搜档网
当前位置:搜档网 › 浙江赐富化纤集团有限公司国产化PTA生产工艺技术

浙江赐富化纤集团有限公司国产化PTA生产工艺技术

浙江赐富化纤集团有限公司国产化PTA生产工艺技术
浙江赐富化纤集团有限公司国产化PTA生产工艺技术

绍兴企业项目需求汇总

各家PTA工艺技术对比评析

各家PTA工艺技术对比评析 精对苯二甲酸(purified terephthalic acid 简称PTA)是生产聚酯的重要原料,对苯二甲酸是无色针状结晶或无定型粉末(外观为白色粉末),无毒、有刺激性,粉尘具有爆炸性,在常温下与空气混合达到一定质量浓度时会发生爆炸,其最低爆炸浓度为0.05克/升。分子量166.13,密度1.510克/厘米3,比热0.2873卡/克·度,升华热23.5千卡/克分子,熔点(在封管中)425℃,升华点402℃,能溶于碱溶液,稍溶于热乙醇,微溶于水。 我国聚酯工业的超速成长,极大地刺激了PTA投资的快速增长,从而加快了PTA项目的工艺引进,上述成果也不同程度地在新建或改建的PTA装置中得到了应用。我国从20世纪70年代中期开始引进PTA生产装置,目前已形成相当的生产规模。但我国PTA装置建设的关键技术仍然依靠进口,基础研究薄弱,能耗水平与国际先进水平比较还有相当大的差距。我国PTA装置的生产规模已经与国际接轨,在大型化方面取得了长足的进展,但在工艺优化方面,特别是基础研究方面仍然有待开发。下面将各家PTA生产工艺技术进行对比,来分析各个工艺的优缺点。

工艺技术 各专利商都拥有工业化生产PTA的专利技术,拥有近期采用最新技术的专利工厂,并生产出合格的PTA产品。都采用回收氧化反应副产蒸汽和反应尾气用于空压机驱动等节能措施,并将尾气用于中间产品CTA和成品PTA输送。 溶剂回收:多数厂家为共沸蒸馏,优于常压蒸馏,筛板塔逐渐改为填料塔。 催化剂回收:工艺技术(二)的回收技术较简单,其他几家公司流程较复杂。 精制母液回收:工艺技术(六)无精制母液回收,脱盐水消耗量大, PTA损失量大,其他几家都有。 工艺条件 氧化反应温度、压力趋于降低。工艺技术(一)(二) (三) (五) (六)为高温氧化工艺,工艺技术(四)为中温氧化工艺。高温氧化反应温度曾先后采用230 ℃→209 ℃→196 ℃→191 ℃;中温186 ℃。高低温氧化温度相差约50 ℃,压力相差约0. 6 MPa,主要为减少副反应,降低原料消耗。不同的氧化反应温度,相应的反应压力、催化剂配比及反应器型式均有所不同。 设备配置 空压机:高温、中温工艺均可采用"空压机+蒸汽轮机+尾气膨胀机+电机",正常生产时,电机用来发电。 氧化反应器:高温工艺均为单台带搅拌反应釜;中温为塔式反应器,底部带搅拌、顶部带精馏段;中温工艺氧化反应器产能较小。 氧化反应器进料罐: 2000年之后引进的技术,大多采用静态混合器,取消进料混合罐。 CTA结晶:采用1段或3段结晶。5种高温氧化工艺均采用3段结晶;中温氧化工艺仅采用1 段结晶,粒径较小。 分离及干燥: CTA均采用RVF 1道分离; PTA均采用2道分离,干燥机为列管式。 产品品质指标 各工艺技术产品品质指标没有大的差异,产品品质相近。 物耗能耗 各工艺技术均注重节能及环保。氧化反应副产蒸汽用于蒸汽轮机和脱水塔再沸器;精制结晶闪蒸蒸汽用于浆料预热;凝液闪蒸蒸汽用于预热或伴热;氧化尾气用于尾气膨胀机驱动空压机和CTA /PTA 输送;增加氧化母液循环率,减少催化剂损失,减少除盐水消耗。

PTA装置概况与流程说明

一、装置概况 (一)概况 本装置是以对二甲苯为原料生产纤维级精对苯二甲酸的成套装置,简称精对苯二甲酸(PTA)装置。PTA为精对苯二甲酸的英文名称Purified Terephthalic Acid的缩写。 本装置是成套引进装置,合同情况如下: 合同号:CGD—78416 签字日期:1978年12月22日 生效日期:1979年1月22日 承包商:西德法兰克福/(梅因)鲁奇矿物油技术 专利商:美国标准油公司(印第安那)的阿莫柯化学公司 生产规模:年产45万吨精对苯二甲酸 价格:设备材料及技术服务费305,495,200DM 专利费19,466,667US$ 工程投资61105.46万元 本装置产品主要作为聚酯原料,与仪征化纤公司同期向西德吉玛公司引进的54万吨/年聚酯装置相配套。由于1981年国民经济调整,装置一度停缓建,1983年11月我方与卖方签订了《修改合同协议书》,延续合同关系至1985年10月。1985年6月装置正式动工兴建,并于89年9月试车一次成功。1995年PTA装置逐步实施改造至1997年形成了60万吨/年的规模并达标。2012年3月,新一轮的PTA节能改造项目正式开工。 PTA装置由精对苯二甲酸生产装置区、公用区及灰浆沉降区三部分组成。生产装置区包括中央控制室、总降变配电站、贮罐区、脱离子水生产系统、氢氮压缩及贮存系统等设施。公用区包括循环冷却水系统、设备维修站、综合维修站、化学品仓库、压缩空气站、堆场等。装置占地总面积17.9万平方米。 PTA装置共引进设备1202台,工艺管道22.4万米,引进仪表9568台(件),调节控制回路630余套。PTA60万吨改造时,改造和新增设备290台件,增加工艺配管2万米,阀门700台,铺设电缆50000米,增加仪表调节回路100条,电气设备200台。经改造后仪表控制系统全部改为DCS控制。新一轮的PTA节能改造项目,改造和新增设备122台(套),增加工艺配管16263米,阀门1407台,铺设电缆、光缆125610米,增加仪表设备757台。 (二) 生产规模 本装置原设计生产能力为年产PTA45万吨,年开工时间为7884小时,每小时产量为57吨,

