搜档网
当前位置:搜档网 › Neutron stars within the SU(2) parity doublet model

Neutron stars within the SU(2) parity doublet model

Neutron stars within the SU(2) parity doublet model
Neutron stars within the SU(2) parity doublet model

a r X i v :0805.3301v 1 [n u c l -t h ] 21 M a y 2008

Neutron stars within the SU(2)parity doublet model

V.Dexheimer 1,G.Pagliara 2,L.Tol′o s 1,J.Scha?ner-Bielich 2,S.Schramm 1,3

1

Frankfurt Institute for Advanced Studies,J.W.Goethe-Universit¨a t,D-60438Frankfurt am Main,Germany

2

Institut f¨u r Theoretische Physik,J.W.Goethe Universit¨a t,D-60438,Frankfurt am Main,Germany and 3

Center for Scienti?c Computing,J.W.Goethe-Universit¨a t,D-60438,Frankfurt am Main,Germany

The equation of state of beta-stable and charge neutral nucleonic matter is computed within the SU(2)parity doublet model in mean ?eld and in the relativistic Hartree approximation.The mass of the chiral partner of the nucleon is assumed to be 1200MeV.The transition to the chiral restored phase turns out to be a smooth crossover in all the cases considered,taking place at a baryon density of just 2ρ0.The mass-radius relations of compact stars are calculated to constrain the model parameters from the maximum mass limit of neutron stars.It is demonstrated that chiral symmetry starts to be restored,which in this model implies the appearance of the chiral partners of the nucleons,in the center of neutron stars.

I.INTRODUCTION

E?ective models for the computation of the equation of state of nucleonic matter at ?nite density must take into account two very important physical aspects:the symmetry properties of QCD,in particular chiral symmetry and its spontaneous breaking in vacuum,and the properties of strongly interacting matter at saturation.Actually this is a di?cult task.While from one side the standard sigma model contains a mechanism for the restoration of the chiral symmetry,it does not describe nuclear matter saturation [1].On the other side,Walecka-type models [2]can successfully describe the properties of nuclear matter but they do not contain the symmetries of QCD.To overcome this problem,many di?erent extensions of the simple sigma model have been proposed including vector mesons [3],the dilaton ?eld [4],non linear realizations of chiral symmetry both in SU(2)and SU(3)[5,6,7,8]and chiral models with a hidden local symmetry for vector mesons [9,10,11,12,13].The model that we want to investigate here is the SU(2)parity doublet model considered before in Refs.[14,15,16,17,18,19,20,21,22,23,24].It has been shown,in Ref.[22],that this model can describe correctly both chiral symmetry properties and the properties of nuclear matter at saturation.

The essential new ingredient of this model is an explicit mass term in the Lagrangian,which is chirally invariant due to the special transformation properties of the nucleon ?eld and its chiral partner.The value of this mass parameter,m 0,contributes to the mass of the nucleons and therefore,if its value is very large,the breaking of chiral symmetry is responsible only for the mass splitting between the two nucleons.A still open question concerns the identi?cation of the chiral partner of the nucleon:the most likely candidate is the well known N ′

(1535)resonance.This possibility has been investigated in the previous works on symmetric matter [14,15,16,17,18,19,20,21]and recently it has been extended to beta-stable matter for the study of the properties of neutron stars [24].As already pointed out in Ref.[22]and as we will discuss in this paper,the assignment for the partner of the nucleon is still uncertain and it is also possible that it is a broad resonance,not yet identi?ed by the experiments,with a mass smaller than the mass of the N ′

(1535).

The main scope of this paper is to investigate further this hypothesis and we will consider a possible lower mass for the ”true”chiral partner of the nucleon in the following,choosing a value of 1200MeV.Here,in particular,we are interested in studying the properties of the beta-stable equation of state within the parity model and its applications to neutron stars.We will compute the equation of state both at mean ?eld level and using the relativistic Hartree approximation.The latter approach is more complete since it accounts for Dirac sea e?ects.Interestingly,within the relativistic Hartree approximation,the value of the bare mass m 0is slightly smaller than the value obtained within the mean ?eld approximation.Finally,we will present results showing that the choice of a small value for the mass of the chiral partner of the nucleon allows this particle to be formed at the center of neutron stars.This could have interesting e?ects on the transport properties of the matter (like viscosities or neutrino opacities)with possible phenomenological applications.

The paper is organized as follows:in Section II we will present the Lagrangian of the parity model for asymmetric matter.In Section III and IV we will compute the equation of state and the neutron star structure at mean ?eld level and in relativistic Hartree approximation,respectively.Finally in Section V we draw our conclusions.

