搜档网
当前位置:搜档网 › 圆锥曲线测试题-双曲线焦点

圆锥曲线测试题-双曲线焦点

圆锥曲线测试题-双曲线焦点
圆锥曲线测试题-双曲线焦点

高中数学-圆锥曲线有关焦点弦的几个公式及应用.

圆锥曲线有关焦点弦的几个公式及应用 如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在 直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以 。

图1 (2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为()

解这里,所以,又,代入公式得,所 以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则() 解这里,,设直线的倾斜角为,代入公式得,所以 ,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3

高考数学竞赛圆锥曲线中与焦点弦相关的问题

与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=?u u u r u u u r u u u r 恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=?u u u r u u u r u u u r u u u r 恒成立.并由此求 四边形ABCD 面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件

圆锥曲线的焦点弦公式及应用(难)

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以。 图1

(2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则()

解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时, 设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 例5(自编题)已知双曲线的离心率为,过左焦点 且斜率为的直线交的两支于两点。若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。

圆锥曲线焦点弦问题

圆锥曲线焦点弦问题

θ2222 sin 2c a ab - 高考题:1.过抛物线)0(22 >=p py x 的焦点F 作倾斜角为300的直线与抛物线交于A 、B 两点(点A 在y 轴左侧),则 =FB AF 解:由公式:11cos +-= λλθe 得:11-21+=λλ,解得λ=3,∴=FB AF 3 1 2.双曲线122 22=-b y a x ,AB 过右焦点F 交双曲线与A 、B ,若直线AB 的斜率为3, 4=则双曲线的离心率e= 解:∵由已知tan θ=3∴θ=600, 由公式:11cos +-= λλθe 得:e 11-21+=λλ=1 41 -4+ ∴ e= 5 6 3.(2010高考全国卷)已知椭圆C :12222=+b y a x (a>b>0),离心率23 =e ,过右焦点且 斜率为k (k>0)的直线与C 相交于A 、B 两点,若3=,则k=( B )

A 、1 B 、2 C 、3 D 、2 解:由公式:11 cos +-= λλθe 得cos θ=3 1∴ k=tan θ=2;故选B 。 4.2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为 ,过 且斜率为的直线交 于 两点。若 ,则 的离心率为( ) 解 这里,所以,又,代入公式得,所 以 ,故选。 5.(08高考江西)过抛物线的焦点作倾斜角为的直线,与抛物 线交于 两点(点在轴左侧),则有____ 图3 解 如图3,由题意知直线 与抛物线的地称轴的夹角 ,当点 在 轴左侧时, 设,又,代入公式得,解得,所以。

6.(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 7.已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。若,则___ 解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。8.(2009年高考福建)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___ 解由抛物线焦点弦的弦长公式为得,,解得。 11.(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___ 解易知均在右支上,因为,离心率,点准距 ,因倾斜角为,所以。由焦半径公式得, 。

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F作相应准线的垂线,垂足为K,以FK的反向延长线为极轴建立极坐标系. ep 椭圆、双曲线、抛物线统一的极坐标方程为:. 1ecos 其中p是定点F到定直线的距离,p>0. 当0<e<1时,方程表示椭圆; 当e>1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PF e PQ,∴PF e(PF cos p),其中p FH,〈x轴,FP〉∴焦半径PF ep . 1ecos 当P在双曲线的左支上时,PF ep 1ecos . 推论:若圆锥曲线的弦MN经过焦点F,则有 112 . MF NF ep

2 cos 2 . c 2 2 2 三、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 经过焦点 F , a 2 b 2 ep ep 2ab 2 1、椭圆中, p , MN c c 1 ecos 1 ecos( ) a 2 c 2、双曲线中, ep ep 2ab 2 若 M 、N 在双曲线同一支上, MN ; 1 ecos 1 ecos( ) a 2 c 2 cos ep ep 2ab 2 若 M 、N 在双曲线不同支上, MN . 1 ecos 1 ecos c 2 cos a 2 3、抛物线中, MN p p 2p . 1 cos 1 cos( ) sin 四、直角坐标系中的焦半径公式 设 P (x,y )是圆锥曲线上的点, 1、若 F 、F 分别是椭圆的左、右焦点,则 PF 1 2 1 a ex ,PF 2 a ex ; 2、若 F 、 F 分别是双曲线的左、右焦点, 1 2 当点 P 在双曲线右支上时, PF 1 ex a , PF 2 ex a ; 当点 P 在双曲线左支上时, PF 1 a ex , PF 2 a ex ; 3、若 F 是抛物线的焦点, PF x p . 2

