时间内,霍尔传感器输出3路各180度信号,其中每两个传感器之间有60度的交叠信号,只要检测其中一路霍尔传感器的信号宽度就能计算出电机的速度。用输入捕捉(CAP)端口在上升沿捕捉一个时间标签,再在下降沿捕捉一个时间标签,根据两个时间标签的差值得出周期,由于霍尔传感器是在电机内固定不变的,因此每次在霍尔传感器的信号宽度下旋转的角度是一定的(即走过的距离是固定的),最后用此固定的距离除以周期即可得到速度,即T法测速,测量两个信号

较大功率直流电机驱动电路的设计方案

1 引言 直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。 许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。 2 H 桥功率驱动电路的设计 在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。 2.1 H 桥驱动原理 要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

51单片机直流无刷电机控制

基于MCS-51单片机控制直流无刷电动机 学号:3100501044 班级:电气1002 :王辉军

摘要 直流无刷电机是同步电机的一种,由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载围当负载变化时仍可以控制电机转子维持一定的转速。 MCS-51单片机是美国英特尔公司生产的一系列单片机的总称,是一种集成电路芯片,采用超大规模技术把具有数据处理能力的微处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)、输入输出接口电路、定时计算器、串行通信口、脉宽调制电路、A/D转换器等电路集成到一块半导体硅片上,这些电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 本论文将介绍基于MCS-51单片机控制直流无刷电动机的设计,它可以实现控制直流无刷电动机的启动、停止、急停、正反转、加减速等功能。 关键词:单片机,直流无刷电动机,控制系统

直流无刷电动机是在直流电动机的基础之上发展而来的,它是步进电动机的一种,继承了直流电动机的启动转矩大、调速性能好等特点克服了需要换向器的缺点在交通工具、家用电器及中小功率工业市场占有重要的地位。直流无刷电动机不仅在电动自行车、电动摩托车、电动汽车上有着广泛的应用,而且在新一代的空调机、洗衣机、电冰箱、吸尘器,空气净化器等家用电器中也有逐步采用的趋势,尤其是随着微电子技术的发展,直流无刷电动机逐渐占有原来异步电动机变频调速的领域,这就使得直流无刷电动机的应用围越来越广。 本设计就是基于MCS-51系列单片机控制直流无刷电动机,利用所学的知识实现单片机控制直流无刷电动机的启动、停止、急停、正反转,加减速等控制,并对直流无刷电动机运行状态进行监视和报警。详细介绍单片机的种类、结构、功能、适用领域和发展历史、未来前景及其直流无刷电动机的工作原理、控制结构等容,既着重单片机的基本知识、功能原理的深入阐述,又理论联系实际详细剖析单片机控制直流无刷电动机的过程。 1.直流无刷电动机的基本组成 直流无刷电动机是在直流电动机的基础上发展而来的,直流无刷电动机继承了直流电动机启动转矩大、调速性能好的优点,克服了直流电动机需要换向器的缺点,在交通工具、家用电器等生活的方方方面面占有重要的地位。 由于直流无刷电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。 直流无刷电动机主要由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。图3-1所示为三相两极直流无刷电机结构。 三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

直流有刷电机的续流保护电路

本实用新型公开了一种直流有刷电机的续流保护电路,通过独立开启一个续流回路将电流释放回直流有刷电机,基本杜绝了二极管烧毁的可能。本实用新型包含有MCU控制模块,MCU控制模块连接续流保护模块;续流保护模块包括电阻R1、R2、R4,三极管Q2,P-MOS管Q1。本实用新型在直流有刷电机完全停止后,再关闭独立续流回路,因独立续流回路的开启阻很小,所以续流时的发热也非常小,可以较好的解决二极管续流导致的发热及烧管问题。