II.THE PARITY MODEL FOR ASYMMETRIC MATTER

In the parity doublet model one uses the so-called“mirror assignment”for the positive and negative parity nucleon states(N+and N?),in which they belong to the same multiplet.Under the SU L(2)×SU(2)R transformations L and R,the two nucleon?eldsψ1andψ2transform as:

ψ1R?→Rψ1R,ψ1L?→Lψ1L,(1)

ψ2R?→Lψ2R,ψ2L?→Rψ2L.(2) This allows for a chirally invariant mass term in the Lagrangian that reads:

m0(ˉψ2γ5ψ1?ˉψ1γ5ψ2)=m0(ˉψ2Lψ1R?ˉψ2Rψ1L?ˉψ1Lψ2R+ˉψ1Rψ2L),(3) where m0represents a bare mass parameter.

To study the equation of state of beta-stable matter,in the Lagrangian of Ref.[22]we add the vector-isovector meson?→ρwhich couples to the isospin current:

L=ˉψ1i?/ψ1+ˉψ2i?/ψ2+m0 ˉψ2γ5ψ1?ˉψ1γ5ψ2 +aˉψ1(σ+iγ5τ·π)ψ1

+bˉψ2(σ?iγ5τ·π)ψ2?gωˉψ1γμωμψ1?gωˉψ2γμωμψ2

?gρˉψ1γμτ·ρμψ1?gρˉψ2γμτ·ρμψ2+L M,(4) where a,b,gωand gρare the coupling constants of the mesons?elds(σ,π,ωandρ)to the baryonsψ1andψ2and the mesonic Lagrangian L M contains the kinetic terms of the di?erent meson species,and potentials for the scalar and vector?elds:

L M=1

2

?μ πμ?μ πμ?

1

4

ρμνρμν+

1

2

m2ρρμρμ

+g44[(ωμωμ)2]+

1

4

(σ2+ π2)2+?σ,(5)

whereωμν=?μων??νωμandρμν=?μρν??νρμrepresent the?eld strength tensors of the vector?elds.The parametersλ,ˉμand?are as in Ref.[22]:

λ=

m2σ?m2π

2

,

?=m2πfπ,(6)

with mπ=138MeV,fπ=93MeV.The vacuum expectation value of the sigma?eld isσ0=fπand its vacuum mass mσis taken as a parameter.The vacuum mass of theω?eld is mω=783MeV,while the g4term for theω?eld represents a free parameter with?nite values causing a softening of the equation of state.Concerning the?→ρ?eld, we choose,among the possible SU(2)chiral invariant terms for the vector meson self-interaction,the one that has no self-interaction for theωmeson and noω?ρmixing term[25].This choice leads to a sti?er EoSs besides being in agreement with the observed small mixing of the two mesons.The vacuum mass of the?→ρmeson is mρ=761MeV.

III.MEAN FIELD APPROXIMATION

In a?rst approximation,to study dense cold matter,we neglect the?uctuations around the constant vacuum expectation values of the mesonic?eld operators.Only the time-like component of the isoscalar vector mesonˉω≡ω0 and the time-like third component of the isovector vector mesonρ30(where the upper index refers to isospin component and the lower index refers to the Lorentz component)of the?→ρ?eld remains(see for instance Ref.[26]).Additionally, parity conservation demandsˉπ=0.The mass eigenstates for the parity doubled nucleons,the N+and N?are

TABLE I:Parametrization and results for the two possible con?gurations within the MFT approximation considering M N

?

= 1200MeV and m0=790MeV.

mσ(MeV)318.56302.01

gω 6.08 6.77

gρ 4.22 4.18

FIG.1:Equations of state of beta-stable matter computed within the parity doublet model for the P1and P2parameter sets. For comparison also the equation of state of the relativistic mean?eld model GM3is shown(see text).The chiral symmetry restoration produces a softening of the equation of state at large energy densities.

determined by diagonalizing the mass matrix,Eq.(3),forψ1andψ2.Writing the coupling constants a and b as

functions of the mass of the positive parity nucleons M N

+=939MeV,the mass of the negative parity nucleons M N

?

,

the vacuum value of the scalar condensateσ0and the the bare mass term m0,the e?ective masses of the baryons are given by:

M?N

±

= 4?m20 σ22σ

V

=?L M+ iγi

2m2ωω20+g44ω40+

1

4

σ4(9)

+?σ+

1

FIG.2:The ratio σ/σ0is shown as a function of the baryon density for the P1and P2parameter sets for both symmetric matter and neutron star matter.In the case of neutron star matter,due to the beta stability and charge neutrality conditions,the beginning of the restoration of chiral symmetry takes place slightly before with respect to the case of symmetric matter.The transition is in all cases a smooth crossover.

where i ∈{n +,n ?,p +,p ?}denotes the nucleon type (positive and negative parity neutrons and positive and negative parity protons),γi is the fermionic degeneracy,k F i are the Fermi momenta,E ?

i

(k )=

k 2F +M ?i

2the corresponding e?ective chemical potential where I 3is the third component of the isospin (1/2for the positive and negative parity proton and -1/2for the positive and negative

parity neutron).The single particle energy of each parity partner i is given by E i (k )=E ?

i (k )+g ωω0+g ρρ30I 3.

Altogether there are six unknown parameters:g ω,g ρ,m σ,g 4,m 0,M N ?.