双曲线弦长公式例题

类型三:综合练习 1.已知中心在原点的双曲线C 的右焦点为,右顶点为 (Ⅰ)求双曲线C 的方程; (Ⅱ)若直线 A 和 B 且(其中为原点),求k 的取值范围。 2.已知直线1+=ax y 与双曲线1322=-y x 交于A 、B 点。 (1)求a 的取值范围;(2)若以A B 为直径的圆过坐标原点,求实数a 的值; 3.(1)椭圆C:122 22=+b y a x (a >b >0)上的点A ),(231到两焦点的距离之和为4,求椭圆的方程; (2)设K 是(1)中椭圆上的动点,F 1是左焦点,求线段F 1K 的中点的轨迹方程; 对接高考(圆锥曲线) 1 、【2015高考新课标1,文5】已知椭圆E 的中心为坐标原点,离心率为 12 ,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A ) 3 (B )6 (C )9 (D )12 2、【2015高考四川,文7】过双曲线2 2 13y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB |=( ) ()2,0) :=l y kx 2?> OA OB O

(A (B (C )6 (D 3、【2015高考陕西,文3】已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 4、【2015高考湖南,文6】若双曲线22 221x y a b -=的一条渐近线经过点(3,-4),则此双曲线的离心率为( ) A B 、54 C 、43 D 、53 5、设是椭圆22 22:1(0)x y E a b a b +=>>的左、右焦点,P 为直线上一点,12PF F ?是底角为的等腰三角形,则E 的离心率为() ()A 12()B 23()C 34 ()D 45 6、 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =C 的实轴长为() () A () B () C 4() D 8 7、【2015高考北京,文20】(本小题满分14分)已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭 圆C 交于A , B 两点,直线AE 与直线3x =交于点M . (I )求椭圆C 的离心率; (II )若AB 垂直于x 轴,求直线BM 的斜率; 8、【2015高考陕西,文20】如图,椭圆2222:1(0)x y E a b a b +=>>经过点(0,1)A - . (I)求椭圆E 的方程; 12F F 32a x =30

与焦点弦相关的问题

三、与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1 ) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=? 恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2 ) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=? 恒成立.并由此求 四边形ABCD 面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -=+ 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -=+ 备用课件

10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值 3) 问题探究10 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,AB 中垂线交x 轴于点D ,是否存在实常数λ,使1AB F D λ= 恒成立? 实验成果 动态课件 设椭圆焦点弦AB 的中垂线交长轴于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设双曲线焦点弦AB 的中垂线交焦点所在直线于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设抛物线焦点弦AB 的中垂线与对称轴交于点D ,则∣DF ∣与 ∣AB ∣之比为离心率的一半(F 为焦点) 备用课件

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线

当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问

圆锥曲线的焦点弦问题(特征梯形)

课题:探究抛物线中的焦点弦问题 【学习目标】: 探讨解决抛物线中有关焦点弦问题的思想方法. 【问题探究】: 抛物线定义:平面内与一个定点F 的距离和一条定直线l 距离相等的点的轨迹. 问题一:已知过抛物线2 2(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则?AB = (1):12AB x x p =++ (2):m i n AB 问题二、已知过抛物线22(0)y px p =>的焦点F 的直线 交抛物线于,A B 两点,' ',A B 为,A B 在准线上的射影, 则' ' ?A FB ∠= (3):' ' 90A FB ∠= (4):以Q 为圆心,以'' A B 为直径的圆切AB 于F 点 (x 1,y 1) (x 2,y 2) x y B′ A′ (x 1,y 1) (x 2,y 2) x y F′B′ A′Q

问题三、已知过抛物线2 2(0)y px p =>的焦点F 的直线 交抛物线于,A B 两点,'' ,A B 为,A B 在准线上的射影, 则以,A B 为直径的圆与准线的位置关系? (5):以P 为圆心,以AB 为直径的圆切''A B 于Q 点 (6):90AQB ∠ = 问题四、已知过抛物线2 2(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则1212?,?x x y y == (7):22 121 2,4 p x x yy p ==- 问题五、已知过抛物线22(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则11 ?AF BF += (8):112A F B F p += (x 1,y 1) (x 2,y 2) x y B′ A′Q P (x 1,y 1) (x 2,y 2) x y (x 1,y 1) (x 2,y 2) x y