化纤工艺

化纤工艺 一、定义和分类 1、定义 纤维:可供纺织加工的一类细长而柔韧的材料。 化学纤维:以天然或合成高聚物为原料,经化学和机械加工而成的纤维 2、分类 1)异形截面纤维:在合成纤维成型过程中,采用异形喷丝孔(非圆形孔眼)纺制的具有非圆形横截面的纤维或中空纤维,这种纤维称为异形截面纤维,简称异形纤维。 异形纤维具有特殊的光泽,并且具有蓬松性、耐污性和抗起球性,纤维回弹性与覆盖性也可得到改善。如三角形横截面的涤纶具有闪光性;五叶形横截面涤纶有类似真丝的光泽、抗起球、手感和覆盖性好;某些中空纤维还具有特殊用途,如制作反渗透膜,用于人工肾脏、海水淡化、污水处理、硬水软化等。 2)复合纤维:在纤维横截面上存在两种或两种以上不相混合的聚合物,这种化学纤维称为复合纤维,或称双组分纤维。 复合纤维的品种很多,有并列型、皮芯型、海岛型和裂离型等。 3)变形纱:变形纱包括所有经过变形加工的丝和纱,如弹力丝和膨体纱都属于变形纱。 弹力丝即变形长丝,可分高弹丝和低弹丝两种。弹力丝伸缩性、蓬松性好,其织物在厚

度、重量、不透明性、覆盖性和外观特征等方面接近毛织品、丝织品或棉织品。涤纶弹力丝多数用于衣着,锦纶弹力丝宜于制造袜子,丙纶弹力丝则多数用于家用织物及地毯。 其变形方法主要有假捻法、空气喷射法、热气流喷射法、填塞箱法和赋型法等。 膨体纱是利用高聚物的热可塑性,将两种收缩性能不同的合成纤维毛条按比例混合,经热处理后,高收缩性的毛条迫使低收缩性的毛条卷曲,从而使其具有伸缩性和蓬松性、类似毛线的变形纱。以腈纶膨体纱产量为最大,用于制作针织外衣、内衣、毛线、毛毯等。 二、化纤生产过程 高聚物的提纯和聚合化学纤维是由高聚物制造而成的。此高聚物可直接取自自然界, 也可由低分子物经人工合成而得。 再生纤维是以天然高聚物为原料,经化学方法而制成。它与原高聚物在化学构成上基本相同。对于天然高聚物来说,这需要提纯以去除杂质。如制造粘胶纤维的高聚物是纤维素,它是从绵绒、木材、芦苇、甘蔗渣等纤维素原料中将纤维素提纯出来,制成浆粕,然后再用浆粕制造纤维。 合成纤维的高聚物是利用煤、石油、天然气、农副产品等制得的低分子化合物(单体)为原料,经过化学加聚或缩聚而得到的。最后将高聚物经过加工得到的合成纤维。所以,合成纤维常由其高聚物的单体,并在单全前加“聚”来命名。 纺丝流体的制备成纤高聚物在纺丝前必须用一定的方法制纺丝流体。目前,常采用的方法有熔体法和熔液法。 熔体法是将成纤高聚物加热到熔点以上而成为熔体。它适用于分解点高于熔点的高聚物。 或成纤高聚物的分解点低于熔点,则必须采用熔洲法,此法是用适当的溶剂将成纤高聚物溶解成具有一定粘度的纺丝流体。 在实际的工业生产中,纺丝熔体的制备主要有两种方法:一是直接将聚合所得到的高聚特熔体送去纺丝,这种方法称为直接纺丝;另一种是将聚合得到的高聚物熔体经铸带、切粒等工序制成“切片”,然后在纺丝机上重新熔融成熔体并进行纺丝,这种方法称为切片纺丝。 溶液纺丝液的制备例如聚丙烯腈液的制备,也有两种方法。一是直接利用聚合后得到的高聚物溶液作为纺丝原液,这称为一步法;二是先制成颗粒状或粉末状的成纤高聚物,然后再深解,以获得纺丝液,这种方法称为二步法。为了使纺丝流体具有均匀和良好的纺丝性能,

各家PTA工艺技术对比

各家PTA工艺技术对比评析 【更新时间:2010-11-6 13:20:44 文章录入:中国PTA行业网站】 前言 精对苯二甲酸(purified terephthalic acid简称PTA)是生产聚酯的重要原料,对苯二甲酸是无色针状结晶或无定型粉末(外观为白色粉末),无毒、有刺激性,粉尘具有爆炸性,在常温下与空气混合达到一定质量浓度时会发生爆炸,其最低爆炸浓度为0.05克/升。分子量166.13,密度1.510克/厘米3,比热0.2873卡/克·度,升华热23.5千卡/克分子,熔点(在封管中)425℃,升华点402℃,能溶于碱溶液,稍溶于热乙醇,微溶于水。 我国聚酯工业的超速成长,极大地刺激了PTA投资的快速增长,从而加快了PTA项目的工艺引进,上述成果也不同程度地在新建或改建的PTA装置中得到了应用。我国从20世纪70年代中期开始引进PTA 生产装置,目前已形成相当的生产规模。但我国PTA装置建设的关键技术仍然依靠进口,基础研究薄弱,能耗水平与国际先进水平比较还有相当大的差距。我国PTA装置的生产规模已经与国际接轨,在大型化方面取得了长足的进展,但在工艺优化方面,特别是基础研究方面仍然有待开发。下面将各家PTA生产工艺技术进行对比,来分析各个工艺的优缺点。 各家PTA工艺技术比较

