搜档网
当前位置:搜档网 › 飞机驾驶舱操纵装置布局优化

飞机驾驶舱操纵装置布局优化

飞机驾驶舱操纵装置布局优化
飞机驾驶舱操纵装置布局优化

飞机驾驶舱操纵装置布局优化

白 穆 庄达民

(上海飞机设计研究所,北京航空航天大学大型飞机高级人才培训班)

摘要:针对我国即将开展的大飞机开发与研制,对飞机驾驶舱内操纵装置优化布局开展了研究探讨。首先,确定研究对象为具备中国运输机飞行员关键尺寸特点的人体模型,并采用5中国男性飞行员人体尺寸GJ B4856-20036作为该人体模型尺寸数据依据。从工效角度评测人体可操纵部件的布置最大可达范围及手的舒适操纵范围;依据上述操纵范围原则,采用计算机图形学软件和人机工效软件J ACK 对驾驶舱布局中操纵装置布局进行相关性配置及工效分析验证,分别从不同百分位驾驶员的手的操纵可达域和第50百分位驾驶员当操纵部件处于中立位置时的腰椎受力分析探讨了操纵装置布局的合理性;利用人体简易力学模型对驾驶员处于操纵中立位置时的腰椎受力进行了计算,得到操纵布置布局仍具备合理性的结果。

关键词:驾驶舱;操纵装置;布局;J ACK;腰椎受力

0 引言

飞机驾驶舱是飞机驾驶员工作的地方,同时也是整架飞机的核心。如何在满足工作要求的前提下减轻驾驶员的疲劳度和提高工效是人机工程重点关注的内容。

在设计经验匮乏的条件下,座舱布局等的计算仿真将成为一种实用和有效的手段,以达到使操纵作业满足高效、安全和舒适等要求的目的。应用计算机辅助设计进行作业域的设计与评价,可以在设计初期进行工效学分析,提高设计的效率,及时发现并纠正错误,缩短设计周期和降低研制费用等。

1 基于J ACK 的操纵部件布局分析

/中国男性飞行员人体尺寸0

[1]

规定了中国男

性飞行员人体尺寸数据,适用于与中国男性飞行员人体尺寸数据有关的飞机座舱、座椅、舱室布局等空间和尺寸的设计。参照5中国男性飞行员人体尺寸GJB4856)20036中运输机飞行员第5、50、95百分位人体尺寸数据建立了我国民用客机飞行员人体模型。创建人体模型如图1所示,并在今后的研究中以此人体尺寸模型为驾驶舱操纵装置布局工效评价研究对象。

操纵装置一般指飞机的操纵杆、油门杆和脚踏。驾驶员通过操纵装置来控制和操纵飞机,将操纵杆、油门杆处于手可触及的范围和脚踏处于足运动范围内是先决条件,因此明确手、足的可达域对布置操纵

装置显得尤为重要。

图1 Jack 中国人体模型

手可达域是以肩关节为转心、手为端点的半椭球面,旋转部件为包括上臂、前臂和手的连接结构,受到人体自身条件的限制,各部件相对转动角度处

于特定范围内,形成的可达域是近似、不规则的。X 向最大距离为800mm;Y 向最大距离为1140mm;Z 向最大距离为1300mm 。以座椅底面与靠背相交线中心点作为座椅中立位置参考点(0,0,0),绘制不同高度各水平面可达域,如图2所示。各个不同高度的操作部件布置应满足处于该高度可达域曲线范围内,例如距离座椅参考点30c m 的可达域曲线近似轨迹公式为:

x =-0.0169y 2

+0.6616y +52.3401

=-0.0169(y -19.57)2+58.8152

(1)

152

民用飞机设计与研究

C ivil A ircraft Design and R esearch

图2 手可达域

足可达域与舒适域如图3所示,舒适域包含于可达域内。布置脚踏操纵装置时以足舒适域为优先选择范围,距座椅中立位置参考点Z 向-30~-40c m 、X

向50~75c m 的区域内。图3中外侧曲线为足可达域,布置脚踏的最大范围。

图3 足可达域与舒适域

基于上述原则,对驾驶舱进行简易布局,其几何布局尺寸数据如图4所示,并标明了驾驶员模型与舱室模型的匹配尺寸。参考5亚音速飞机设计总论6[2]

初定风挡与水平视线的夹角为41.4b ;眼位点到仪表板上边缘连线与水平视线的夹角为18.8b 。座椅中心线间距100c m;油门杆与座椅中立位置参考点相对坐标为(30,-30,25);操纵杆与座椅中立位置参考点相对坐标为(30,47,25);座椅中心线距脚蹬中心线间距67c m;前视仪表板与水平线夹角75b 。油门杆与操纵杆的中立位置x 坐标参考了对军用飞机侧杆布局的研究

[3]

再次从可达域角度出发验证上述操纵装置的布局。上述的油门杆和操纵杆布置范围都在手操纵可达域内;脚踏处于足舒适域与可达域之间区域,符合要求。针对操纵装置布局,J ACK 软件还使用腰椎受力分析来检验座舱布局对驾驶员作业疲劳影响。当第50百分位的驾驶员在操纵中立位置时,/Jack Low B ack Analysis 0功能由驾驶员身高和体重得出驾驶员腰椎L 4/L 5受力值为525N,小于N I O S H 腰椎受力的警戒值3400N,符合要求。

2 基于简易人体力学模型的受力分析

[4]

针对J AC K 的受力分析,通过建立驾驶员上肢力学模型,对腰椎L 4/L 5受力进行验证。工作姿势下驾驶员上肢简化模型如图5所示。

将上肢简化为手、前臂、上臂、头和躯干五个部分,质量集中于质心上(同时假定手臂上没有操纵

力)。图5中,A 、B 、C 、D 、E 、F 、G 分别代表肩点、肘点、腕点、躯干质心点、颈椎点、腰点、

掌心点。

图4 驾驶员与操纵部件匹配关系

153

白 穆等:飞机驾驶舱操纵装置布局优化

图5驾驶员上肢简化模型

设手掌到腰椎L

4/L

5

的x向距离为L

1

;前臂质

心到腰椎L4/L5的x向距离为L2;上臂质心到腰椎L4/L5的x向距离为L3;头质心到腰椎L4/L5的x向距离为L4;躯干质心到腰椎L4/L5的x向距离为L5。则