圆锥曲线焦点三角形和焦点弦性质的

圆锥曲线焦点三角形和焦点弦性质的探讨 数学系2008级6班唐流聪 指导教师 XXX 摘要:圆锥曲线是现行高中解析几何学的重要内容之一,且圆锥曲线知识既是高中数学的重点,又是难点,因而成为高考的重点考查内容。而圆锥曲线的主要内容之一是过圆锥曲线焦点的弦或直线的有关问题,学生在求解此类题目时,常常感到无从下手。为解除这种困惑,在全面研究了高中数学教材及要求的基础上,通过分析、推导的方法,文章对椭圆焦点三角形的性质,双曲线焦点三角形的性质及圆锥曲线焦点弦的性质进行了研究和探讨,得出圆锥曲线焦点三角形的五条基本性质,以便使学生对相关知识有一个更全面、更系统、更深刻的了解,从而进一步提高运用这些性质去解决相关题目的数学能力和应用能力。 关键词:圆锥曲线;焦点三角形;性质;焦点 On the Properties of Conic Focal Point Triangle and Focal Point String Abstract: The cone curve, as an important part of content of analytical geometry in present high school, is rated not only as a key point but also a difficulty in mathematics teaching in senior high school, and so it becomes a key examination point in the college entrance examination. The most important content of cone curve is the problems concerning the string or straight line which passes through the conic focal point. Faced with this kind of questions, some students do not always know what to begin with. To relieve their confusion, this paper, on the basis of a thorough study of the mathematical teaching material for high schools and by means of analysis and deduction, probes into the nature of ellipse focal point triangle, the nature of hyperbolic curve focal point triangle and the nature of conic focal point string, and points out five basic properties of the conic focal point triangle. These properties can help students further understand the conic knowledge systematically and improve their mathematics competence and application ability in solving mathematical problems. Key words: cone curve; focal point triangle; properties; focal point 1引言 圆锥曲线是现行高中解析几何学的重要内容之一,且圆锥曲线知识既是高中数学的重点,又是难点.而圆锥曲线的主要内容之一是过圆锥曲线焦点的弦或直线的相关问题.在求解这类问题时,许多学生常常感到束手无策,部分学生由于计算量大的繁锁,产生厌学数学的情绪.为了解除这种困惑,培养或提高学生学习数学的兴趣,让学生掌握一定的解题方法或数学思想是很必要的.在数学中,我们常常是利用性质去讨论问题,因此,文章首先探讨圆锥曲线焦点三角形及焦点弦的性质,然后再讨论这些性质的应用. 圆锥曲线焦点三角形及焦点弦具有不少性质,许多教师或专家已做过研究.文献[2]主要是对椭圆焦点三角形的性质进行研究,而文献[7]主要是对双曲线焦点三角形的性质进行研究.文献[2]、[7]都是孤立地进行探讨,缺乏系统性,显得单一.文献[1]、[10]主要围绕焦点三角形的内切圆将椭圆焦点三角形与双曲线焦点三角形的性质结合起来探讨,弥补了文

高中数学 圆锥曲线焦点弦斜率公式及应用 专题辅导

高中数学 圆锥曲线焦点弦斜率公式及应用 专题辅导 周华生 本文介绍圆锥曲线标准方程的两个用定比λ表示的斜率公式及解题时的巧妙应用。 定理1 若 AB 是椭圆 )0b a (b a y a x b :2222221>>=+Γ或双曲线 2222222b a y a x b :=-Γ或抛物线)0p (px 2y :23>=Γ的焦点弦,F 为焦点且λ=,(A 在B 之上),则弦AB 所在直线斜率k 满足 )1,0(1e ) 1()1(k 2 2 22 ±≠λ≠λ--λ+λ= (1) 证明:设AB 的倾角为α。 (1)当?<α<900时,l 为F 对应的准线,如图1对曲线1Γ: ?? ?α-α=±=+-=+-=+λ-λ== λ) F (cos e ) F (cos e |AB ||)BC |(e |BF ||AF ||)'BB ||'AA (|e | BF ||AF || BF ||AF |11,|'BB || 'AA ||BF ||AF |为右焦点为左焦点 所以2 22 2 )1()1(e sec -λ+λ=α,即1e )1()1(tan 2222--λ+λ=α。 (2)当?<α