工艺技术 各专利商都拥有工业化生产PTA的专利技术,拥有近期采用最新技术的专利工厂,并生产出合格的PTA 产品。都采用回收氧化反应副产蒸汽和反应尾气用于空压机驱动等节能措施,并将尾气用于中间产品CTA 和成品PTA输送。 溶剂回收:多数厂家为共沸蒸馏,优于常压蒸馏,筛板塔逐渐改为填料塔。 催化剂回收:工艺技术(二)的回收技术较简单,其他几家公司流程较复杂。 精制母液回收:工艺技术(六)无精制母液回收,脱盐水消耗量大, PTA损失量大,其他几家都有。 工艺条件 氧化反应温度、压力趋于降低。工艺技术(一)(二) (三) (五) (六)为高温氧化工艺,工艺技术(四)为中温氧化工艺。高温氧化反应温度曾先后采用230 ℃→209 ℃→196 ℃→191 ℃;中温186 ℃。高低温氧化温度相差约50 ℃,压力相差约0. 6 MPa,主要为减少副反应,降低原料消耗。不同的氧化反应温度,相应的反应压力、催化剂配比及反应器型式均有所不同。 设备配置 空压机:高温、中温工艺均可采用"空压机+蒸汽轮机+尾气膨胀机+电机",正常生产时,电机用来发电。 氧化反应器:高温工艺均为单台带搅拌反应釜;中温为塔式反应器,底部带搅拌、顶部带精馏段;中温工艺氧化反应器产能较小。 氧化反应器进料罐: 2000年之后引进的技术,大多采用静态混合器,取消进料混合罐。 CTA结晶:采用1段或3段结晶。5种高温氧化工艺均采用3段结晶;中温氧化工艺仅采用1 段结晶,粒径较小。 分离及干燥: CTA均采用RVF 1道分离; PTA均采用2道分离,干燥机为列管式。 产品品质指标

化纤公司短纤生产工艺摘要

化纤公司短纤生产工艺摘要 按照办公室每月读一本书活动的整体安排,10月份开始,集中时间学习集团各主导产品的生产工艺。本月,我学习的是集团培训中心(原)编写的《三友集团主导产品工艺与设备》中的《粘胶短纤维生产工艺》部分,现将生产工艺要点结合当年在学校学习的化学知识表述如下: 一、什么是粘胶短纤维 粘胶纤维是最古老的化学纤维品种之一,以天然纤维素如棉纤维素、木纤维素、竹纤维素、草纤维素等为基本原料,制成浆粕,再经纺制而成的再生纤维素纤维。它不仅可以作为衣着用料,丰富编织品的花色品品种,而且在工业、农业、国防和科学研究等方面都有广泛的用途。目前全世界共奥地利兰精、印度博拉公司两个大粘胶纤维生产企业。 二、粘胶短纤维工业发展现状 目前全世界共两个大粘胶纤维生产企业奥地利兰精、印度博拉公司,全世界粘胶年产量约300万吨,占总化学纤维产量的7%。目前我公司的产能为16万吨,截止2008年国内排名第三,预计2009底国内排名第五,世界粘胶短纤排名第七。 三、产品用途 从用途方面分为常规纺织用纤维、功能纺织用纤维、医疗卫材用纤维、特性工业用纤维等。粘胶粘胶纤维不仅可以在数量上补充天然纤维之不足,而且在质量的某些方面优于

天然纤维和合成纤维。它不仅可以作为衣着用料,丰富编织品的花色品品种,而且在工业、农业、国防和科学研究等方面都有广泛的用途。 四、生产工艺 (一)原料 1.浆粕 这是生产短纤最重要的原材料。浆粕是以自然界中的天然纤维素如木材、棉短绒等为原料,经过化学加工除杂、提纯、烘干制得的一种外观类似硬纸板的物质,浆粕目前按原料大体分为四种——棉浆、木浆、草本浆、竹浆,棉浆:棉花经轧花厂摘取棉花之后,在棉籽榨油之前经拨戎机剥取附着在棉籽上的短纤维即棉短绒,即主要以氢氧化钠作为蒸煮溶液原料。目前全世界仅我国有棉浆制造公司。 木浆:原料有软木和硬木两种,目前世界较大的木浆制造公司巴西用预水解硫酸盐法、南非用亚硫酸盐法,均以阔叶桉树木材为原料,桉树的主要特点是速生林五年成材。 竹浆:主要原料为竹子,普遍使用一种高大、节长、分布广的慈竹,采用预水解硫酸盐法或预水解硫酸盐法结合碱法两种制造工艺。目前我东光公司采用为预水解硫酸盐法结合碱法制造工艺。 2.其他化工原料 烧碱:对烧碱质量的要求主要是控制氯化钠、碳酸钠、氧化钙、锰和铁的含量。