摘要附图

1、一种直流有刷电机的续流保护电路,包含有:MCU控制模块(11),所述MCU控制模块(11)包含有IC芯片U1、电容C1,其特征在于,所述MCU控制模块(11)连接续流保护模块(16);所述续流保护模块(16)包括电阻R1、R 2、R4,三极管Q2,P-MOS管Q1; 所述MCU控制模块(11)信号控制管脚的PA4管脚经过电阻R4后接到三极管Q2的B极,所述三极管Q2的E极接电源地,所述三极管Q2的C极经过电阻R2、R1后接到直流有刷电机M的正极,所述三极管Q2的C极经过电阻R2后接到P-MOS管Q1的G极,所述P-MOS管Q1的D极接直流有刷电机M的正极,所述P-MOS管Q1的S极接直流有刷电机M的负极。 2、根据权利要求1所述的一种直流有刷电机的续流保护电路,其特征在于,所述P-MOS管Q1与直流有刷电机M之间并联二极管D1,所述二极管D1的负极接直流有刷电机M的正极,所述二极管D1的正极接直流有刷电机M的负极。 3、根据权利要求2所述的一种直流有刷电机的续流保护电路,其特征在于,所述IC芯片U1的VDD1、VDD2、VDDA、VREF+管脚接直流电源Vcc,所述直流电源Vcc经过电容C1后接电源地,所述IC芯片U1的VSS1、VSS2管脚接电源地。 4、根据权利要求2所述的一种直流有刷电机的续流保护电路,其特征在于,所述MCU控制模块(11)信号控制管脚的PA3管脚经过电阻R3后接到P-MOS 管Q3的G极,所述P-MOS管Q3的D极接直流有刷电机M的负极,所述P-MOS 管Q1的S极经过电池群组BATT后接到直流有刷电机M的正极,所述电池群组BATT的正极接直流有刷电机M的正极,所述电池群组BATT的负极接P-MOS管Q1的S极。

第三章无刷直流电动机PWM 控制方案

第三章、用EL-DSPMCKIV实现无刷直流电动机PWM 控制方案 实验概述: 本实验是一个无刷直流电动机的PWM控制系统。结构简单,用到的模块也较少。下面给出每个模块的输入与输出量名称及其量值格式 (一)、无刷直流电动机PWM 控制原理简介 无刷直流电动机从结构上讲更接近永磁同步电动机(我们在下一章节中做详细介绍),控制方法也很简单,主要是通过检测转子的位置传感器给出的转子磁极位置信号来确定励磁的方向,从而保证转矩角在90 度附近变化,保证电机工作的高效率。定子换相是通过转子位置信号来控制,转矩的大小则通过PWM的方法控制有效占空比来调控。 我公司提供过两种直流无刷电机,一种以前提供过的57BL-02直流无刷电机的额定电压为24V,额定转速为1600rpm,转子极数为4,也就是2 极对,还有一种是

现在提供的57BL-0730N1直流无刷电机,该电机额定转速为3000rpm,转子极数为10,也就是5极对,这两种电机的转子位置都由霍尔传感器提供,同时由此计算出电机的转速,控制程序样例没有电流环。 (二)、系统组成方案及功能模块划分 本实验为开环和闭环实验,通过几个模块信号处理最终用BLDCPWM模块产生IPM驱动信号来控制直流无刷电机转动。 下图为一个开环控制的系统功能框图,参考占空比信号经由RMP2CNTL 模块处理,变成缓变信号送到PWM产生模块。霍尔传感器的输出脉冲信号,经由DSP 的CAP1、CAP2、CAP3端口被DSP获取。通过霍尔提供的转子位置信息