双曲线的弦长公式与面积(不过焦点的弦)

第 1 页 共 1 页 双曲线的弦长公式与面积(不过焦点的弦) 双曲线 ()0,01- 2 22 2>>=b a b y a x 与直线m kx y l +=:相交于AB 两点,求AB 的弦长. 设 设()()2211,,,y x B y x A 则()()()2122122 1221241x x x x k y y x x AB -++=-+-= 将 m kx y +=代 入 1 - 2 22 2=b y a x 得: ( ) ??? ????---=?-=+∴=-2222 222212222212 22222222-20-2--a k b b a m a x x a k b km a x x b a m a kmx a x a k b () 2 2 2 2 2222 212 212 2141k a b m a k b ab k x x x x k AB -+-+=-++==∴. 双曲线与直线交点的判别式:() 2222224m a k b b a +-=?用来判断是否有两个交点问题. 面积问题:双曲线与直线m kx y l +=:相交与两点,()00,y x C 为AB 外任意一点,求ABC S ?.设C 到l 的距离为d ,则222222200200-1 21 21a k b m a k b ab m y kx k m y kx AB d AB S ABC -+?+-=++-==△. 直线与双曲线交点问题: (1)直线m kx y +=与双曲线()0,01- 2 2 2 2 >>=b a b y a x 有两个交点时, ( )04222222>+-=?m a k b b a ;() 04222222=+-=?m a k b b a ,有仅有一个交点; ()042 222 2 2<+-=?m a k b b a ,没有交点. (2)过点()00,y x P 的直线与双曲线有一个交点情况需要分类讨论: ①当a b x y ±=00时,点P 在渐近线上,当a x ±=0时,有两条直线(一条切线,一条与另一条 渐近线平行的直线);②当a x ±≠0时,且在双曲线外部,有三条直线(两条切线,一条与另一条渐近线平行的直线); ③当()0,01-220220>>>b a b y a x 时(点P 在双曲线内部),一定有交点,当直线斜率a b k ±=时, 有一交点,当直线斜率a b k ±≠时,有两个交点.

高考数学竞赛圆锥曲线中与焦点弦相关的问题

与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=?恒成立.并由此求∣A B∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C,D两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=?恒成立.并由此求四边 形AB CD面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件

10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值3) 问题探究10 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A,B 两点,AB 中垂线交x 轴于点D ,是否存在实常数λ,使1AB F D λ=恒成立? 实验成果 动态课件 设椭圆焦点弦AB 的中垂线交长 轴于点D ,则∣D F∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设双曲线焦点弦AB 的中垂线交焦点所在直线于点D ,则∣D F∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设抛物线焦点弦AB 的中垂线与对称轴交于点D ,则∣DF ∣与 ∣AB ∣之比为离心率的一半(F 为焦点) 备用课件

圆锥曲线之焦点弦专题

圆锥曲线之焦点弦专题 一.圆锥曲线常用的几种方法: 1.定义法 2.韦达定理 3.设而不求点差法 4.弦长公式法 5.数形结合法 6.参数法(点参数;K参数:角参数) 7.代入法中的顺序 8.充分利用曲线系方程法 二.圆锥曲线七种常见题型 1.中点弦问题 2.焦点三角形问题 3.直线与圆锥曲线位置关系 4.圆锥曲线的有关最值(范围)问题 5.求曲线的方程问题 6.存在两点关于直线对称问题 7.两线段垂直问题 三.焦点弦题型讲与练 模型:e=√1+k2|?-1/?+1|或|ecos?|=|?-1/?+1 1.已知椭圆c:x2/a2+y2/b2=1的离心率为√3/2,过右焦点F且斜率为k的直线与c交与A.B两点,若向量AF=3FB.求k的值。 2设F1,F2分别是椭圆E:x2+y2/2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为___ .3.设F1.F2分别为椭圆x2/3+y2=1的左右的焦点,点A,B在椭圆上,若向量F1A =5F2B,则A点的坐标 .