PTA生产技术及工艺流程

PTA生产技术及工艺流程简述 【作者:千木】 目前世界PTA生产厂家采用的技术虽有差异,但归纳起来,大致可分为以下两类: (1)精PTA工艺 此工艺采用催化氧化法将对二甲苯(PX)氧化成粗TA,再以加氢还原法除去杂质,将CTA精制成PTA。这种工艺在PTA生产中居主导地位,代表性的生产厂商有:英国石油(BP)、杜邦(Dupont)、三井油化(MPC)、道化学-因卡(Dow-INCA)、三菱化学(MCC)和因特奎萨(Interquisa)等。 (2)优质聚合级对苯二甲酸(QTA、EPTA)工艺 此工艺采用催化氧化法将PX氧化成粗TA,再用进一步深度氧化方法将粗TA精制成聚合级TA。此工艺路线的代表生产厂商有三菱化学(MCC)、伊斯特曼(Eastman)、杜邦(Dupont)、东丽(Toray)等。生产能力约占PTA总产能的16%。 两种工艺路线差异在于精制方法不同,产品质量也有所差异。即两种产品所含杂质总量相当,但杂质种类不一样。PTA产品中所含PT酸较高(200ppm左右),4-CBA较低(25ppm左右),而QTA(或EPTA)产品中所含杂质与PTA相反,4-CBA 较高(250ppm左右),PT酸较低(25ppm以下)。两种工艺路线的产品用途基本相同,均用于聚酯生产,最终产品长短丝、瓶片的质量差异不大。目前,钴-锰-溴三元复合体系是PX氧化的最佳催化剂,其中钴是最贵的,所以目前该方面的一直进行降低氧化催化剂能耗的研究。PTA生产过程中所用TA加氢反应催化剂为Pd/C,目前研究的主要问题是如何延长催化剂的使用寿命。 工业化的精对苯二甲酸制备工艺很多,但随着生产工艺的不断发展,对二甲苯高温氧化法成为制备精对苯二甲酸的最主要的生产工艺,这种工艺在对苯二甲酸的制备工艺中占有绝对优势。对二甲苯高温氧化工艺是在高温、高压下进行的,副反应较多;而且由于温度高、压力大对设备本身的要求就高。因此工艺改进主要就集中在降低氧化反应温度和降低氧化反应的压力两个方面。目前,拥有这一专利技术的公司主要有美国Amoco公司、英国ICI公司和日本三井油化公司,我国曾在不同时期引进过这三家公司的专利技术。近年,我国对苯二甲酸的工艺也取得了很大的进展。 (1)对二甲苯(PX)高温氧化法。对二甲苯高温氧化法由氧化、精制和辅助系统组成。该工艺以对二甲苯为原料,经空气催化氧化、加氢精制、结晶分离等工序制成。催化氧化是对二甲苯在催化剂存在下,于190-230℃,压力 1.27- 2.45MPa的条件下,用空气氧化得到粗对苯二甲酸。加氢精制是将对二甲苯氧化过程中尚未反应完全的4-羟基苯甲醛(4-BCA)转化为可溶于水的甲基苯甲酸,然后除去。加氢精制反应要在较高压力(约6.8MPa)和较高温度(约280℃)的条件下进行。对苯二甲酸加氢产物再经结晶分离和干燥,就得到可用于纤维生产的精对苯二甲酸。 对二甲苯高温氧化法流程简单,反应迅速,收率可达90%以上。 (2)高温氧化工艺改进。Amoco公司对高温氧化法工艺进行了改进,使氧化反应温度降至193-200℃的范围,反应压力也相应降到1.45MPa。改进后每吨PTA的PX消耗量减少14kg。三井油化公司在Amoco高温氧化工艺的基础上,开发了三井Amoco工艺。该工艺提高了催化剂中钴/锰比和溶剂比,同时为保持溶剂浓度稳定,氧化反应器顶部增加分离塔,除去反应体系中的水。这种工艺可将氧化反应温度降至185-195℃,反应压力降至0.9-1.1MPa,相应副反应减少,同时母液循环比相应提高,催化剂可循环使用,减少了催化剂的用量。 (3)温和反应条件的对苯二甲酸工艺。高温氧化工艺需要高温、高压,很多公司尝试开发反应条件温和的对苯二甲酸工艺,这些工艺中比较成功的有三菱公司开发的QTA工艺, 日本丸善公司开发的MTA工艺以及鲜京公司开发的SPTA 工艺。 MTA工艺适当地加大催化剂的锰/钴比、溶剂比和氧化空气用量,氧化后的产品再实行补充氧化,并添加少量三聚乙醛,强化氧化反应设备,使中间产物转化为最终产物。通过充分氧化使得工艺不需要再进行加氢还原精制。这种工艺反应条件温和,但反应时间较长,原料PX、催化剂和乙酸的消耗较高,并且产品中杂质对羧基甲醛的含量较高,产品只能用于制备纤维级聚酯。 QTA工艺采用高活性催化剂进行对二甲苯氧化。催化剂以铈替代高温氧化工艺中的锰,同时附加镧催化荆,并采用了无机溴化物。对二甲苯氧化反应条件较温和,反应过程中还要对中间产品进行补充氧化。该工艺对二甲苯、催化剂