HALL3_DRV模块判断转子位置,并将该转子位置信息通过计数器传递给BLDC_3PWM_DRV 模块,该模块通过占空比输入、设定开关频率以及转子的位置信息产生相应的PWM 信号作用于逆变器中的开关管,从而驱动电动机旋转。 (三)、系统测试步骤和方法 进行该系统测试的前提是已经在电脑上安装好CCS3.3版本的软件了,我们提供的软件是在CCS3.3 版本下进行调试的,尤其是我们提供的工作环境wks 文件是在此版本下保存的,在不同的版本下并不兼容,所以建议客户安装CCS3.3 版本,如果非要在CCS 其他版本下运行该套软件,请客户自行建立工作环境wks文件。另外该系统测试的前提也认为是将DSP的USB仿真驱动也已经安装好了。首先将公司提供的光盘根目录下的mckiv文件夹拷贝到电脑E 盘的根目录下,由于TI 公司的CCS 集成软件是有路径记忆功能的,所以最好是拷贝到E盘。 首先按照以下方法连接好控制器和机组: 1. 将控制器背板上的带单芯插头的灰色大地线插到直流有刷电机机组上。 2. 将M002 号电缆的10 芯航空插头连接到控制器的背板上。将另一头4 芯航空插头连接到直流无刷电机的5芯插座上。 3. 将M007号霍尔信号电缆一端的9芯航空插头连接到直流无刷电机的9芯航空插

有刷直流马达驱动电路

有刷直流马达驱动电路MX612 有刷直流马达驱动电路 MX612 概述 该产品为电池供电的玩具、低压或者电池供电的运动控制应用提供了一种集成的有刷直流马达驱动解决方案。电路内部集成了采用N沟和P沟功率MOSFET设计的H桥驱动电路,适合于驱动有刷直流马达或者驱动步进马达的一个绕组。该电路具备较宽的工作电压范围(从2V到10V),最大持续输出电流达到1.2A,最大峰值输出电流达到2.5A。 该驱动电路内置过热保护电路。通过驱动电路的负载电流远大于电路的最大持续电流时,受封装散热能力限制,电路内部芯片的结温将会迅速升高,一旦超过设定值(典型值150℃),内部电路将立即关断输出功率管,切断负载电流,避免温度持续升高造成塑料封装冒烟、起火等安全隐患。内置的温度迟滞电路,确保电路恢复到安全温度后,才允许重新对电路进行控制。 特性 ●低待机电流(小于0.1uA); ●低静态工作电流; ●集成的H桥驱动电路; ●内置防共态导通电路; ●低导通内阻的功率MOSFET管; ●内置带迟滞效应的过热保护电路(TSD); ●抗静电等级:3KV (HBM)。 典型应用 ● 2-6节AA/AAA干电池供电的玩具马达驱动; ● 2-6节镍-氢/镍-镉充电电池供电的玩具马达驱动; ● 1-2节锂电池供电的马达驱动

引脚排列 引脚定义 功能框图

注:D A JA T A表示电路工作的环境温度,θJA为封装的热阻。150℃表示电路的最高工作结温。 (2)、电路功耗的计算方法: P =I2*R 其中P为电路功耗,I为持续输出电流,R为电路的导通内阻。电路功耗P必须小于最大功耗P D (3)、人体模型,100pF电容通过1.5KΩ 电阻放电。 注:(1)、逻辑控制电源VCC与功率电源VDD内部完全独立,可分别供电。当逻辑控制电源VCC掉电之后,电路将进入待机模式。 (2)、持续输出电流测试条件为:电路贴装在PCB上测试,SOP8封装的测试PCB板尺寸为25mm*15mm。