L1=B1x1+L2+(1-B2)x2

L2=B2x2+L3+(1-B3)x3

L3=B3x3+L4

L4=-(l4-l)@sin A

L5=-((1-B5)@l5-l)@sin A

(2)

式(2)中,B1为手质心相对位置系数,取0.366; B2为前臂质心相对位置系数,取0.478;B3为上臂质心相对位置系数,取0.424;B5为躯干质心相对位置系数,取0.52[5];A为椅背角,取15b;x1为手长l1在x方向的投影,取手长长度;x2为前臂长在x方向的投影;x3为上臂长在x方向上的投影。即

x2=l2si n A4co s A3

tan A1

tan2A1+tan2A2

+

l2cos A4sin A2cos A1

cos A2

x3=l3sin A2cos A1

cos A2

(3)

式(2)和(3)中:l为腰点到会阴点的长度,取24c m;l1为手长度,取18.6c m;l2为前臂长度,取25.3c m;l3为上臂长度,取25.5c m;l4为斜椅背长度,取48.5c m;l5为躯干长度,取61c m;

A1、A2分别为上臂绕x、y轴旋转的角度,取42b (21b)、27.5b(12b);A3为上臂自转角度,取22b(5.4b); A4为前臂绕上臂转动的角度,取83b(90b)。

因绕腰椎L4/L5y轴的合力矩为0,所以:

F my#X b=E i

G i L i(4)

式(4)中,F my为背肌力,即竖背肌所施的力; X b为竖背肌距脊柱的距离,取5c m;G1(G1)为右(左)手重量;G2(G2)为右(左)前臂重量;G3 (G3)为右(左)上臂重量;G4为头颈重量;G5为躯干重量。驾驶员质量为71kg。人体各环节的相对质量分布如表1所示[6]。

表1人体各环节相对质量分布表环节名称相对质量(%)环节名称相对质量(%)头颈8.62前臂1.25

躯干42.60手0.64

上臂2.43

当驾驶员处于操作中立位置时,将各项参数代入式(4),可求出F my,进一步由力平衡E F=0,即E F x=0,E F y=0,E F z=0可得: tan A Q=

F my sin A

0.5644G+F my cos A

(5)

F ry=F my

si n A

sin A Q

(6)

F r yc=F ry cos(A-A Q)(7)

F r y s=F r y sin(A-A Q)(8)

求得F ry为602N,F r y c为597N。式(6)~(8)中,F r y为骶骨颈部腰椎间盘基底部在L4/L5处的反作用力,该力的施力者是骶骨,受力者是脊柱。F ryc 为F r y沿背脊方向的受力;F r y s为F r y垂直背脊方向的受力。

使用简易人体力学模型算出的L

4

/L

5

处的反作用力满足小于3400N的要求,但与J A CK的受力分析值525N相比有一定差距。这是因为在简易力学模型的受力分析中使用到人体各肢体段的质心参数,这是我国目前正在开展的一项人体测量基础研究,所得参数是对40名男子的测量数据,故有一定的局限性。另一方面,人体质心参数与民族、性别及体形有明显的相关,J ACK力学分析结果是不透明的,所采用的力学计算参数是基于美国人的数据,这些都导致了两者存在计算误差原因。

3结论

国外采用了J ACK等人机工效评价软件进行工效分析,本文亦采用J ACK进行了操纵装置布局分析。由于J AC K具有和各种图形软件兼容特点,以

154民用飞机设计与研究2009年增刊

及其本身具有的多种工效分析工具确定了其具有较高的应用价值,采用J ACK进行飞机操纵装置布局分析是可行的。基于J AC K工效分析工具的不透明性,提出了人体简易力学模型对腰椎受力进行验证。现阶段提出的人体简易力学模型在质心确定等方面还需进一步完善。本文开展的上述工作将为中国大飞机驾驶舱几何布局设计提供参考。

参考文献:

[1]G J B4856-2003.中国男性飞行员人体尺寸[S].北京:中国人民解放军总装备部标准,2003.[2]托伦贝克,埃.亚音速飞机设计总论[M].北京:航空航天工业部民用飞机系统工程司,1990.

[3]王睿,庄达民.基于动力学模型的飞行员舒适操作域研究[J].计算机仿真.2006.23(8):26-29.

[4]王生,李莉,刘家驹.坐位作业工人腰部负荷的生物力学分析[J].中华卫生职业病杂志,1994,12(1):29-31.

[5]肖惠,滑东红,郑秀媛.中国成年人人体质心的研究[J].人类工效学.1998.4(3):4-11.

[6]GB/T17245-2004,成年人人体惯性参数[S].北京:中国人民共和国国家标准,2004.

[7]许军,陶开山.人体工程学概论[M].北京:中国纺织出版社,2002.

155

白穆等:飞机驾驶舱操纵装置布局优化

飞机起落架设计(中英文对照)

Aircraft Landing Gear Layouts 飞机起落架设计(中英文对照图) 发布人:圣才学习网发布日期:2010-06-25 14:36 共292人浏览[大] [中] [小] Most aircraft today have three landing gear. 许多现代飞机使用三点式起落架。 Two main landing gear struts located near the middle of the aircraft usually support about 90% of the plane’s we ight while a smaller nose strut supports the rest. 重心附近的两个大的主轮,承担约90% 的重量,小轮子承担余下部分。 This layout is most often referred to as the "tricycle" landing gear arrangement.However,there are numerous other designs that have also been used over the years,and each has its own advantages and disadvantages.Let’s take a closer look at the various undercarriage options available to engineers. 目前的飞机以前三点起落架为主,让我们来回顾一下后三点起落架及其优缺点。(意译) Tail wheel or Tail dragger Gear 后三点尾轮式与后三点尾橇式起落架 Though the tricycle arrangement may be most popular today,that was not always the case.The tail wheel undercarriage dominated aircraft design for the first four decades of flight and is still widely used on many small piston-engine planes. 虽然前三点起落架比较普遍,但是在几十年前的飞机,及当今的许多小型飞机是使用后三点起落架的。 The taildragger arrangement consists of two main gear units located near the center of gravity (CG)that support the majority of the plane’s weight. 后三点起落架,由两个在重心靠前位置的主轮支持大部分的飞机重量。 A much smaller support is also located at the rear of the fuselage such that the plane appears to drag its tail,hence the name. 一个非常小的尾轮装置在机身,看上去这个小轮子是被拖着走,所以,英文Taildragger 也因此而得名。 This tail unit is usually a very small wheel but could even be a skid on a very simple design.它即可以是一个小尾轮,也可以是一个尾橇。