PTA生产及技术的研究进展

PTA生产及技术的研究进展 张宇 (兰州理工大学石油化工学院,兰州730050) 摘要:对精对苯二甲酸(PTA)在我国发展现状做出分析,介绍了现有的PTA生产技术,并针对PTA行业的发展所存在的问题提出几点建议。 关键字:精对苯二甲酸(PTA);生产工艺;技术;产能 精对苯二甲酸(PTA)是重要的有机原料之一,广泛用于与化学纤维、轻工、电子、建筑等国民经济的各个方面。同时,PTA的应用又比较集中,世界上90%以上的PTA用于生产聚对苯二甲酸乙二醇酯(简称聚酯,PET)。生产1吨PET需要0.85-0.86吨的PTA和0.33-0.34吨的MEG(乙二醇)。聚酯包括纤维切片、聚酯纤维、瓶用切片和薄膜切片。国内市场中,有75%的PTA用来制造聚酯纤维;20%用来制造瓶级聚酯,主要是应用于各种饮料尤其是碳酸饮料的包装;5%用于膜级聚酯,主要应用于外包装薄膜、胶片以及磁带。聚酯纤维,俗称涤纶。在化纤中属于合成纤维[1]。在化纤行业中,合成纤维制造业是规模最大、分支最多的子行业,除了涤纶外,其产品还包括腈纶、锦纶、氨纶等[2]。 1 PTA生产及消费状况 1.1 生产能力状况 截至2014年底,我国共有PTA生产企业25家,总产能4335万吨/年,其中产能最大的三家企业分别是恒力石化、翔鹭石化和逸盛大化,三家企业占据的市场份额合计为40%,行业集中度较高。恒逸石化和荣盛石化通过持有逸盛大化、浙江逸盛、海南逸盛股权,其PTA产能分别为400万吨/年和435万吨/年,如表1所示。 自2007~2014年我国PTA产量从981万吨增加至2655万吨,期间复合增速为15.3%;表观消费量从1580万吨增加至2707万吨,期间复合增速为8.0%。近年来我国PTA需求呈现下滑趋势,2014年表观消费量同比下降6.7%,自给率达98.1%。PTA进口量也在持续下降,到2015年降至68.7万吨,进出口量基本持平。

化纤生产工艺的防火正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 化纤生产工艺的防火正式 版

化纤生产工艺的防火正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过 程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 化纤包括再生纤维和合成纤维两类。再生纤维中以粘胶纤维产量为最多,合成纤维的牢度、强度、耐磨性。弹性等多优于天然纤维和粘胶纤维,但其生产过程中的火灾危险性也大于前两者。 一、火灾危险性 1.粘胶纤维在生产中要用到大量二硫化碳,二硫化碳极易燃烧、爆炸,其闪点一30°C,爆炸极限1.3%~50%,自燃点90°C,遇到微小火星就会引燃;在生产和使用二硫化碳时还有硫化氢和二氧化碳等易燃易爆有毒气体产生,给火灾扑救增

加了危险性;另外,粘胶纤维生产中进行的磺化反应是放热的,若反应过程中搅拌停止,冷却失常,就有发生冲料起火的危险;碱纤维素中若混入金属杂物,在磺化机内进行搅拌时则会撞击或摩擦产生火星,引起二硫化碳蒸气着火或爆炸。还有在纺丝机和集束机运转时都有二硫化碳和硫化氢释放出来,若不及时回收或排放到大气中去,触及蒸气管道或其它火源,就会引起燃烧爆炸。干燥机机械摩擦发热或调温失控过热,都会使附着的纤维着火,容易引起火灾。 2.合成纤维的主要原材料的闪点、自燃点和爆炸极限都较低,如苯的闪点一14°C,自燃点574°C,爆炸极限

精品精对苯二甲酸(PTA)生产技术及工艺流程

精对苯二甲酸(PTA)生产技术及工艺流程 摘要 精对苯二甲酸(PTA)英文名称:Pure terephthalic acid(PTA)分子式C6H4(COOH)2 。是以对二甲苯为原料,液相氧化生成粗对苯二甲酸,再经加氢精制,结晶,分离,干燥,得到精对苯二甲酸。精对苯二甲酸为白色针状结晶或粉末,约在 300℃升华,自燃点680℃。能溶于热乙醇,微溶于水,不溶于乙醚、冰醋酸和氯仿。低毒,易燃。其粉尘与空气形成爆炸性混合物,爆炸极限0.05g/L~12.5g/ L。 精对苯二甲酸是生产聚酯切片、长短涤纶纤维等化纤产品和其它重要化工产品的原料。精对苯二甲酸(PTA)是重要的大宗有机原料之一,其主要用途是生产聚酯纤维(涤纶)、聚酯薄膜和聚酯瓶,广泛用于与化学纤维、轻工、电子、建筑等国民经济的各个方面,与人民生活水平的高低密切相关。 关键词:氧化反应结晶高压吸收常压吸收分离干燥溶剂及催化剂回收残渣蒸发溶剂脱水萃取常压汽提系统加氢反应过滤 I

目录 摘要 ··········································································································I 前言 ······································································································- 1 -第一章精对苯二甲酸的工业概貌 ································································- 2 - 1.1 世界精对苯二甲酸工业概貌 ··························································- 2 - 1.2 我国精对苯二甲酸工业概貌 ··························································- 3 -第二章精对苯二甲酸的上下游产业链······················································- 5 - 2.1 精对苯二甲酸的上游产业······························································- 5 - 2.2 精对苯二甲酸的下游产业······························································- 5 -第三章精对苯二甲酸的性质及其主要用途 ···············································- 6 - 3.1 精对苯二甲酸的性质 ····································································- 6 - 3.1 精对苯二甲酸的主要用途······························································- 6 -第四章精对苯二甲酸的主要原料·····························································- 7 -第五章产品方案及规格···········································································- 8 - 5.1 产品方案······················································································- 8 - 5.2 主要产品规格···············································································- 8 -第六章精对苯二甲酸的生产工艺技术······················································- 9 - 6.1 国外工艺技术现状 ········································································- 9 - 6.2 国内的工艺技术选择 ··································································- 10 -第七章精对苯二甲酸的工艺流程及操作条件 ·········································- 11 - 7.1 反应历程简介·············································································- 11 - 7.1.1 对二甲苯氧化 ···································································- 11 - 7.1.2对苯二甲酸精制·································································- 12 - 7.2 工艺流程简述·············································································- 12 - 7.2.1 空气压缩机·······································································- 12 - 7.2.2 100 单元---母液储存罐····················································- 12 - 7.2.3 200 单元--氧化反应、结晶、高压吸收及常压吸收。 ·········- 13 - 7.2.4 300 单元--分离、干燥 ··················································- 14 - 7.2.5 400 单元--溶剂及催化剂回收、残渣蒸发、溶剂脱水、萃取、 常压汽提系统。 ···········································································- 14 - 7.2.6 500 单元—进料配制、反应进料预热、加氢反应、结晶 ·····- 16 - 7.2.7 600 单元—过滤、干燥······················································- 19 - 7.2.8 PTA 产品之储存装袋及出料···············································- 20 -第八章精对苯二甲酸生产的关键设备及其特点 ······································- 22 - 8.1 精对苯二甲酸氧化单元的关键设备——氧化反应器······················- 22 - 8.2 精对苯二甲酸精制单元的关键设备··············································- 22 - I