直流电机电压问题及处理方法

直流电机电压问题及处理方法 来源:湘潭电机集团有限公司 https://www.sodocs.net/doc/5711929447.html,/ 直流电机是把机械能转化为直流电压电能的机器。它主要作为直流电动机、电解、电镀、电冶炼、充电及交流发电机的励磁等所需的直流电机。 直流电机堵转时的电压: 直流电机, 时间用MOS管组成H桥驱动直流电机,当堵转时间慢慢增加,MOS管开始冒烟,但是MOS管没有坏,电源电流才1.6A(MOS管电流有10A),为什么MOS管冒烟,是不是直流电机堵转时电压降低、电流增大所致。 电机堵转时的电流当然很大了,这时没有反电动势,而电机线包的直流电阻又不高。不过电源电流小于MOS管的电流肯定不对,二者应该相同,除非后级有开关电源变换电路,那此时的电源电流要测变换后的电流。电机堵转时电压会不会降低, 电源电流是1.6A,电源功率为P=UI=24VX1.6A=38.4W。如果电机堵转时电压会降低,那么流过电机的电流可以根据电机两端的电压算出,电机电流:I1=P/U1,假如电机电压降为12V,那么电机电流为:I1=P/U1=38.4W/12V=3.2A 。电动机堵转时电流很大,两端电压因供电电源内阻的影响会降低,降低多少由电源内阻和电动机直流电阻决定。但堵转持续一段时间,因电动机绕组温度升高,直流电阻变大,两端电压未必越来越低,电流也未必是越来越大。 电压不稳定的解决办法主要有三点: (1)磁极垫片:在直流电机的磁极极靴下垫入良性导磁材料,减小励磁磁场间隙,可以使直流电机在较小的励磁电流时就使输出特性饱和,从而使直流电机的输出电压达到稳定。

(2)在励磁回路的磁场调节电阻两端并联一个合适的阻性负载如白炽灯泡,利用阻性负载在发热后的阻值变得到非线性的电阻特性,使场阻线与励磁特性起始段有较大的交角,得到一个与空载特性曲线明显的交点,从而使直流电机在较低电压时也会有稳定的工作点。 (3)采用发电机自动励磁调节装置:发电机自动励磁调节装置具有良好的励磁特性,具有恒无功、恒功率因数等多种调节方式,对提高系统的稳定和暂态反应能力非常有效,同时能解决因直流电机输出电压不稳及系统电压波动造成的发电机无功摆动问题。 直流电机工作电压比额定电压高: 一台220V直流电机,起动时,整流子打火,开关跳闸.检查供电电压为230V,如果供电电压超过额定电压,也会出现这种情况吗?供电电压应该在什么范围合适呢? 启动电压太高了,因为启动电机时的启动电流本来就很大,所以突然加230V电压直接启动的话,当然会出现火花和跳闸,这很正常。启动后,稳定工作电压为230V的话电机应该没问题,关键是启动时的电流过大,把这解决掉应该可以了。 直流电动机的电压、电流之间的关系: 直流电动机的电压、电流与功率问题,一直是高中物理“电功与电功率”这节内容教学中的难点。因为电动机电路属于非纯电阻电路,欧姆定律并不适用,而学生往往没真真理解欧姆定律的使用条件,常常也用欧姆定律来解直流电动机的电压、电流与功率问题,导致这类题目错误率很高。接下来笔者结合自己的实践经验来谈谈对这部分内容的教学体会。 直流电动机是根据通电线圈在磁场中转动的原理制成的,其线圈的等效电路如图1所示(即可等效为一个定值电阻与一个无阻值的理想线圈串联而成)。当给电动机通上电,线圈在磁

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

直流无刷电机实验

直流无刷电机实验 一.实验目的 1.了解直流无刷电机的运行原理 2.掌握直流无刷电机的DSP控制。 二.实验内容 1.实现无刷直流电机的正反转控制 2.实现无刷的速度调节 3.实现无刷直流电机电流环和速度环双环闭环控制 三.原理简介 1.直流无刷电机的原理 无刷直流电动机的结构原理图如图2-1所示: 图1 直流无刷电动机的结构原理图 无刷直流电动机主要由电动机本体、位置传感器和电子开关电路三部分组成。电动机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。图1中的电动机本体为三相两极,三相定子绕组分别与电子开关线路中相应的功率开关器件联接,在图1中A相、B相、C相绕组分别与功率开关管V1、V2、V3相接。位置传感器的跟踪转子与电动机转轴相联接[2]。 定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换