The

?rst

three are determined

by

the basic

nuclear

matter

saturation

properties,

i.e.,the

stable

minimum of the grand canonical potential for μB =923MeV has to meet three conditions:

E/A (μB =923MeV)?M N =?16MeV ,

ρ0(μB =923MeV)=0.16fm ?3,

a sym =32.5MeV ,

(10)

which are the measured values for the binding energy per nucleon,the baryon density and a phenomenologically reasonable value for the symmetry energy at saturation.The nuclear matter compressibility at saturation,de?ned as

K =9ρB 2?2

E/A ?ρB

ρB =ρ0

=9ρB ?μB ?σ ˉ

σ,

FIG.3:Number density fractions for the di?erent particles for the two equations of state here considered.The beta stability and charge neutrality conditions split the thresholds for the appearance of the negative parity neutron and of the negative parity proton.

0=?m 2ωˉω

?4g 44ˉω3

+g ω

i

ρi (ˉσ,ˉω,ˉρ)=0,

0=

?m 2ρˉρ

?g ρ(ρn +(ˉ

σ,ˉω,ˉρ)+ρn ?(ˉσ,ˉω,ˉρ)?ρp +(ˉσ,ˉω,ˉρ)?ρp ?(ˉσ,ˉω,ˉρ)).(12)

The energy density is obtained from the grand canonical potential:

?=?L M +

i

γi

(2π)3=

γi k 3

F

i

(2π)3

M ?

i 4π2

k F i E ?

F i

?M ?i 2ln

k F i +E ?

F

i

FIG.4:Left panel:mass radius relations for the di?erent equations of state.The horizontal line,representing the1.44M⊙of the Hulse-Taylor pulsar,allows to rule out the P2parametrization.Right panel:masses as functions of the central baryon density.The stars on the curves,which stand for the onsets of chiral symmetry restoration,indicate that for stars having a mass larger than1.2M⊙(for the P1case),the chiral partners of the nucleons are produced in the center of the stars.The maximum mass and the respective radius for the P1and P2parametrizations are shown in brackets next to the labels.

the appearance of the chiral partners and the chiral symmetry restoration,the isospin asymmetry has an e?ect also on the chiral restoration density.Moreover it a?ects also the order of the phase transition:for asymmetric matter the phase transition is smoother than for symmetric matter.The density for the beginning of the chiral symmetry restoration turns out to be very low,~2ρ0,for the P1and P2equations of state while it would have been higher if we have used a more massive chiral partner.It can also be seen in Fig.2that the e?ect of the vector-isoscalar meson self-coupling in the chiral restoration is practically negligible.In Fig.3,the number density fractions for the various particles are shown as functions of the baryon density.Notice the di?erent thresholds for the appearance of negative parity protons and negative parity neutrons.

Now we use the above described equations of state to compute the mass-radius relations and the structure of neutron stars by solving the Tolman-Oppenheimer-Volkov equations.We use the parity doublet model equations of state down to baryon densities of0.05fm?3while for lower densities we use the recent equation of state presented in Ref.[35].The results are shown in the left panel of Fig.4for the di?erent cases.In the same plot,we also indicate an horizontal line corresponding to the mass M max=1.44M⊙of the Hulse-Taylor binary pulsar,which is still the largest precisely known neutron star mass.Interestingly,considering the M max limit we can rule out the P2equation of state,indicating that in our model a self-interaction term for theωmeson renders the equation of state too soft. Taking into account the self-interaction of theρmeson or the mixing between theωand theρmeson would make the equation of state even softer.

Let us now study whether chiral symmetry is restored in neutron stars.The results are shown in the right panel of Fig.4where the masses as functions of the central baryon densities are plotted.The stars on the curves indicate the densities corresponding to the onsets of chiral symmetry restoration.We?nd that stars having a mass larger than 1.2M⊙have a core of a partially chiral restored phase for both cases.The same e?ect would not happen considering

=1535MeV.In that case the stars are unstable before the a more massive chiral partner,like for example with M N

?

central density reaches the chiral symmetry restoration threshold(see Ref.[24]).

IV.RELATIVISTIC HARTREE APPROXIMATION

The Relativistic Hartree Approximation(RHA)goes beyond mean?eld by accounting for the e?ect of the baryonic Dirac sea as one sums over the baryonic tadpole diagrams[36].The dressed propagator of a baryon i is obtained by solving the Dyson-Schwinger equation:

G H i=G0i(k)+G0i(k)ΣH i(k)G H i(k),(16) where G0i(k)is the free propagator andΣH i(k)the Hartree self-energy,which contains the scalar(ΣS)and vector (ΣV)parts

ΣH i=ΣS i?γμ(ΣV i)μ.(17) The solution of the Dyson-Schwinger equation is

[G H i(k)]?1=γμˉkμ?M?i,(18)

m 0 (MeV)

K (M e V )

FIG.5:Compressibility at saturation as a function of bare mass m 0for the mean

?eld

and

Hartree approximations for the P1parameter set.If the compressibility has a value of 270MeV,as indicated in Ref.[29],m 0~850MeV.