PTA生产工艺技术

目前世界PTA生产厂家采用的技术虽有差异,但归纳起来,大致可分为以下两类:(1)精PTA工艺此工艺采用催化氧化法将对二甲苯(PX)氧化成粗TA,再以加氢还原法除去杂质,将CTA精制成PTA。这种工艺在PTA生产中居主导地位,代表性的生产厂商有:英国石油(BP)、杜邦(Dupont)、三井油化(MPC)、道化学-因卡(Dow-INCA)、三菱化学(MCC)和因特奎萨(Interquisa)等。(2)优质聚合级对苯二甲酸(QTA、EPTA)工艺此工艺采用催化氧化法将PX氧化成粗TA,再用进一步深度氧化方法将粗TA精制成聚合级TA。此工艺路线的代表生产厂商有三菱化学(MCC)、伊斯特曼(Eastman)、杜邦(Dupont)、东丽(Toray)等。生产能力约占PTA 总产能的16%。两种工艺路线差异在于精制方法不同,产品质量也有所差异。即两种产品所含杂质总量相当,但杂质种类不一样。PTA产品中所含PT酸较高(200ppm左右),4-CBA较低(25ppm左右),而QTA(或EPTA)产品中所含杂质与PTA相反,4-CBA较高(250ppm 左右),PT酸较低(25ppm以下)。两种工艺路线的产品用途基本相同,均用于聚酯生产,最终产品长短丝、瓶片的质量差异不大。目前,钴-锰-溴三元复合体系是PX氧化的最佳催化剂,其中钴是最贵的,所以目前该方面的一直进行降低氧化催化剂能耗的研究。PTA生产过程中所用TA加氢反应催化剂为Pd/C,目前研究的主要问题是如何延长催化剂的使用寿命。 工业化的精对苯二甲酸制备工艺很多,但随着生产工艺的不断发展,对二甲苯高温氧化法成为制备精对苯二甲酸的最主要的生产工

化纤生产工艺的防火通用版

安全管理编号:YTO-FS-PD765 化纤生产工艺的防火通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

化纤生产工艺的防火通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 化纤包括再生纤维和合成纤维两类。再生纤维中以粘胶纤维产量为最多,合成纤维的牢度、强度、耐磨性。弹性等多优于天然纤维和粘胶纤维,但其生产过程中的火灾危险性也大于前两者。 一、火灾危险性 1.粘胶纤维在生产中要用到大量二硫化碳,二硫化碳极易燃烧、爆炸,其闪点一30°C,爆炸极限1.3%~50%,自燃点90°C,遇到微小火星就会引燃;在生产和使用二硫化碳时还有硫化氢和二氧化碳等易燃易爆有毒气体产生,给火灾扑救增加了危险性;另外,粘胶纤维生产中进行的磺化反应是放热的,若反应过程中搅拌停止,冷却失常,就有发生冲料起火的危险;碱纤维素中若混入金属杂物,在磺化机内进行搅拌时则会撞击或摩擦产生火星,引起二硫化碳蒸气着火或爆炸。还有在纺丝机和集束机运转时都有二硫化碳和硫化氢释放出来,若不及时回收或排放到大气中去,触及蒸气管道或其它火源,就会引起燃烧爆炸。干燥机机械摩擦发热或调温失控过热,都会使附着

化纤生产工艺管制制度1.doc

化纤生产工艺管理制度1 工艺管理制度(征求意见稿) 本制度规定了工艺调试、工艺上车、工艺检查及工艺事故处理、职权范围划定等工艺工作标准和要求。 生产工艺是整个企业生产的龙头,它直接牵动着企业生产的各项活动;为了保证企业生产活动的正常开展特制定如下管理制度,要求各有关部门认真执行: 一、工艺上车 此项工作由生产车间负责,机、电车间协助。当长丝部接到(生产工艺成熟)品种调整通知后,部门主管向生产车间下达品种变更单,由工艺工程师下达生产作业单,车间主任核实批准,技术员具体执行工艺上车,工程师负责工艺上车情况检查、并最终保证工艺上车的正确性。 二、工艺调试 为了保证上车工艺条件的先进性、合理性,新工艺上车前必须经过预调试工作,此项工作主要由生产工艺工程师负责。 生产车间接到公司调试新产品的通知后,由工艺工程师制定初步的上机工艺条件,可在两个位以下进行试生产和调试工作。当原有工艺条件需要进一步改进时,由生产车间主任以上领导下达书面指令或生产工艺工程师提出书面报告,注明调试的原因和目的,经车间主任审核批准