4.椭圆的左右焦点分别为F1F2,A、B是椭圆上的两点,AF1=3F1B,∠BAF=90,椭圆的离心率是() A 1/2 B√2/2 C√3/2 D3/4 5.(本小题满分12分)设F1,F2分别是椭圆E:的左,右焦点, 过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(I) 求E的离心率; (II) 设点P(0,-1)满足|PA|=|PB|,求E的方程. 6.设F1,F2分别是椭圆C:的左,右焦点,M是C上一点且MF2 与x轴垂直.直线MF1与C的另一交点为N. (Ⅰ)若直线MN的斜率为3/4,求C的离心率; (Ⅱ)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b. 7.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E. (Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程; (Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.

圆锥曲线焦点弦公式及应用

圆锥曲线焦点弦公式及应用 湖北省阳新县高级中学邹生书 焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有 ;(2)当焦点外分弦时(此时曲线为双曲线),有 。 证明设直线是焦点所对应的准线,点在直线上的射影分别为, 点在直线上的射影为。由圆锥曲线的统一定义得,,又 ,所以。 (1)当焦点内分弦时。 如图1,,所以 。 图1 (2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右 焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所 以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的 离心率为。过右焦点且斜率为的直线于相交于两点,若,则() 解这里,,设直线的倾斜角为,代入公式得, 所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜 角为的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴 左侧时,设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___ 解设直线与焦点所在的轴的夹角为,则,又,代 入公式得,所以。 例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。若,则___ 解这里,,因直线与左右两支相交,故应选择公式 ,代入公式得,所以所以,所以。 定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准 距(焦点到对应准线的距离)为。过点的弦与曲线的焦点所在的轴的夹

圆锥曲线三种弦长问题word版本

圆锥曲线三种弦长问题的探究 一、一般弦长计算问题: 例1、已知椭圆()2222:10x y C a b a b +=>>,直线1:1x y l a b -=被椭圆C 截得的弦长为 且3 e = ,过椭圆C 2l 被椭圆C 截的弦长AB , ⑴求椭圆的方程;⑵弦AB 的长度. 思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由1l 被椭圆C 截得的弦长为22 8a b +=,………① 又e =,即2223 c a =,所以22 3a b =………………………….② 联立①②得2 2 6,2a b ==,所以所求的椭圆的方程为22 162 x y +=. ⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:)2y x =-, 代入椭圆C 的方程,化简得,2 51860x x -+= 由韦达定理知,1212186 ,55 x x x x +== 从而125 x x -= = , 由弦长公式,得12AB x =-==, 即弦AB 点评:本题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数2 2 ,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式。 二、中点弦长问题: 例2、过点()4,1P 作抛物线2 8y x =的弦AB ,恰被点P 平分,求AB 的所在直线方程及弦 AB 的长度。 思路分析:因为所求弦通过定点P ,所以弦AB 所在直线方程关键是求出斜率k ,有P 是弦 的中点,所以可用作差或韦达定理求得,然后套用弦长公式可求解弦长. 解法1:设以P 为中点的弦AB 端点坐标为()()1122,,,A x y B x y , 则有22 11228,8y x y x ==,两式相减,得()()()1212128y y y y x x -+=-

圆锥曲线焦点弦的一个性质

圆锥曲线焦点弦的一个性质 浙江省台州市实验中学 张铭 由于圆锥曲线(椭圆、双曲线、抛物线)有着统一的内在规律,因而它们的一些性质逐渐被人们揭示。本人在研究圆锥曲线焦点弦时,发现了一个统一性质,现叙述如下: 定理1:已知抛物线E:y 2=2px (p>0)的焦点为F ,其准线为L: 2 p x =-,,过焦点F 的直线m 与抛物线交于A 、B 两点.则112||||AF BF p += 证明:若过点F 的直线m 的斜率存在为k(k ≠0),则m 的方程为()2 p y k x =-. 设1122(,),(,)A x y B x y ,将()2p y k x =-代入抛物线方程可得22()22 p k x px -= 即22222 (2)04k p k x p k x -++= 22 12122(2),4p k p x x x x k +∴+=?= 1112||||,||||22 p p AF AA x BF BB x ==+==+又 221222 (2)2(1)||||p k p k AF BF x x p p k k ++∴+=++=+= (1) 2 1212122222222||||()()()2224(2)1424p p p p AF BF x x x x x x p p p k p k p k k ?=++=?+++++=+?+=? (2) (1) 除以(2)得 ||||22||||A F B F A F B F p p +=+=?11 ,即 |AF||BF| 若过F 点的直线m 的斜率不存在,此时直线m 的方程为:2p x = 则A.B 两点坐标为(,)(,)||||22p p p p AF BF p -∴==和 11112||||AF BF p p p ∴+=+= 命题也成立。 综上,定理得证。