or,in an equivalent way,

G H i (k )=(γμˉk μ+M ?i )

1

E ?i

( k )δ(ˉk 0i ?E ?i ( k ))θ(k F,i ?| k |i )

=(G H i )F (k )+(G H i )D

(k ),

(19)

with

E ?i ( k )

=

m S 2i

d 4k m S 2i

d 4k m S 2i

i γi

d 4k

ˉk 2?M ?2i +i??ρi,S ,

(20)

(ΣV i )

μ

=i g V 2i

(2π)4

Tr (γ

μ

G H i (k ))

=i

g V 2i

(2π)4

Tr [γμ((G H i )F (k )+(G H i )D

(k ))]

=

g V 2i

(2π)4

ˉk μm S 2i

?ρi,S ,(22)

FIG.6:Equations of state for the doublet model in the four cases discussed in the text for the P1parametrization.

where the additional contribution to the scalar density for each baryon specie ?ρi,S is given by

?ρi,S =?

γi

M i

+M 2i (M i ?M ?i )?56

(M i ?M ?i )3 .(23)

As a consequence,the grand canonical potential is modi?ed inducing changes in the pressure,energy density and

the meson ?eld equations.In the parity doublet model,the energy density can be evaluated as

?RHA =?MF T +??,

(24)

with ?MF T being the mean ?eld result of Eq.(13).The contribution to the energy density from the Dirac sea,??,reads

??=? i

γi

M i

+M 3i (M i ?M ?i )

?

7

3

M i (M i ?M ?i )3?

25

RHA

=

?(?/V )

?ρi,S =0,(27)

where the mean ?eld contribution is found in Eq.(12).The coupling constants g ω,g ρand m σhave to be re-?tted in order to obtain the nuclear saturation properties.

Let us now apply this formalism to compute the equation of state.We start from the P1set of parameters.In Fig.5we show a comparison between the compressibility obtained in mean ?eld approximation and in relativistic Hartree approximation as a function of the bare mass m 0.Note that when m 0decreases,the scalar potential increases according to Eq.7.To keep the saturation properties,the increase of the scalar potential must be balanced by an increase of the vector potential which in turn induces a higher value of the compressibility (Eq.11).This e?ect is quite pronounced in the mean ?eld approximation as we can notice in the ?gure.On the other hand,in the relativistic Hartree approximation the scalar mesons are enhanced and the vector mesons are suppressed (Ref.[37,38]),causing the equation of state to be softer and,consequently,the compressibility to be smaller (Fig.5).

TABLE II:Parametrization and results for the?ve possible con?gurations within the Hartree approximation considering M N

=1200MeV and g4=0.

?

mσ(MeV)657484362322164

gω9.358.37 6.59 5.740.59

gρ 4.05 4.10 4.25 4.25 4.35

For the applications to neutron star matter,we choose four di?erent bare mass values keeping the mass of the =1200MeV and ignoring a self-coupling for the vector mesons g4=0,for the reasons described chiral partner M N

?

before.The parametrizations are:m0=300,600,790,900MeV(see table II for numerical values of the parameters for these m0s together with m0=750MeV).The four parametrizations are shown in Fig.6.It can again be seen that smaller bare masses generate sti?er equations of states.Although for a very small bare mass of m0=300MeV the compressibility is K=650MeV,which is too high according to phenomenology,this parametrization is still presented in the plots just for illustrative purposes.Finally we use the above described equations of state to compute the mass-radius relations and the structure of neutron stars by solving the Tolman-Oppenheimer-Volkov equation. The results are shown in the left panel of Fig.7for the di?erent cases.In the case of the highest bare mass value, the maximum mass of neutron stars is too low and,therefore,the corresponding equation of state is ruled out.We suggest that the equations of state compatible with the observed neutron star masses correspond to the case of bare masses between600and790MeV.For instance,for m0=750MeV a high maximum mass of1.9M⊙is obtained with a compressibility around400MeV.The results for P2in the relativistic Hartree approximation would be similar to the ones for P1,because the self-interaction of theωmeson does not change qualitatively the results(Ref.[37,38]). However,the equations of state would be softer and,consequently,the maximum masses for the neutron stars would be smaller than in the mean?eld case.For all the cases studied,the chiral symmetry starts to be restored inside neutron stars and chiral partners of the nucleons appear(see the right panel of Fig.7).

We can also use the bare mass parameters of the?ve parametrizations to study vacuum properties,as the pion-nucleon scattering or the decay width of the chiral partner,as was already done for N’(1535).We use the formula of Ref.[14]to compute the decay widthΓof N?→N+πas a function of m0.The result is shown in Fig.8,where it can be seen that the decay width increases quadratically as a function of m0,but,even for the higher bare mass value m0=900MeV,the width is still around100MeV.This value is too small to justify the assumption that the”true”chiral partner of the nucleon is an undetected resonance with a mass of1200MeV.For a more massive chiral partner =1379MeV,which is the limiting case for the formation of chiral partners inside neutron stars,we get as the M N

?

values of the order of300MeV for the width.Probably such a resonance is still not broad enough to have escaped experimental detection.This indicates the importance of improving our model to reconcile the?nite density matter properties with the microphysics of the interaction of the chiral partner with the nucleon and the pion.Working along this line is in progress.