并书面通知质检部后,由技术员和工程师在六个位以下进行调试。 在所有调试过程中,工程师必须与质检部联系,对产品的物理指标、外观、染色情况进行跟踪,确保调试的即时和可靠性。当工艺调试至重量满筒率达到97%、优等品率达到95%以上时可视为工艺基本先进合理,由工程师下达正式工艺条件通知和生产作业单,经车间主任审核报部门主管批准方可投入六个位以上批量生产。 由生产工艺工程师就调试过程、工艺参数、质量报告等技术数据进行整理,经生产车间主任审核后,分别存档于生产车间和长丝部。 调试期间所生产的产品一律单列批号、单独存放(在流程卡上注明“试验”字样)、单独包装,不经质检部主任批准绝对禁止调试产品混入正常生产的产品中去。 公司鼓励工程技术人员进行产品开发和技术创新,对于主动提出产品开发和技术创新并为公司创造出效益的员工,公司将给予一定的奖励,同时为了降低开发成本和保证开发的先进合理性,所有产品开发和技术创新建议需经技术论证和长丝部主管领导批准后方可进行。 三、工艺检查 生产车间将生产工艺通知和生产作业单下达到生产班组、质检车间、机电车间(有其工作内容时)后,及时确定上机时间,由生产工艺工程师检查工艺的具体执行情况,检查生产情况和质

化纤生产工艺管理制度

化纤生产工艺管理制度 1 工艺管理制度(征求意见稿) 本制度规定了工艺调试、工艺上车、工艺检查及工艺事故处理、职权范围划定等工艺工作标准和要求。 生产工艺是整个企业生产的龙头,它直接牵动着企业生产的各项活动;为了保证企业生产活动的正常开展特制定如下管理制度,要求各有关部门认真执行: 一、工艺上车 此项工作由生产车间负责,机、电车间协助。当长丝部接到(生产工艺成熟)品种调整通知后,部门主管向生产车间下达品种变更单,由工艺工程师下达生产作业单,车间主任核实批准,技术员具体执行工艺上车,工程师负责工艺上车情况检查、并最终保证工艺上车的正确性。 二、工艺调试 为了保证上车工艺条件的先进性、合理性,新工艺上车前必须经过预调试工作,此项工作主要由生产工艺工程师负责。 生产车间接到公司调试新产品的通知后,由工艺工程师制定初步的上机工艺条件,可在两个位以下进行试生产和调试工作。当原有工艺条件需要进一步改进时,由生产车间主任以上领导下达书面指令或生产工艺工程师提出书面报告,注明调试的原因和目的,经车间主任审核批准 并书面通知质检部后,由技术员和工程师在六个位以下进行调试。 在所有调试过程中,工程师必须与质检部联系,对产品的物理指标、外观、染

色情况进行跟踪,确保调试的即时和可靠性。当工艺调试至重量满筒率达到 97% 、优等品率达到95% 以上时可视为工艺基本先进合理,由工程师下达正式工艺条件通知和生产作业单,经车间主任审核报部门主管批准方可投入六个位以上批量生产。 由生产工艺工程师就调试过程、工艺参数、质量报告等技术数据进行整理,经生产车间主任审核后,分别存档于生产车间和长丝部。 调试期间所生产的产品一律单列批号、单独存放(在流程卡上注明“试验”字样)、单独包装,不经质检部主任批准绝对禁止调试产品混入正常生产的产品中去。 公司鼓励工程技术人员进行产品开发和技术创新,对于主动提出产品开发和技术创新并为公司创造出效益的员工,公司将给予一定的奖励,同时为了降低开发成本和保证开发的先进合理性,所有产品开发和技术创新建议需经技术论证和长丝部主管领导批准后方可进行。 三、工艺检查 生产车间将生产工艺通知和生产作业单下达到生产班组、质检车间、机电车间(有其工作内容时)后,及时确定上机时间,由生产工艺工程师检查工艺的具体执行情况,检查生产情况和质量情况,发现问题及时通知有关部门定期整改,并提出具体要求及解决问题的意见,同时与机、电车间做好协调工作,使设备处于良好的工作状态,保证生产工艺的正常执行;技术员在工艺执行过程中要密切关注满筒率和AA 率情况,做好锭位质量跟踪工作,及时解决好锭位出现的问题;质检车间对产品分级情况每天做一次质量报表,发现异常锭位时及时书面通知生产车间,严重质量波动和事故及时通知部门主管。 生产车间必须设专人、确定明确的检查内容(应包括网络压力、侧吹风风速、

PTA合成工艺简介

PTA生产技术及工艺流程简述目前世界PTA生产厂家采用的技术虽有差异,但归纳起来,大致可分为以下两类:(1)精PTA工艺此工艺采用催化氧化法将对二甲苯(PX)氧化成粗TA,再以加氢还原法除去杂质,将CTA精制成PTA。这种工艺在PTA生产中居主导地位,代表性的生产厂商有:英国石油(BP)、杜邦(Dupont)、三井油化(MPC)、道化学-因卡(Dow-INCA)、三菱化学(MCC)和因特奎萨(Interquisa)等。(2)优质聚合级对苯二甲酸(QTA、EPTA)工艺此工艺采用催化氧化法将PX氧化成粗TA,再用进一步深度氧化方法将粗TA精制成聚合级TA。此工艺路线的代表生产厂商有三菱化学(MCC)、伊斯特曼(Eastman)、杜邦(Dupont)、东丽(Toray)等。生产能力约占PTA 总产能的16%。两种工艺路线差异在于精制方法不同,产品质量也有所差异。即两种产品所含杂质总量相当,但杂质种类不一样。PTA 产品中所含PT酸较高(200ppm左右),4-CBA较低(25ppm左右),而QTA(或EPTA)产品中所含杂质与PTA相反,4-CBA较高(250ppm 左右),PT酸较低(25ppm以下)。两种工艺路线的产品用途基本相同,均用于聚酯生产,最终产品长短丝、瓶片的质量差异不大。目前,钴-锰-溴三元复合体系是PX氧化的最佳催化剂,其中钴是最贵的,所以目前该方面的一直进行降低氧化催化剂能耗的研究。PTA生产过程中所用TA加氢反应催化剂为Pd/C,目前研究的主要问题是如何延长催化剂的使用寿命。