向作用。 所以,所谓直流无刷电动机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电动机以及位量传感器三者组成的“电动机系统”。其原理框图如图2所示。 图2 直流无刷电动机的原理框图 2. 直流无刷电机的控制 直流无刷电机的控制基本上类似于直流有刷电机的控制(PWM 调制),但由于无刷直流电机用电子换向器取代了机械电刷,所以无刷直流电机除了在控制各相电枢电流的同时还用对电子换向器进行控制。在无刷直流电机的运行过程中,霍尔位置传感器不断检测电机当前位置,控制器根据当前位置信息来判断下一个电子换向器的导通时序。如图3所示 H1 H3 ANC BNC BNA CNA H2 CNB ANB A Z X C y W B u V 旋转方向 反向 图1 电子换向器的工作原理 图中H1、H2和H3分别表示霍尔位置传感器的信号,H1的有效期为X 轴到u 轴

直流电机控制电路集锦

直流电机控制电路集锦 直流电机的类型 按:直流电机在家用电器、电子仪器设备、电子玩具、录相机及各种自动控制中都有广泛的应用。但对它的使用和控制,很多读者还不熟悉,而且其技术资料亦难于查找。直流电机控制电路集锦,将使读者“得来全不费功夫”! 在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。大家熟悉的录音机、电唱机、录相机、电子计算机等,都不能缺少直流电机。所以直流电机的控制是一门很实用的技术。本文将详细介绍各种直流电机的控制技术。 站长的几句说明:本文内容比较详实完整,但遗憾的是原稿的印刷质量和绘图的确很差,尽管采取了很多措施,有些图仍可能看不太清楚。 直流电机,大体上可分为四类: 第一类为有几相绕组的步进电机。这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。 步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。例如常用的SAAl027或SAAl024专用步进电机控制电路。 步进电机广泛用于需要角度转动精确计量的地方。例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。 第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。当外加额定直流电压时,转速几乎相等。这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。 第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。例如测速电机,它的输出正比于电机的速度;或者齿轮盒驱动电位器机构,它的输出正比于电位器移动的位置.当这类电机与适当的功率控制反馈环配合时,它的速度可以与外部振荡器频率精确锁定,或与外部位移控制旋钮进行锁定。 唱机或激光唱机的转盘常用伺服电机。天线转动系统,遥控模型飞机和舰船也都要用到伺服电机。 最后一类为两相低电压交流电机。这类电机通常是直流电源供给一个低频振荡器,然后再用低频低压的交流去驱动电机。这类电机偶尔也用在转盘驱动机构中。 步进电机的基本工作原理

无刷直流电机驱动电路 dsp

基于 DSP 的无刷直流电机控制系统的设计
2010-1-13 22:24:00 来源:
摘 要:介绍了以高性能 TMS320F2812 DSP 芯片为核心的无刷直流电机控制系统的设 计和实现,主要包括系统硬件电路的主要构成,电机的控制策略及软件结构。 实验 表明,该系统结构简单紧凑,控制精度高,具有良好的静态和动态性能。 关键词:无刷直流电机;TMS320F2812;控制系统 Design of Control System of Brushless DC Motor Based on DSP WANG Chen-yang, ZHANG Qi, XIONG Jiu-long Abstract: The design and implementation of brushless DC motor control system based on high performance DSP TMS320F2812 is introduced in this paper, it is made up of three aspects, the main structure of system hardware, the strategy of motor controlling and software structure。 Experimental results show that the system has a simple and compact structure,high control precision and good dynamic and static characteristics. Key Words:brushless DC motor;TMS320F2812;control system 1. 引言 无刷直流电机利用电子换向器取代了传统直流电机中的机械电刷和机械换向器, 因此不仅保留了直流电动机运行效率高和调速性能好等优点, 又具有交流电动机的结 构简单、运行可靠、维护方便等优点。由于不受机械换向限制,易于做到大容量、高 转速,目前在航天、军工、数控、冶金、医疗器械等领域已得到大量应用。 TMSF2812 DSP 是 TI 公司新推出的基于 TMS320C2xx 内核的定点数字信号处理器。器件上集成了 多种先进的外设,具有灵活、可靠的控制和通信模块,完全可以采用单芯片实现电机 控制系统的控制和通信功能,使得电机控制系统简单化、模块化,为电机及其他运动 控制领域应用的实现提供了良好的平台。 本文设计和实现了基于 TI 公司 TMS320F2812 DSP 芯片的无刷直流电机控制系统,整个系统结构紧凑,功能完善。 2. 系统硬件设计 系统的硬件框图如图 1 所示,可以看出基本上包括一个以 TMS320F2812 DSP 为核 心的 DSP 控制板,一块配套的功率驱动板和一台无刷直流电机。