V.CONCLUSIONS

We have studied the equation of state of nucleonic matter at zero temperature within the SU(2)parity doublet model by using?rst the mean?eld approximation.We assume that the chiral partner of the nucleon is a resonance, not yet detected,which has a mass of1200MeV.The parameters of the model are?xed by?tting the properties of nuclear matter at saturation.To obtain a reasonable value of the nuclear matter compressibility,the mixing parameter between the nucleon and its chiral partner m0turns out to be large,of the order of790MeV,thus indicating that the chiral condensate gives a minor contribution to the mass of the nucleon.We then studied the equation of state of beta-stable and charge neutral matter suitable for the applications to neutron stars.We have shown that a signi?cant softening of the equation of state is realized due to the transition from a chiral broken phase to a partially chiral restored phase at a density of roughly2ρ0,which corresponds also to the threshold for the appearance of the chiral partners of the nucleons.

We then used the equations of state for the computation of the mass-radius relations and structure of neutron stars. Taking into account the neutron star mass measurements,we have ruled out the possibility of having self-interaction terms for vector mesons in the Lagrangian since they render to equation of state too soft.Finally we have shown that

FIG.7:Left panel:mass radius relations for the di?erent choices of the bare mass parameter.Right panel:masses as functions of the central baryon density.The stars on the curves denote the onset of chiral symmetry restoration.

for neutron stars with masses larger than roughly1.2M⊙,chiral symmetry starts to be restored in their core and, therefore,the chiral partners of the nucleons appear.

As a second step we repeated the calculations by using the relativistic Hartree approximation.In this case,slightly smaller values of m0,down to750MeV,can still reproduce reasonable values of the compressibility(in the window of values200?400MeV)due to the suppression on the vector meson sector,which is a characteristic of this kind of approximation.Also within this approximation,we predict that the chiral partners of the nucleon could be formed at the center of neutron stars.

The hypothesis that the chiral partner of the nucleon is a very broad and therefore still undetected resonance with a relatively low mass leads to the population of chiral partners in neutron stars.However,as we have shown,within the present model,we obtain rather small values of the width of this particle.We need to improve the doublet parity model adopting for instance a gauged linear sigma model as done in Ref.[23]in which the physics of the vacuum is described more accurately.Another interesting extension of this work concerns the astrophysical implications of our results:to study proto-neutron stars in order to investigate when,during the time evolution of the stars,the chiral partners appear in the star and if this can have some observable signatures.Also the late cooling of neutron stars could be modi?ed if these new particles appear as they are opening new cooling processes.

Acknowledgments

We thank F.Giacosa for useful discussions.This work is partially supported by:INFN,BMBF project”Hadro-nisierung des QGP und dynamik von hadronen mit charm quarks”(ANBest-P and BNBest-BMBF98/NKBF98).

[1]T.D.Lee and G.C.Wick,Phys.Rev.D9,2291(1974).

[2]B.D.Serot and J.D.Walecka,Int.J.Mod.Phys.E6,515(1997),nucl-th/9701058.

[3]J.Boguta,Phys.Lett.B120,34(1983).

[4]I.Mishustin,J.Bondorf,and M.Rho,Nucl.Phys.A555,215(1993).

[5]R.J.Furnstahl,B.D.Serot,and H.-B.Tang,Nucl.Phys.A598,539(1996),nucl-th/9511028.

[6]R.J.Furnstahl,B.D.Serot,and H.-B.Tang,Nucl.Phys.A615,441(1997),nucl-th/9608035.

[7]P.Papazoglou,S.Schramm,J.Scha?ner-Bielich,H.Stoecker,and W.Greiner,Phys.Rev.C57,2576(1998),nucl-

th/9706024.

[8]P.Papazoglou et al.,Phys.Rev.C59,411(1999),nucl-th/9806087.

[9]P.Ko and S.Rudaz,Phys.Rev.D50,6877(1994).

[10]G.W.Carter,P.J.Ellis,and S.Rudaz,Nucl.Phys.A603,367(1996),nucl-th/9512033.

[11]G.W.Carter,P.J.Ellis,and S.Rudaz,Nucl.Phys.A618,317(1997),nucl-th/9612043.

[12]G.W.Carter and P.J.Ellis,Nucl.Phys.A628,325(1998),nucl-th/9707051.

[13]L.Bonanno,A.Drago,and https://www.sodocs.net/doc/5e8600370.html,vagno,Phys.Rev.Lett.99,242301(2007),0704.3707.

[14]C.DeTar and T.Kunihiro,Phys.Rev.D39,2805(1989).