工业化的精对苯二甲酸制备工艺很多,但随着生产工艺的不断发展,对二甲苯高温氧化法成为制备精对苯二甲酸的最主要的生产工艺,这种工艺在对苯二甲酸的制备工艺中占有绝对优势。对二甲苯高温氧化工艺是在高温、高压下进行的,副反应较多;而且由于温度高、压力大对设备本身的要求就高。因此工艺改进主要就集中在降低氧化反应温度和降低氧化反应的压力两个方面。目前,拥有这一专利技术的公司主要有美国Amoco公司、英国ICI公司和日本三井油化公司,我国曾在不同时期引进过这三家公司的专利技术。近年,我国对苯二甲酸的工艺也取得了很大的进展。 (1)对二甲苯(PX)高温氧化法。对二甲苯高温氧化法由氧化、精制和辅助系统组成。该工艺以对二甲苯为原料,经空气催化氧化、加氢精制、结晶分离等工序制成。催化氧化是对二甲苯在催化剂存在下,于190-230℃,压力1.27-2.45MPa的条件下,用空气氧化得到粗对苯二甲酸。加氢精制是将对二甲苯氧化过程中尚未反应完全的4-羟基苯甲醛(4-BCA)转化为可溶于水的甲基苯甲酸,然后除去。加氢精制反应要在较高压力(约6.8MPa)和较高温度(约280℃)的条件下进行。对苯二甲酸加氢产物再经结晶分离和干燥,就得到可用于纤维生产的精对苯二甲酸。对二甲苯高温氧化法流程简单,反应迅速,收率可达90以上。 (2)高温氧化工艺改进。Amoco公司对高温氧化法工艺进行了改进,使氧化反应温度降至193-200℃的范围,反应压力也相应降到1.45MPa。改进后每吨PTA的PX消耗量减少14kg。三井油化公司在

化纤生产过程

化纤生产过程 高聚物的提纯和聚合化学纤维是由高聚物制造而成的。此高聚物可直接取自自然界,也可由低分子物经人 工合成而得。 再生纤维是以天然高聚物为原料,经化学方法而制成。它与原高聚物在化学构成上基本相同。对于天然高聚物来说,这需要提纯以去除杂质。如制造粘胶纤维的高聚物是纤维素,它是从绵绒、木材、芦苇、甘蔗渣等纤维素原料中将纤维素提纯出来,制成浆粕,然后再用浆粕制造纤维。 合成纤维的高聚物是利用煤、石油、天然气、农副产品等制得的低分子化合物(单体)为原料,经过化学加聚或缩聚而得到的。最后将高聚物经过加工得到的合成纤维。所以,合成纤维常由其高聚物的单体, 并在单全前加“聚”来命名。 纺丝流体的制备成纤高聚物在纺丝前必须用一定的方法制纺丝流体。目前,常采用的方法有熔体法和 熔液法。 熔体法是将成纤高聚物加热到熔点以上而成为熔体。它适用于分解点高于熔点的高聚物。 或成纤高聚物的分解点低于熔点,则必须采用熔洲法,此法是用适当的溶剂将成纤高聚物溶解成具有 一定粘度的纺丝流体。 在实际的工业生产中,纺丝熔体的制备主要有两种方法:一是直接将聚合所得到的高聚特熔体送去纺丝,这种方法称为直接纺丝;另一种是将聚合得到的高聚物熔体经铸带、切粒等工序制成“切片”,然后在纺丝机上重新熔融成熔体并进行纺丝,这种方法称为切片纺丝。 溶液纺丝液的制备例如聚丙烯腈液的制备,也有两种方法。一是直接利用聚合后得到的高聚物溶液作为纺丝原液,这称为一步法;二是先制成颗粒状或粉末状的成纤高聚物,然后再深解,以获得纺丝液,这种方法称为二步法。为了使纺丝流体具有均匀和良好的纺丝性能,纺丝流体必须经过混合、过滤、脱泡等工序,以除去杂质和气泡,然后才能进行纺丝。制备纺丝深液的深剂其溶解性能要好、毒性要低、回收方便、价格低廉并不易燃烧及爆炸。在制备纺丝流体时,为了改善纤维的光泽,可加入消光剂,以生产出有光、消光或半消光纤维。纺丝将纺丝流体,用纺丝泵(或称计量泵)连续、定量而均匀地从喷丝头或喷丝板的毛细孔中挤出而成液态细流,再在空气、水或凝固浴中固化成丝条的过程称为纺丝或纤维成形。刚纺成的丝条称为初生纤维。纺丝是化学纤维生产过程中的关键工序,改变纺丝的工艺条件,可在较大范围内调节纤维的结构,从而相应地改变所得纤维的物理机械性能。 按成纤高聚物的性质不同,化学纤维的纺丝方法主要有熔体纺丝法和熔液纺丝法两大类,此外,还有特殊的或非常规的纺丝方法。其中,根据凝固方式的不同,熔液纺丝法又分为湿法纺丝和干法纺丝两种。在化学纤维的生产时,多数采用熔体纺丝法生产,其次为湿法纺丝生产,只有少量的采用了干法或其他非 常规纺丝方法生产。 一、熔体纺丝法

相关主题