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程 关于直线与圆锥曲线相交求弦长,通用方法是将直线b kx y+ =代入曲线方程,化为关于x的一元二次方程,设出交点坐标()(), , , , 2 2 1 1 y x B y x A利用韦达定理及弦长公式 ] 4 ) )[( 1( 2 1 2 2 1 2x x x x k- + +求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷. 一、椭圆的焦点弦长 若椭圆方程为)0 (1 2 2 2 2 > > = +b a b y a x ,半焦距为c>0,焦点)0, ( ), 0, ( 2 1 c F c F-,设过 1 F的直线l的倾斜角为l,α交椭圆于两点()(), , , , 2 2 1 1 y x B y x A求弦长AB. 解:连结B F A F 2 2 ,,设y B F x A F= = 1 1 ,,由椭圆定义得y a B F x a A F- = - =2 , 2 2 2 ,由余弦定理得2 2 2) 2( cos 2 2 ) 2(x a c x c x- = ? ? - +α,整理可得 α cos 2 ? - = c a b x,同理可求 得 α cos 2 ? + = c a b y,则 α α α2 2 2 2 2 2 cos 2 cos cos c a ab c a b c a b y x AB - = ? + + ? - = + =; 同理可求得焦点在y轴上的过焦点弦长为 α2 2 2 2 sin 2 c a ab AB - =(a为长半轴,b为短半轴,c为半焦距). 结论:椭圆过焦点弦长公式: ? ? ? ?? ? ? ? - ? - = ). ( sin 2 ), ( cos 2 2 2 2 2 2 2 2 2 轴上 焦点在 轴上 焦点在 y c a ab x c a ab AB α α

高考数学竞赛圆锥曲线中与焦点弦相关的问题

与焦点弦相关的问题 8. 椭圆、双曲线、抛物线的焦点弦性质(定值1) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为 常数 1 1 2 ---- 1 ---- = --- I Af ; I IBf ; I ep 备用课件 双曲线的焦点弦的两个焦半径倒数之和 为常数 AB 在同支 Ill _ 2 IA 存 I IBFJ 一亦 AB 在异支I ________ I=Z IAFil IB 斤 I 一印 备用课件 拋物线的焦点弦的两个焦半径倒数之和 为常数 1 1 _ 2 IAF I + IBF ?~7p 备用课件 已知椭圆} +十=1,耳为椭圆之左焦点,过点片的直线交椭圆于力,B 两点、,是否存在 = λFA ? FB 恒成立?并由此求I AB \的最小值.(借用柯西不等式) FiB = 2.09 . AFI = 1.56 ?ie ?? FB = 3.54 JlJK AfiiF = 2.44 穌 FO ≡ 1.44 P = 2.89 米 一 + ”.—=— BF AF ep ?+?=0? 69l ^i ?, - = 0,69.Ψ??1 问题探究8

9.椭圆、双曲线、抛物线的正交焦点弦 性质(定值2) 实验成果动态课件 椭圆互相垂直的焦点弦倒数之和为常数 1 1 2-e1 ----- + ------- = -------- IABl ICDl 2ep 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 1 1 2-e2 + = IABl ICDl 2ep 备用课件 问题探究9 2 2 已知椭圆丄- + 2- = 1, Fl为椭圆之左焦点,过点片的直线人 仏分别交椭圆于儿3两点和 C, Q两点,且厶丄心,是否存在实常数几,^IASI+ ∣CD∣ = 2∣ΛB∣?∣CD∣恒成立.并由此求四边形 =15.03凰米 B = 6.91 O 同支线段 a = C = 398 A?+?= 0?21,,,?^ 异支线段 A拖 B CD z°08,r^ 双曲线互相垂直的焦点弦倒数之和为常数 1 1 _\2-e 2 I ? AB ?+? CD ?~ Iep 备用课件 - IBBiI的IE交焦点孩性J? J 0X. ? 一 。 一 ? A ?

相关主题