737NG飞机驾驶舱面板介绍 2

驾驶舱培训资料驾驶舱主要面板介绍 Cockpit Panel Arrangement Forward Overhead Panel

Flight Control Panel

1.飞控主电门A、B:位臵ON、OFF、STBYRUD ON:由系统液压给副翼、方向舵、升降舵、升降舵感觉计算机供压 OFF:断开液压,关闭飞控关断活门 STBYRUD:断开液压,备用泵工作,备用方向舵关断活门打开,给备用方向舵PCU增压 飞控低压灯: 当飞控主电门A、B位臵在ON:灯灭,监视系统液压;当压力小于1300PSI时灯亮,大于1600PSI时灯灭 当飞控主电门A、B位臵在STBYRUD:低压灯成为备用方向舵关断活门的位臵灯,当备用方向舵关断活门完全打开时,低压灯灭STANDBYHYD低液压油量灯:油量小于50% STANDBYHYD低压灯:当压力小于1300PSI时灯亮,大于1600PSI时灯灭 2.飞行扰流板电门A、B:位臵ON、OFF ON:由系统液压供压至飞行扰流板PCU OFF:关闭飞行扰流板关断活门 3.YAWDAMPER电门:位臵ON、OFF ON:偏航阻尼器接通方向舵PCU 4.YAWDAMPER灯:偏航阻尼器系统脱开,灯亮 5.备用襟翼预位电门:位臵OFF、ARM 6.备用襟翼控制电门:位臵DOWN、OFF、UP

DOWN:LEFLAPSOV打开,备用泵将前缘装臵全伸出,电马达将TEFLAP放出 UP:电马达将TEFLAP收上 OFF:可随时停止电马达的操作 备用EMDP自动打开方式: 1)飞控电门A、B都在ON位 2)系统压力小于1300PSI 3)在空中或轮速大于60节 4)FLAP NOT UP 此时主警戒灯和FLTCONT灯亮 备用人工打开方式 1)任一个飞控主电门A、B在STBYRUD 2)备用襟翼在ARM位 7.FEELDIFFDRESS灯: 在升降舵感觉计算机内,A和B系统的计量压力存在的压差大于25%且后缘襟翼收上时灯亮; 8.SPEEDTRIMFAIL灯:FCCs的速度配平功能不可用,该灯常亮 9. MACHTRIMFAIL灯:FCCs的马赫配平功能不可用 10. AUTOSLATFAIL灯:AUTOSLAT功能失效 (P2)偏航阻尼器指示器:用来指示方向舵偏航阻尼器的运动,不表示飞行员方向舵脚蹬的输入信号 Fueling / Defueling / Measurement

建筑结构优化设计

建筑结构优化设计 发表时间:2016-03-28T16:11:12.903Z 来源:《基层建设》2015年23期供稿作者:陈火涛吕金钊罗森陈钰璐陈湧填[导读] 华南农业大学水利与土木工程学院广东广州 510642 当然除此之外还有一些构造上及概念上的优化措施,将在概念设计,高层剪力墙结构与高层混凝土结构的优化设计中重点论述。 陈火涛吕金钊罗森陈钰璐陈湧填 华南农业大学水利与土木工程学院广东广州 510642 摘要:对建筑结构优化设计理论进行了概述,并重点介绍了基于可靠度理论的工程结构优化设计,概念设计在结构优化设计中应用,高层混凝土结构的优化设计以及高层剪力墙结构的优化设计四个方面,为结构的优化设计提供参考依据。关键词:结构设计;优化;应用 结构优化设计的任务,就是以数学规划为基础,将力学的概念、理论和近似方法和数学规划方法结合,转化成数学问题,建立数学模型,选择计算方法,运用计算机在多种可行性设计中,选择出相对而言属于最优的设计方案,达到兼顾经济性,安全性,舒适性的目的。其步骤可分为设计变量,建立目标函数,确定约束条件,经过计算分析得出优化的计算结果。[1]当然除此之外还有一些构造上及概念上的优化措施,将在概念设计,高层剪力墙结构与高层混凝土结构的优化设计中重点论述。 1.基于可靠度理论的结构优化设计 结构的可靠度指结构在设计的基准期内能够承受施工过程中以及正常使用期间的各种外加荷载和变形,有较好的工作性能,耐久性满足正常使用要求,在偶遇灾害如地震,海啸,爆炸等发生时保持必要的整体稳定性。[2] 从工程结构的可靠度理论角度分析,传统的结构优化设计存在以下几点不足:①传统的结构优化并没有完全反映体现结构的可靠性,也没有定量描述可靠度理论,得出的最优结构并不能确保结构具有足够的可靠性。②由于结构构件的尺寸和材料的性能参数具有随机不确定性,而传统结构优化设计并没有考虑这些因素因此并不能反映参数不确定性这一特点。基于以上分析论述,结构的可靠度要求考虑进工程结构优化设计的数学模型中,文献[3]给出了基于可靠度约束的结构优化算例,在结构可靠度分析基础上进行结构优化设计,实现经济合理的设计方案。 2.概念设计在结构优化设计中应用 概念设计,即在建筑物施工前,设计人员考虑建造地周围的地理环境、文化环境与社会环境等,提出相应的建筑结构设计方案,优化建筑结构设计,以期达到进一步融合周围环境与社会环境的目的。概念设计有效弥补理论性设计与计算性设计的不足,使结构设计方案更科学合理;进行抗震设计时概念设计能在降低地震作用效应的同时提高建筑工程的质量和安全性;科学合理的概念设计拓展了建筑物的结构设计思路,增强工程质量、安全性及工程造价。[4] 2.1应用概念设计可在多个建筑结构施工方案中择优而用。 概念设计使得建筑结构施工方案具有合理性、实用性和经济性,这要求设计人员在优化建筑结构时,充分考虑建筑物建成后的目的、抵抗外界环境的能力需要、施工条件、施工材料等因素,从而制定并选取科学合理、全面系统的建筑结构施工方案。 2.2概念设计中应用抵抗自然灾害的能力设计。 概念设计应与时俱进、因地制宜,如考虑抗震能力设计、防火能力设计、抗击风荷载能力设计等,充分考虑现代建筑结构需要适应的社会环境与自然环境,在建筑结构满足工程施工要求的同时,优化结构,使工程中各个构件环环相扣,增强建筑工程的安全性。 3.高层剪力墙结构的优化设计 剪力墙结构体系由于整体性好,侧向刚度大,抗震性能优越,且由于没有梁柱的外露突出,结构层平整,利于房间布置,因而被广泛应用于高层住宅性建筑中。对该结构体系进行优化需考虑钢筋混泥土用量大造价高,剪力墙中墙肢轴压比偏低的承载力发挥不充分,采用构造配筋的墙体延性低等常见问题,[5]如何对剪力墙结构体系进行优化,使其既发挥其抗侧能力强等优点,又降低工程造价,现就以下几方面进行论述。 3.1强周边,弱中部。剪力墙应尽量布置在结构周边,中部减少剪力墙的布置量,以提高结构的抗扭刚度,控制结构的周期比与位移比。另外,剪力墙宜沿主轴方向或其他方向双向布置,避免单向布置,并宜使两个受力方向的抗侧刚度接近。 3.2多均匀长墙,少短墙。选择对结构承受水平及竖直向荷载有利的隔墙位置布置剪力墙,尽量设置为长墙,以充分发挥剪力墙的作用。在较长的剪力墙宜开设门窗洞口,上下对齐、成列布置,形成明确的墙肢和连梁,将其分成长度较均匀的若干墙段,墙段之间宜采用弱连梁连接。 3.3剪力墙应自下到上连续布置,允许沿高度改变墙厚和混凝土强度等级,或减少部分墙肢,使侧向高度沿高度逐渐减小。这样一方面可以避免刚度突变,另一方面可以减轻自重,降低工程造价。 3.4尽量采用普通剪力墙和使墙肢长度较长,并且两端与翼墙相连,减少小墙肢和短肢墙的数量。应尽量减小墙肢长度的差异,使各片剪力墙分配的地震作用力均匀。这样发挥了剪力墙的抗侧移刚度,在满足规范层间位移角限值的情况下,减少剪力墙的数量;同时减少了开洞的数量和其两端边缘约束构件的数量从而减小暗柱的构造配筋面积,使得工程造价降低。 4.高层混凝土结构的优化设计 高层建筑的特点是建筑结构需同时承受水平和竖向的荷载作用。混凝土是高层建筑设计中的重要考虑因素。在进行结构设计时要充分考虑各种因素,确保结构的强度,刚度和延性均处于合理范围,高层混凝土结构的优化设计具体措施有以下几个方面。 4.1合理使用高强砼和高强钢筋 强砼和高强钢筋高优化构件截面尺寸的合理使用,可以减轻地基的承载量和高层建筑自重,从而减小超高层受地震破坏的程度。还减低施工单位的成本,使经效益最大化。 4.2布局优化 高层建筑宜使结构平面形状简单、规则,适合刚度和承载力分布均匀的结构单元。 4.3 抗震结构的优化