[15]D.Jido,Y.Nemoto,M.Oka,and A.Hosaka,Nucl.Phys.A671,471(2000),hep-ph/9805306.

[16]D.Jido,T.Hatsuda,and T.Kunihiro,Phys.Rev.Lett.84,3252(2000),hep-ph/9910375.

[17]Y.Nemoto,D.Jido,M.Oka,and A.Hosaka,Phys.Rev.D57,4124(1998),hep-ph/9710445.

300400500

600700800900

m 0 MeV

20

406080100 M e V

FIG.8:The decay width of the process N ?→N +πis shown as a function of m 0for a ?xed value of the mass of the chiral partner M N ?=1200MeV.The width increases quadratically with m 0.

[18]H.-c.Kim,D.Jido,and M.Oka,Nucl.Phys.A640,77(1998),hep-ph/9806275.

[19]D.Jido,H.Nagahiro,and S.Hirenzaki,Phys.Rev.C66,045202(2002),nucl-th/0206043.[20]H.Nagahiro,D.Jido,and S.Hirenzaki,Phys.Rev.C68,035205(2003),nucl-th/0304068.[21]T.Hatsuda and M.Prakash,Phys.Lett.B224,11(1989).

[22]D.Zschiesche,L.Tolos,J.Scha?ner-Bielich,and R.D.Pisarski,Phys.Rev.C75,055202(2007),nucl-th/0608044.[23]S.Wilms,F.Giacosa,and D.H.Rischke (2007),nucl-th/0702076.

[24]V.Dexheimer,S.Schramm,and D.Zschiesche,Phys.Rev.C77,025803(2008),0710.4192.[25]V.Dexheimer and S.Schramm (2008),0802.1999.

[26]N.Glendenning,Compact Stars (Springer-Verlag,1997).

[27]M.V.Stoitsov,M.L.Cescato,P.Ring,and M.M.Sharma,J.Phys.G20,L149(1994),nucl-th/9403003.[28]D.Vretenar,T.Niksic,and P.Ring,Phys.Rev.C68,024310(2003),nucl-th/0302070.[29]D.H.Youngblood et al.,Phys.Rev.C69,034315(2004).[30]M.M.Sharma et al.,Phys.Rev.C38,2562(1988).[31]H.Kouno et al.,Phys.Rev.C51,1754(1995).

[32]Z.Ma,N.Van Giai,H.Toki,and M.L’Huillier,Phys.Rev.C 55,2385(1997).[33]B.K.Agrawal,S.Shlomo,and V.Kim Au,Phys.Rev.C 68,031304(2003).[34]N.K.Glendenning and S.A.Moszkowski,Phys.Rev.Lett.67,2414(1991).

[35]S.B.Ruester,M.Hempel,and J.Scha?ner-Bielich,Phys.Rev.C73,035804(2006),astro-ph/0509325.[36]B.D.Serot and J.D.Walecka,Adv.Nucl.Phys.16,1(1986).[37]A.Mishra,K.Balazs,D.Zschiesche,S.Schramm,H.St¨o cker,and W.Greiner,Phys.Rev.C 69,024903(2004).[38]D.Zschiesche,PhD dissertation,Johann Wolfgang Goethe University Frankfurt am Main,Germany (2004).

一个小游戏引发的深刻思考

一个小游戏引发的深刻思考 ——论述闯关失败的由来 我刚开始接触<消灭星星>这款小游戏是在今年的6月,起初只是觉得简单好玩,后来玩着玩着就颇有好感了,再后来就颇有心得了,一次性消灭的星星个数越多,分值就越高,虽然并不清楚这分数是如何计算的,但这不断滚动上升的分数还是让我颇为高兴。于是乎,每天晚饭过后,我就习惯性拿着手机登陆进去,领取几个星星奖励或是领取活动道具,顺便玩两局。刚开始并不懂得道具有何用处,随着领取的道具越来越多,胡乱使用着,用得多了也就发现其功用。一共就3种道具,分别是旋转、画笔、锤子,对应的功能是改变排列、变换颜色、消除障碍。星星个数的增多也让我颇为兴奋,星星可以用来换道具还可以续关。 每次玩星星我都喜欢把颜色较多的星星留下,连成一片再一起消灭,有时候一次性就消灭掉二十几颗星星,所以关卡晋级路也颇为顺利,积分远远超出目标分,越发觉得后顾无忧了,越到后来越觉得没挑战性可言了,但仍继续玩着,心里琢磨着是否就这样子无限增关卡而已了。每隔一段时间,我就拍张照片留作纪念。事发得突然,在9月的某一天,竟然没过关,我立马花了50颗星星续关。再定睛一看目标值,我傻眼了,目标值908000,而我的分值只有778130,昨天目标值67万多,今天怎么就变成90万多了.我十分坚信这肯定是系统出错了,这太不正常了,这太不合理了,太突兀了,这么高的目标值怎么可能达到。我退出了游戏界面,也许明天再登进来,它就恢复正常了,对此我仍抱着希望。几天过去了,每次进来都是这样的目标值,我伤心了,为啥会输得这么彻底,这么晴天霹雳,这么毫无预兆,我想不明白。如下图所示 图1-1 图1-2