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

无刷直流电机的保护电路

无刷直流电机的保护电路 摘要:为了使无刷直流电机长期稳定运行,采用加保护电路的方法使其正常工作,保护电路主要由欠压保护、过流保护、短路保护等组成,在软件里设置电压、电流的阈值,直接对电压、电流进行检测并产生相应的保护,以免对电路和电机造成损害,并且做了相应的欠压、过压、过流测试实验。实践应用表明,该设计的几种方案切实可行,能够在异常情况下及时对电机做出保护动作。 关键词:无刷直流电机;欠压保护;过压保护;过流保护 0 引言 电机广泛应用于人们的生产、生活及科研等各个领域,因此各种类型的电机保护装置应运而生,如欠压保护、过压保护及过流保护等。这些保护装置相互独立,不仅安装麻烦,总体生产成本高,而且在电机正常运行过程中,还要消耗一定的电能,造成能源浪费。其实,上述保护装置,归根到底都是预防电机因自身过热而烧毁。本文给出几种电机的保护方案,它不仅响应速度快,控制可靠,而且大大地降低了保护装置的生产成本。该保护电路与传统的保护电路相比,省去了热继电器、交流接触器等保护装置的能耗,与电机为一体。经测试验证,效果良好。 1 电流检测原理 要实现过流保护,首要的任务是检测电机的电流。通常有2种检测电流的方法: (1)小阻值无感采样电阻。通常采用康铜丝或者贴片件,这是一种廉价的方案,但是要注意采样电阻阻值的选取,功率要足够大,同时电阻的电感要小,以排除感抗在电阻两端引起的电压降。 (2)霍尔电流传感器。适合驱动开发,采用LEM公司的LA28-NP霍尔电流传感器的电流测量,它的优点是精度高,可靠性高。 在电流采样的位置上也有2种方法可以选择: (1)相电流采样。将采样电阻或者霍尔电流传感器置于每一相,假设三相电流分别为ia,ib和ic,又因为无刷电机的三相电流有如下关系:ia+ib+ic=0,所以只要检测出无刷电机中两相电流就可以得到另一相的电流信息。 (2)母线电流采样。一般是将采样电阻或者电力传感器置于母线负侧进行电流采样。 下面介绍一种基于LEM霍尔电流传感器采样母线电流的方法,该方法精度高,可靠性高。 将霍尔传感器LA28置于母线负侧到地之间进行电流检测,LA28将检测到的初级电流按1 000:1的比例进行缩小,得到次级电流,次级电流经过I/V电路之后转化为方便A /D(模/数转换模块)采集的电压量,但是I/V输出的电压信号含有丰富的PWM斩波的高次谐波分量,所以如果直接送单片机的A/D口,会检测不到电压信息,因此需要加信号调理电路,即将I/V电路得到的电压送入巴特沃思(Butterworth)二阶低通滤波器进行低通滤波。经过低通滤波之后可以将高次谐波分量滤除,进而得到直流分量,同时为了便于A /D口采集,将滤波后的小电压信号进行比例放大,之后送入A/D口进行检测。这个硬件电路示意图如图1所示。