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

飞机起落架的设计分析

[键入公司名称] [键入文档标题] [键入文档副标题] [键入作者姓名] 姓名:龙玉 起落架的结构,布置型式,疲劳强度研究,动力学研究,设计与分析

目录 一.引言……………………………………………………………………………………………………………………………..2二.起落架结构概述…………………………………………………………………………. .2 1.结构 (2) ①.承力支柱、减震器 (2) ②.收放系统 (2) { ③.机轮和刹车系统 (2) ④.转弯系统 (2) 2.布置型式 (3) ①.前三点式起落架 (3) ②.后三点式起落架 (3) ③.自行车式起落架 (3) ④.多支柱式起落架 (3) '

3.结构分类 (4) 三.起落架研究现状与发展趋势 (4) (一). 疲劳破坏的相似规律…………………………………………………………………………………………. 5 1.疲劳强度的统计估算 法………………………………………………………………………………………………………… (5) 2.起落架结构材料疲劳破坏相似规律的研 究 (5) (二). 起落架动力学的分析方法 (6) & (三). 起落架设 计………………………………………………………………………………………… (6) 1.主起落架长度与防翻角的关 系 (6) 2.主起落架长度与尾座角的关 系 (6) 3.主起落架长度与侧翻角的关 系 (6) (四). 发展趋 势………………………………………………………………………………………… (8) ^ 四.总结 (8) 五.参考文

献 (8) / 飞机起落架的设计分析 一.引言 起落架是航空器下部用于起飞降落以及滑行时支撑航空器并用于移动的附件装置。起落架是唯一一种支撑整架飞机的部件,因此它是飞机不可分缺的一部份;随着飞行器设计和制造技术的发展,起落架也在不断的改进和创新之中。 在二战以前,由于飞机的飞行速度较低,所以当时的起落架在飞机飞行的时候也可以暴露在外面,这样对飞行性能的影响不太大,所用的技术要求不高。但二战后随着科技的井喷式的发展,飞机的飞行速度大幅度提高。速度的不断提升引起以致到超音速的阶段,由此伴随着的空气阻力也随之增大。为减小空气阻力,人们便设计出了可收放的起落架。尽管起可以收放的起落架加大了飞机的重量,但从整体来说这大大促进了飞机的飞行的进步。 二.起落架结构概述 1.结构 为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括 ①.承力支柱、减震器(常用承力支柱作为减震器外筒):减震器即为飞行器在着陆或在不平坦的跑到上运动时用来消减飞机摇摆震动的结构以防止飞机颠簸。当减震器受撞击压缩时,空气的作用相当于弹簧,贮存能量。 、