图1-3 图1-4 后来想想,游戏玩家与设计者本来就是不对等的,没有公平的说法,作为玩家只能接受别人设计的规则,即使规则是不合理,达不到游戏规则设定的目标的,只能出局,规则简单得很现实。 不甘心使得我探索游戏规律,5种颜色,排列为10×10的方阵,同颜色的相连星星才能消除, 游戏每关卡平均增幅3000,设目标值为g,g 是一个累加值,正常情况下,关卡231的目标值 g=231*3000=6930000?908000; 事实上,关卡231,目标值908000,我的分值778130,我须在本关拿到得分y=908000-778130=129870; 根据游戏得分规律,总结如下 表1-1 根据表1-1所示,设每次得分为f(n), ,一次消灭星星的个数为n,那么 f(n)=5*n 2, (1) 本关得分累加值为y,则初始方程为 Y=∑f (n i )=5?∑n i 2n i=0n i=0,0≤i ≤n , 2

大班游戏:《智勇大闯关》

大班游戏:《智勇大闯关》 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 大班游戏《智勇大闯关》 设计意图: 一次偶然的机会,我发现图书角里许多小朋友对《幼儿智力世界》产生了浓厚的兴趣,这本书里面全部是闯关游戏。孩子们围在一起快乐的猜谜语、找答案,学习的劲头特高。我灵机一动,如何不将代数型加法和猜谜结合起来,尝试将一组物品抽象为数和运用口述过程,让枯燥的数学变的富有灵性,来唤起幼儿的想象欲望,体验生活,同时重新激发幼儿对数学的学习兴趣。 活动目标: 1、学会观察图意,引导幼儿体验将一组物品抽象为数和运用口述摆出相应算式。 2、发展幼儿视图能力及体验游戏的快乐。 活动准备:1-9数字卡片、猴子、乌龟、大象、狗各一只、西瓜3个、玉米5个、鱼4条、花生2颗、笔、作业纸。 活动过程:

一、情境导入(教师带领幼儿做开汽车状进活动室) 师:你们准备好了吗?我的汽车就要出发啦,看看我的汽车开到哪?“嘿嘿,我的汽车要开啦!” 幼:“开哪里?” 师:开数学王国。你们看数学王国里的小蜜蜂都出来迎接我们了,我们先跟小蜜蜂来做碰球游戏。(巩固10以内数的组成。) 师:数学王国到了。国王想知道小朋友聪明不聪明,特地为你们设了三关题目,谁能闯过三关就是数学王国里最厉害的小小智慧家。你们想不想当数学王国里最厉害的小小智慧家?。 二、闯三关 1、第一关:谜语猜猜猜 (1)你们想知道,会有哪几位小动物来跟我们做游戏吗? (2)猜出谜底就知道它是谁了? 1)动物谜语 (手像脚来脚像手,屁股红来脸儿丑,动作表情挺像人,爬杆上树是能手,谜底猴子。) (头小颈长腿短粗,硬壳里面当房住,伸出头来找食物,遇险头脚缩进屋,谜底乌龟。)

《地狱之旅JourneytoHel

《地狱之旅JourneytoHel 《地狱之旅 Journey to Hell》是一款由Dog Box制作,Bulkypix发行的第三人称射击游戏,游戏主打恶魔僵尸风,画面阴暗恐怖。今天小编给大家带来该游戏冒险模式下的通过攻略,主要目的的提醒大家了解每个关卡的过关要点,帮助大家快速通关该游戏。 第一关 第一关其实是一个教学关卡,主要是引导玩家进行移动、射击等操作,可以说得上是一个教学关卡。 游戏开始是一段剧情动画,大致是讲的恶魔肆意横行,贪婪的搜寻着新鲜的血肉之躯,于是,维持正邪之间的平衡的,具有千年历史的秘密组织 [神圣之盾]将再次出击保卫人类和平,而玩家扮演的就是神圣之盾的一员在执行各种与恶魔作战的任务。

由于是教学关卡,而且流程非常短,小编就不多讲了,这一关没什么要点,因为玩家拿的是威力强大的机枪,所以僵尸什么的随便扫射,再移动一下捡取任务品牙齿就轻松过关了。唯一需要注意的玩家要观察小雷达,注意身后出现的僵尸。结束后会有装备购买的一些教学操作提示。

第二关

玩家出现在楼上,需要打开左右两方的机关才能开启大门,下面会有几个僵尸,靠近后会爬起来攻击玩家,因此应该先把这些僵尸在远处击杀,然后开启2个两边的机关。

打开门后,进入门会被关上,此时会有数量很多的僵尸向玩家袭来,建议边走边打,小编建议在伤上图的位置进行击杀,因为怪物会从这个狭小的口子里面出来,利于瞄准和射击。

进入后清掉里面的几个小怪,去开门的时候却出现一个大胖子僵尸,还是采用老办法,先跑开然后再远处击杀,轻松过关,还是提醒一句:注意小雷达,因为怪物可能会在你深厚出现! 第三关