堵转电动机

作为堵转电机,其特性是以电流控制其扭矩,当线路出现线性降压或者触点接触不良时,扭矩会随之下降,此时,用万能表检查电路或电机,没有任何异常,但是,扭矩就是不够,此时应检查线路或更换线路,并检查交流接触器和触点。一般情况下,电机不会有太大问题。线性降压,是指线路在使用过程中,线路老化,或触点接触不良,而使电流在传送过程中出现电流下降。一般直流电源遇到较多。在不负载情况下,电流传送正常,负载起动会出现电流下降或死机。此时应考虑电流下降问题。 电缆卷筒装置 JDO系列长期堵转力矩电动机式电缆卷筒,可传输动力电源、控制电源或控制信号、视频信号。该系列电缆卷筒属于独立系统,与设备大车行走部分的机械、传动电气控制系统不发生联系。所以用户可根据设备与现场的情况,自行选择安装位置。长期堵转力矩电动机式电缆卷筒是目前卷绕装置中,结构最简单的理想卷绕设备。 1. 型号说明 2. 使用环境 允许户外工作,周围环境温度-40~45℃。 3. 分类 按卷盘容量分:50、150、300、650、1250、1500、﹥2000(kg) 按传输电压分:

高压:3KV、6KV、10KV 低压:380V、220V 按用途分:动力卷筒、控制或通讯用卷筒、及其它专用电缆卷筒。 4. JDO-系列电缆卷筒参数表 JDO-系列电缆卷筒参数表

(表内卷盘容缆量及电缆截面尺寸系典型应用值,故仅供选型参考)根据用户需要,可设计,生产不同于上述表格所列的其它卷筒。(如视频信号卷筒、无动力电缆卷筒、输水、油、气体用软管卷筒、光纤通讯用卷筒等。)用户要求卷绕速度大于表列0~30 m/min时,可为用户单独设计生产高卷绕速度的电缆卷筒。 5. 订货须知 订货时请按下述表格提供技术参数。 电缆卷筒选型参数表

一种无刷直流电机电流高精度采样及保护电路的设计

一种无刷直流电机电流高精度采样及保护电路的设计 关键字:无刷直流电机电流采样保护电路TL431 传感器 在无刷直流电机控制系统中,电流采样及保护电路作为其中的一个反馈环节,作用是对电机运行时的电流进行实时检测采集,经过处理后,把电流信号转换为控制系统可以识别的小电压信号,让控制系统可以做出相应的控制和保护动作。由于电机电流是交流电流,因此电流采样及保护电路需要具备整流功能,普通整流电路的核心元件是具有单向导电性能的二极管,通常使用1个、2个或4个二极管组成半波、全波或者桥式整流电路。但二极管在小信号时表现为非线性,这将使整流的波形产生失真(小信号部分),更为严重的是,二极管存在死区电压,在输人信号小于死区电压时,二极管并未导通,因此使输出信号产生严重畸变,引起误差,小信号时这种误差将不可忽略。为了提高精度,文中利用集成运放的放大作用和深度负反馈产生的特性来克服二极管的非线性造成的误差,为某型号无刷直流电机设计了一种可靠性高、精度高的采样保护电路。 1 高精度半波整流电路 整流电路是把正、负交变的电压转换为单极性电压的电路。本文的半波高精度整流电路是在比例放大电路中加入二极管,利用二极管的单向导电性实现正副两半周内引入不同深度的负反馈。按这种思路构成的半波高精度整流电路如图1所示。 图1 半波高精度整流电路 在ui>0期间(0~t1、t2~t3)。当ui还很小时,D1和D2均截止,运放处于开环状态,开环放大倍数很大。因此ui只需稍大,就会使u0'足够大,且为正值。只要u0'大于0.7 V,就会使D1导通,而D2截止(a点为零电位),因此D1和Rf串联引入了适度的负反馈,这时的 电路相当于反相比例放大电路,因此输出为。输出u0与输入ui成比例关系,u0与波形-ui的形状相同,但按一定的比例放大或者缩小了,若R1=Rf,则u0=-ui。由以上 分析可知,即使输入电压ui小于二极管的起始导通电压,仍有输出。 在ui<0期间(t1~t2)。当|ui|还很小时,D1和D2均为导通,这时运算放大器处于开环状态,其开环放大倍数很大,因此|ui|只需稍大一些,运放输出u0’就会很大,且为负值,这使二极

相关主题