建筑结构优化设计

建筑结构优化设计 摘要:建筑项目投资大,建设周期长,对其进行结构优化设计能够有效的减少投资金额。建筑结构优化设计,是实现建筑本体功能与建筑投资成本的关键手段。因此,结构工程师必须在每一个工程项目的设计中都能做到不断地探求自然法则,不懈地追求相对的最佳最优,要通过反思比较,在经验积累中不断提高自己的判断力和创新力。 一、建筑结构优化设计 1、建筑结构优化设计的基本理论 结构优化设计不应仅仅在结构本身,而应包括建筑的各方面,科学地确定建筑结构优化设计几项基本原则并有效地按照这些基本原则去进行建筑结构设计,是非常重要的。建筑结构的优化设计主要体现在建筑工程的决策阶段、设计阶段、建设阶段。在建筑工程的决策阶段,确定结构优化设计所要达到的总体目标,满足本体功能,最大程度保障安全性,缩减投资成本:在建筑工程的设计阶段,确定每一个子系统及整体结构的优化布局;在建筑工程的建设阶段,以结构优化设计为建设原则,组织建设好每一个子系统从而实现整体结构优化布局。决策阶段结构优化选择是关键,设计阶段结构优化设计是核心,建设阶段结构优化建设是基础,3个阶段互相验证、互为补充、缺一不可。 2、建筑结构优化设计的基本要求 (1)功能性 建筑是人类的基础物质生存环境,建筑结构优化的终极目标就是

为了满足人类对物质生存环境的最大化需求。对功能性的满足也不再局限于传统的实用性功能,而是增添了舒适性、美观性、协调性等多种新元素,满足人类对基础物质生存环境的更高要求。 (2)安全性 建筑作为人类生存的基础生存环境,与人类的生产、生活紧密相关,安全性成为建筑结构优化设计的必然考虑因素。一味追求建筑结构的优化设计,忽略决策阶段、设计阶段、建设阶段的安全性,其作为建筑不但没有任何实际意义,反而会给人类正常生产和生活带来致命的危害。因此,安全性是结构优化设计中的必然考虑因素。 (3)经济性 建筑结构优化设计的经济性是市场经济条件下对资源配置提出的新要求。经济性是指通过建筑结构的优化设计,最大化的节约各种材料资源,达到减少建设成本的目标。另外,各种材料资源都存在一定的稀缺特性,建筑结构的优化设计能科学合理的减少材料的使用量,节省建设材料使用成本。 二、建筑结构优化设计基本原则 1、提高建筑舒适度原则 所谓好的建筑,应是从建筑、结构、装饰装修到给排水、暖通、空调、燃气、电气安装等各专业的优化设计组合,是整体优化设计,如果仅仅是某个专业设计得好,是不可能被称作是一个好建筑的,结构设计也不能例外的;建筑结构设计要能最大程度地满足建筑平面布置、内部空间高度和建筑立面等使用功能和外形观感的要求,投入使

飞机前起落架驱动系统设计与性能分析

飞机前起落架驱动系统设计与性能分析 陈炎 南京航空航天大学,南京 210000 摘要:本文以大型民机起落架液压系统为研究对象,结合具体设计要求,采用电力传动技术,设计了一套起落架收放系统的新型驱动系统。本系统还利用一套双余度电控应急方案取代了传统的钢索滑轮应急放机构,并针对其蜗轮蜗杆传动机构进行了初步设计。最后在https://www.sodocs.net/doc/57191091.html,b和https://www.sodocs.net/doc/57191091.html,b软件平台上分别建立起落架收放机构及其控制系统的联合仿真模型,并分别对系统在正常收放和应急放模式下的性能进行仿真分析,初步实现了飞机收放系统的机电液一体化仿真。通过本文的研究工作,可以为飞机起落架液压系统的改进提供了一些有价值的经验和结论,为进一步的优化设计和试验工作奠定了的基础,对我国飞机起落架相关设计工作提供了技术支持。 关键词:民机起落架、系统设计、Virtual Lab Motion、Amesim、联合仿真 0前言 起落架系统在飞机滑跑起飞、着陆时支撑飞行器重量、承受着当飞机与地面接触时产生的静、动载荷、吸收和消耗飞机在着陆撞击、跑道滑行等地面运动时所产生的能量,在减缓飞机发生振动,降低飞机地面载荷,提高乘员舒适性,保证飞机飞行安全等方面发挥着极其重要的作用,是飞机设计过程中的重要环节。传统的飞机起落架设计中一般采用液压驱动装置。液压系统具有技术成熟、输出功率大、动态响应好、定位精度高的优点,但是由于液压系统采用了集中式液压源,飞机全身布满液压管路、造成其易泄露、易污染、易燃、结构复杂、重量大等问题,同时为了维持输出,液压系统需要工作在连续模式下,这使得其利用率很低,由此可见液压系统的可靠性问题成为了整个飞机系统中的薄弱环节之一,致使飞机不得不采用多余度作动系统,这又带来了重量、体积增加等新的问题。 近些年来,随着“功率电传”系统的不断发展,国外提出了“多电或者全电”驱动的设计思路。利用多电/全电技术,广泛采用电力作动器和功率电传技术,可以取代飞机上机械传动、气压、液压和润滑系统,从而大大减少飞机的重量和复杂性,可使飞机的可靠性、维修性、效率、生存能力和灵活性大为改善,同时由于燃油消耗量的减少、飞机出勤率的提高,可明显节省飞行成本。 目前,用于飞行控制、环境控制、刹车、燃油和发动机启动系统的电力作动系统已得到验证,国外也已经开始对飞机起落架驱动系统进行研究,他们预测用新型电力作动系统取代原来的液压系统将显着提高起落架系统的可靠性。可以说起落架驱动系统全电化的实现,无论对我国民用还是军用飞机性能的提高都具有重要的意义,是未来飞机起落架系统发展的新趋势。 本文以我国大型民机为设计背景,以多电/全电飞机为设计思想,针对飞机起落架驱动系统开展分析、设计和仿真工作,初步形成一套集机电一体化设计、仿真、分析流程。 1驱动系统方案设计 1.1起落架驱动系统设计要求 飞机前起落架驱动系统的主要作用是实现起落架的收放和转弯功能。传统的前起落架驱动系统是通过集中液压源进行驱动的,但随着目前飞机向全电/多电化方向发展的趋势,飞机内不再设有集中液压源,所以原有的液压系统就需要重新设计。以起落架收放系统为例,其设计要求如下: 飞机起落架收放系统的主要作用是在飞机起飞离地后,将起落架及起落架舱门收起并上锁,在飞机着陆前,打开舱门控制起落架放下并上锁,是飞机中的关键系统之一。同时,收放系统在起落架收起过程中,能控制起落架及相关部件(如舱门)按顺序开、关。 飞机前起落架收放系统的具体设计要求是:

结构优化设计是在满足规范要求

结构优化设计是在满足规范要求、保证结构安全和建筑产品品质的前提下,通过合理的结构布置、科学的计算论证、适度的构造措施,充分发挥材料性能、合理节约造价的设计方法。结构优化设计在当前竞争日益激烈的建筑设计市场成为大势所趋。如何在满足建筑功能的前提下,保证结构安全并控制含钢量成为摆在结构设计工程师面前的现实课题。本文总结了以往的设计经验,参考了相关文献,给出了结构优化设计的步骤和一些具体措施,供设计人员参考。 1结构优化设计的步骤 笔者认为,结构优化设计的合理步骤应该是:①在方案阶段,通过与建筑专业的充分沟通,对建筑的平面布置、立面造型、柱网布置等提出合理的建议和要求,使结构的高度、复杂程度、不规则程度均控制在合理范围内,避免抗震审查,为降低含钢量争取主动权;②在初步设计阶段,通过对结构体系、结构布置、建筑材料、设计参数、基础型式等内容的多方案技术经济性比较,选出最优方案,整体控制含钢量;③在具体计算过程中,通过精确的荷载计算、细致的模型调整,使结构达到最优受力状态,进一步降低用钢量;④在施工图阶段通过精细的配筋设计抠出多余钢筋,彻底降低含钢量。 在进行多方案的技术经济性比较时,应综合考虑材料费、模板费、基坑开挖降水支护费用、措施费、施工难易、工期长短等因素,与甲方协商后择优选用。 2结构体系与布置优化 结构体系和布置对造价影响很大,应予重视。 1)应根据建筑布置、高度和使用功能要求选择经济合理的结构体系。比如,异形柱框架比普通框架用钢量大,在可能的情况下尽量采用前者;短肢剪力墙比普通剪力墙含钢量高,在可能的情况下尽量采用后者。 2)应选择比较规则的平面方案和立面方案。尽量避免平面凸凹不规则或楼板开大洞,控制平面长宽比,合理设缝,使结构刚度中心与质量中心尽量靠近。竖向应避免有过大的外挑或内收,同时注意限制薄弱层、跃层、转换层等不利因素,使侧向刚度和水平承载力沿高度尽量均匀平缓变化。 3)应选择合理、均匀的柱网尺寸,使板、梁、柱、墙的受力合理,从而降低构件的用钢量。柱网大则楼盖用钢量大,柱网小则柱子用钢量增大,应根据建筑实际情况和经验合理布置。例如,住宅中小开间结构中墙柱的作用不能得到充分发挥,过多的墙柱还会导致较大的地震作用,可考虑采用大开间结构体系,既节约造价,又便于建筑灵活布置。 4)应选择经济合理的楼盖体系。楼盖质量大,层数多,占整体造价比重高,对楼盖的类型、构件的尺寸、数量、间距等应进行对比分析,选择最优的方案。一般住宅宜采用现浇梁板楼盖,预应力楼盖的预应力钢筋容易被二次装修破坏,井字梁楼盖影响室内美观,均不推荐。办公楼等大空间结构宜采用十字梁、井字梁、预应力梁板方案。双向板比单向板经济,应多做双向板。板的厚度,双向板宜控制在短跨的1/35,单向板宜控制在短跨的1/30,此时板易满足强度和变形要求,经济性好。 5)剪力墙结构的优化空间很大,应下大力气优化。剪力墙的布置宜规则、均匀、对称,以控制结构扭转变形。在满足规范和计算的前提下应尽量减少墙的数量,限制墙肢长度,控制连梁刚度,剪力墙能落地的就全部落地不做框支转换层,平面能布置成大开问的尽量布置成大开间,墙体的厚度满足构造要求和轴压比的要求即可。连梁刚度太大时可通过梁中开水平缝变成双梁、增大跨高比等措施降低连梁刚度。尽量少用短肢剪力墙,限制“一”字墙,少做转换。 6)降低含钢量的小技巧:①楼电梯间不宣布置在房屋端部或转角处。因其空间刚度较小,设在端部对抗扭不利,设在转角处应力集中。②框架结构层刚度较弱时,加大柱尺寸或梁高都可显著增大层刚度,而提高混凝土强度效果不明显。③柱的截面尺寸,多层宜2层~3层

飞机驾驶舱操纵装置布局优化

飞机驾驶舱操纵装置布局优化 白 穆 庄达民 (上海飞机设计研究所,北京航空航天大学大型飞机高级人才培训班) 摘要:针对我国即将开展的大飞机开发与研制,对飞机驾驶舱内操纵装置优化布局开展了研究探讨。首先,确定研究对象为具备中国运输机飞行员关键尺寸特点的人体模型,并采用5中国男性飞行员人体尺寸GJ B4856-20036作为该人体模型尺寸数据依据。从工效角度评测人体可操纵部件的布置最大可达范围及手的舒适操纵范围;依据上述操纵范围原则,采用计算机图形学软件和人机工效软件J ACK 对驾驶舱布局中操纵装置布局进行相关性配置及工效分析验证,分别从不同百分位驾驶员的手的操纵可达域和第50百分位驾驶员当操纵部件处于中立位置时的腰椎受力分析探讨了操纵装置布局的合理性;利用人体简易力学模型对驾驶员处于操纵中立位置时的腰椎受力进行了计算,得到操纵布置布局仍具备合理性的结果。 关键词:驾驶舱;操纵装置;布局;J ACK;腰椎受力 0 引言 飞机驾驶舱是飞机驾驶员工作的地方,同时也是整架飞机的核心。如何在满足工作要求的前提下减轻驾驶员的疲劳度和提高工效是人机工程重点关注的内容。 在设计经验匮乏的条件下,座舱布局等的计算仿真将成为一种实用和有效的手段,以达到使操纵作业满足高效、安全和舒适等要求的目的。应用计算机辅助设计进行作业域的设计与评价,可以在设计初期进行工效学分析,提高设计的效率,及时发现并纠正错误,缩短设计周期和降低研制费用等。 1 基于J ACK 的操纵部件布局分析 /中国男性飞行员人体尺寸0 [1] 规定了中国男 性飞行员人体尺寸数据,适用于与中国男性飞行员人体尺寸数据有关的飞机座舱、座椅、舱室布局等空间和尺寸的设计。参照5中国男性飞行员人体尺寸GJB4856)20036中运输机飞行员第5、50、95百分位人体尺寸数据建立了我国民用客机飞行员人体模型。创建人体模型如图1所示,并在今后的研究中以此人体尺寸模型为驾驶舱操纵装置布局工效评价研究对象。 操纵装置一般指飞机的操纵杆、油门杆和脚踏。驾驶员通过操纵装置来控制和操纵飞机,将操纵杆、油门杆处于手可触及的范围和脚踏处于足运动范围内是先决条件,因此明确手、足的可达域对布置操纵 装置显得尤为重要。 图1 Jack 中国人体模型 手可达域是以肩关节为转心、手为端点的半椭球面,旋转部件为包括上臂、前臂和手的连接结构,受到人体自身条件的限制,各部件相对转动角度处 于特定范围内,形成的可达域是近似、不规则的。X 向最大距离为800mm;Y 向最大距离为1140mm;Z 向最大距离为1300mm 。以座椅底面与靠背相交线中心点作为座椅中立位置参考点(0,0,0),绘制不同高度各水平面可达域,如图2所示。各个不同高度的操作部件布置应满足处于该高度可达域曲线范围内,例如距离座椅参考点30c m 的可达域曲线近似轨迹公式为: x =-0.0169y 2 +0.6616y +52.3401 =-0.0169(y -19.57)2+58.8152 (1) 152 民用飞机设计与研究 C ivil A ircraft Design and R esearch