IOS世界征服者2巴尔干行动战役攻略 五星过关

IOS世界征服者2巴尔干行动战役攻略五星过关 4、巴尔干战役 战术思路,协同格拉齐亚的海军、保加利亚攻打南斯拉夫和希腊,协助罗马尼亚攻打英国,最后消灭英国皇家海军。 第一天 装甲部队全部在南斯拉夫边境集结,并消灭南斯拉夫的边防大炮。 第二天 由于保加利亚的攻击,诱使南斯拉夫指挥官出了城,我装甲部队趁虚而入,直捣其首都贝尔格莱德。 第三天

在格拉齐亚海军和我空军(炸南斯拉夫指挥官)的火力支援下,顺利攻克南斯拉夫。 而此时罗马尼亚方面遭到英军的猛烈攻击,向我军发来了求援电报。 第四天 接到电报后,我军决定兵分两路:指挥官带领坦克部队攻打希腊,装甲车前往罗马尼亚沿海随时准备支援,另外从1级工业城再造一队装甲车,前往罗马尼亚1级工业城协防。 第五天

布加勒斯特即将沦陷,我军严阵以待,后续跟进的炮兵镇守保加利亚沿岸,抵御英军战舰的进攻。 南面,将1级工业城升至2级,并造一坦克部队,在格拉齐亚海军和我空军的火力支援下,占领了希腊工业城市,兵临雅典城下。 第六天 英军攻陷了布加勒斯特,我军必须在这一天内趁英军气候未成将其消灭 在罗马尼亚工业城再造一队装甲车,联合之前驻守协防的装甲车,消灭英国陆军 与此同时在南面的希腊,有格拉齐亚将军的海上火力,联合我军坦克部队,攻克雅典,希腊沦陷在即。 第七天

陆军下海迎战英国海军 希腊方面军严阵以待,在意大利南海岸的步兵向残血的英军战舰打响了第一枪 第八天 装甲车配合大炮、步兵消灭黑海的英军战舰。 注:没步兵金章的朋友,这里也可以造步兵来补充火力了。 坦克、空军配合格拉齐亚将军一同灭掉艾欧尼亚海上的英军舰队,这时候英军航母开始发挥其远程攻击的优势,坚决不靠岸,无奈我军只好准备下海迎战之。 第八天

farmville 2攻略 让乡村度假来的更简单些

farmville 2攻略让乡村度假来的更简单些 farmville 2攻略送给大家,就让乡村度假来的更简单些把,FarmVille2: 乡村度假是一款在美国非常受欢迎的农场类型社交网页游戏,类似我们QQ空间的农场游戏,这款经营游戏现在移植到 了ios平台上,喜欢休闲游戏的小伙伴就一起来看看farmville 2攻略吧! farmville 2攻略让乡村度假来的更简单些 游戏主要以经营农场为主,先在有限的土地里种种小麦,种种苹果树,养奶牛。通过这一小部分作业先赚小钱,拿来开垦草地,修建池塘,逐步扩大农庄,成为真正的“土豪”!相比起《卡通 农场》,本作的操作方法更为简便,基本采取“一键”模式,什么“一键播种”啊,“一键收取”的,将种菜养畜的杂活最大程度简化。所以在玩的过程中不用费多大的劲,点点划划即可完工,是名副其 实的休闲类经营游戏! farmville 2攻略如何简化?不难看出,从细节上便可得知。譬如种菜方面的,每块地指定种一种蔬菜,不需要存留种子,不需要怕种错作物,仅需一块特定的地,有足够的水滴,就可照样种出想要的作物,说着好像很不现实的样子,是吧?而水滴只需轻轻点击一下井口,就可“一键打水”,收 集水滴。任何作物都需要水滴才可生成下一批产物,点击一下作物,旁边就会出现水滴,将水滴拖到作物的上方放置后,只需稍等片刻,马上可以收取。 百度攻略&口袋巴士提供 1

到作物的上方放置后,只需稍等片刻,马上可以收取。 farmville 2攻略让乡村度假来的更简单些 又例如样牲畜,本作中的不在需要买围栏圈住牲畜,每买一头奶牛,就像买一座建筑一样,放在一个固定的位置,那牛就一直在那里进行生产,虽然这样子很方便,不过Akiha觉得蛮占位置 的www……奶牛和土地一样,需要投喂小麦饲料才可生成牛奶。在这一步,本作也将饲料制作这 过程简化了,直接给奶牛投喂小麦,省去了用于生产饲料的大部分时间,很便捷! farmville 2:乡村度假作为一款经营游戏,最大程度的简化了游戏的操作,让又想经营又懒得动手的小伙伴可乐了一次,具体的玩法攻略大家不妨下载了试试,小编觉得还是不粗的,作为hay day的忠实爱好者推荐之哦! 百度攻略&口袋巴士提供 2

相关主题