基层服务设施布局及服务范围规划2018-2030-北海规划局

北海市中心城区 基层服务设施布局及服务范围规划 (2018-2030) 第一章总则 一、规划背景 1、国家关于推进社区建设的要求 2000 年民政部《关于在全国推进社区建设的意见》,大力推行社区建设。在全国范围内积极推进城市社区建设。 2017 年 6 月,中共中央、国务院发布《关于加强和完善城乡社区治理的意见》,提出要大力推进公共服务体系建设,推进社区就业服务、社会保障服务、救助服务、社区卫生服务、社区文化体育服务、社区安全服务等方面提高社区服务供给能力。 2、自治区层面:《关于开展“美丽广西·宜居城市”建设活动的实施意见》 2016 年 8 月发布,该意见提出要把全区城市逐步建设成为面向东盟的绿色生态、开放创新、活力迸发、管理高效、桂风壮韵鲜明的现代化宜居城市的建设目标。 并提出构建社区“15 分钟生活圈”,增强增强生活舒适性,加强文化教育设施、商业设施、休闲绿道建设。并完善公共服务配套性,加大卫生、养老、文体、教育等配套服务设施建设力度,确保公共产品和公共服务质量良好、数量充足。 3、北海市层面:建设宜居城市的需要 随着北海市城市化率的不断提高,城乡发展一体化进程不断加快,推动了城市空间的扩展,对城市基层管理水平的要求日益提高,现行的基层配套设施建设落后,已不适应现代化城市发展。

为了建设宜居城市、满足城市快速扩张的居住配套设施要求。 二、规划范围、规划期限 1、规划范围 规划范围为《北海市城市总体规划(2013-2030)》确定的中心城区范围。城市建设用地160 平方公里,规划区服务总人口远期 145 万人。 2、规划期限 城市总体规划期限一致,为2018—2030年。其中: 近期:2018—2020年; 远期:2021至2030年。 三、规划目的 1、优化北海市中心城区的基层社区服务范围。 加快城市化,城乡一体化,优化生产要素配置,促进区域经济发展,加强和改进社区组织、制度和设施建设,建立健全社区工作机制,进一步强化社区自治和社区管理服务功能促进和谐社区建设。 2、衔接北海市城市总体规划,为下一步控规编制提供依据。 提升社区服务能力、提高居民文明素质,提升居民生活品质,促进社区和谐,满足日益增长的社区生活需求,合理配置各项社区公共服务设施。 3、促进宜居城市建设,打造便捷的城市生活。 按照打造15分钟生活圈的理念,落实完善相关的社区公共服务配套设施。 4、为北海市社区服务中心的布局和建设提供科学指导和依据。 为了科学合理编制规划,并为北海市社区服务设施的布局和建设提供科学指导和依据。 四、规划依据 1、《中华人民共和国城乡规划法》(2015修编) 2、《城市规划编制办法》(2006年4月); 3、《城市居住区规划设计标准》(GB50180-2018); 4、《城市公共设施规划规范》(GB 50442-2008); 5、《行政区划管理条例》 6、《中华人民共和国地方各级人民代表大会和地方各级人民政府组织法》(2004)

歼七起落架故障分析

长沙航空职业技术学院毕业设计(论文) 歼七飞机起落架收放系统故障分析 系别航空装备维修工程系 专业飞机附件维修 姓名 班级 指导老师 及职称李向新 二〇一一年××月×××日 长沙航空职业技术学院

毕业设计(论文)任务书

毕业设计(论文)任务书 (2) 摘要................................. 错误!未定义书签。第1章歼七飞机前起落架自动收起的故障研究错误!未定义书签。 1.1起落架收放控制原理分析 ....................... 错误!未定义书签。 1.2起落架自动收起原因分析 ......................... 错误!未定义书签。 1.2.1电液换向阀性能不良 .............................. 错误!未定义书签。 1.2.2系统不完整,回油路堵死 ...................... 错误!未定义书签。 1.3 故障验证 .................................................... 错误!未定义书签。 1.4 维修对策 .................................................... 错误!未定义书签。第2章数据符合规定前起落架为何放不下错误!未定义书签。 2.1地面检查和模拟试验情况 ......................... 错误!未定义书签。 2.2原因分析 ..................................................... 错误!未定义书签。 2.3 结论............................................................. 错误!未定义书签。 第3章总结 (3) 参考文献............................... 错误!未定义书签。致谢错误!未定义书签。

项目名称新型加速度传感器结构布局优化设计技术研究

项目名称:新型加速度传感器结构布局优化设计技术研究 所属单位:长沙理工大学汽机学院 新型加速度传感器结构布局优化设计技术研究 团队名称:梦路创业团队 所属高校:长沙理工大学 团队介绍 梦路创业团队是来自理工大学汽车与机械工程学院的专业创业团队,现拥有研究生6人,博士1人,博士生导师1人,个人情况见附表1。创业团队不怕吃苦,敢于拼搏,相信在不久的将来,我们会用自己的双手实现自己的创业梦想。 负责人简历 冯斌,男,1983年10生,中共党员,长沙理工大学汽机学院汽机学院07级载运工具运用工程专业研究生。06年于长沙理工大学测控技术与仪器专业毕业,后工作于湖南九天科技有限公司从事汽车仪器仪表开发。本科期间,努力学习,多次受到学校及湖南省奖励;在公司期间,研发团队获得公司明星团队称号。进入研究生阶段,参与国家863项目两项,申请获得湖南省“大学生创新性实验项目”课题一项,目前在研。 指导老师简历 荣见华, 男, 1963年7月生, 湖南岳阳人, 博士, 教授, 汽车与机械工程学院副院长。1989年3月进入中国飞机强度研究所工作。1992年10月-2000年7月担任中国飞机结构强度研究所振动研究室副主任, 1998年6月晋升研究员,2005年转评为教授。长期从事飞机振动结构动力学设计、结构分析与优化设计、考虑多约束的机翼/外挂系统颤振优化设计等理论、算法和应用研究工作, 参与了歼八三、歼十等型号飞机的研制工作。~年,作为访问学者,在澳大利亚墨尔本皇家理工大学、维多利亚理工大学从事考虑动力学要求的结构形状、拓扑的渐进结构优化的研究工作。主持与参加的多项部级预研项目均取得重大成果,作为主要参加者获国家科技进步二等奖一项。作为主持人获部级科技进步二等奖一项。2000年调入长沙理工大学,主要开展结构拓扑优化与静、动力学性能控制的研究工作。近年来,作为主持人和主要参加者完成了国家自然科学基金二项, 并主持完成了省部级重点研究项目二项。主持开发了一套SVDS-I型优化软件系统。在国内外期刊上发表论文共计53篇,其中二十一篇被SCI和EI收录。专着一本、合编着一本。在本课题中总体负责。

人因工程学在飞机驾驶舱空间布局设计中的应用

人因工程学在飞机驾驶舱空间布局设计中 的应用 摘要:本文在回顾现有驾驶舱设计中人因工程学主要研究方法的基础上,着重探讨了飞机驾驶舱空间布局设计中人因工程设计原则的具体应用,并对这些设计方法的优劣进行对比和评价,最后提出设计中需要注意的若干问题。 关键词:人因工程学;研究方法;空间布局设计 The application of Human Factors Engineering in the cockpit space layout design Abstuction: Based on reviewing the existing primary research method of Human Factors Engineering on the cockpit designing, this article discussed the Human Factors Engineering principle and it’s specific using of aircraft cockpit space layout design, and evaluate the superiority of comparison, finally puts forward some problems need to be taken attention. Keys: Human Factors Engineering; research method; space layout design 1 引言 根据台湾工效学学会的定义,人因工程是指“了解人的能力与限制,以应用于工具、机器、系统、工作方法和环境之设计,使人能在安全舒适及合乎人性的状况下,发挥最大工作效率和使用效能,并提高生产力及使用者的满意度的学科领域。”已有的研究表明,人因工程学在增进系统安全,提高人员满意度,和提高系统绩效等方面能发挥很大的作用[1]。 人因学最初的研究范围比较狭小,只涉及军事、工业领域人—机界面交互的一些问题,目前的研究范围已得以扩大,与人类工效学、工程心理学及认知工程学等学科有着紧密的联系,并在核工业、汽车设计、风险评估、航空领域等都产生了广泛的影响。

飞机起落架结构优化设计及制造加工

2011 年春季学期研究生课程考核 起落架结构优化设计及制造加工 关键词:起落架设计改进制造技术 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、T艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。 1.1 缓冲支柱优化设计 飞机着陆蕈量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2部分零(组)件结构重新设计 对起落架的部分零(组)件结构重新进行设计,改善了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起落架斜撑杆的协调承载能力,减少结构不 圈1圆角方形截面油针 Fig.1 Square section pin with round comer 协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结 构如图2、图3所示。 图2刚性斜撑杆(原结构) Fig.2 Rigid batter brace(original structure)

谈结构优化设计的一些经验

谈结构优化设计的一些经验 结构优化设计是在满足规范要求、保证结构安全和建筑产品品质的前提下,通过合理的结构布置、科学的计算论证、适度的构造措施,充分发挥材料性能、合理节约造价的设计方法。结构优化设计在当前竞争日益激烈的建筑设计市场成为大势所趋。如何在满足建筑功能的前提下,保证结构安全并控制含钢量成为摆在结构设计工程师面前的现实课题。本文总结了以往的设计经验,参考了相关文献,给出了结构优化设计的步骤和一些具体措施,供设计人员参考。 1结构优化设计的步骤 笔者认为,结构优化设计的合理步骤应该是:①在方案阶段,通过与建筑专业的充分沟通,对建筑的平面布置、立面造型、柱网布置等提出合理的建议和要求,使结构的高度、复杂程度、不规则程度均控制在合理范围内,避免抗震审查,为降低含钢量争取主动权;②在初步设计阶段,通过对结构体系、结构布置、建筑材料、设计参数、基础型式等内容的多方案技术经济性比较,选出最优方案,整体控制含钢量; ③在具体计算过程中,通过精确的荷载计算、细致的模型调整,使结构达到最优受力状态,进一步降低用钢量;④在施

工图阶段通过精细的配筋设计抠出多余钢筋,彻底降低含钢量。 在进行多方案的技术经济性比较时,应综合考虑材料费、模板费、基坑开挖降水支护费用、措施费、施工难易、工期长短等因素,与甲方协商后择优选用。 2结构体系与布置优化 结构体系和布置对造价影响很大,应予重视。 1)应根据建筑布置、高度和使用功能要求选择经济合理的结构体系。比如,异形柱框架比普通框架用钢量大,在可能的情况下尽量采用前者;短肢剪力墙比普通剪力墙含钢量高,在可能的情况下尽量采用后者。 2)应选择比较规则的平面方案和立面方案。尽量避免平面凸凹不规则或楼板开大洞,控制平面长宽比,合理设缝,使结构刚度中心与质量中心尽量靠近。竖向应避免有过大的外挑或内收,同时注意限制薄弱层、跃层、转换层等不利因素,使侧向刚度和水平承载力沿高度尽量均匀平缓变化。

相关主题